1932

Abstract

The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061422-020428
2024-07-17
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061422-020428.html?itemId=/content/journals/10.1146/annurev-anchem-061422-020428&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Grahame DC. 1947.. The electrical double layer and the theory of electrocapillarity. . Chem. Rev. 41::441501
    [Crossref] [Google Scholar]
  2. 2.
    Kornyshev AA, Qiao R. 2014.. Three-dimensional double layers. . J. Phys. Chem. C 118::1828590
    [Crossref] [Google Scholar]
  3. 3.
    Wu H, Jia H, Wang C, Zhang J-G, Xu W. 2021.. Recent progress in understanding solid electrolyte interphase on lithium metal anodes. . Adv. Energy Mater. 11::2003092
    [Crossref] [Google Scholar]
  4. 4.
    Binnig G, Rohrer H, Gerber C, Weibel E. 1982.. Tunneling through a controllable vacuum gap. . Appl. Phys. Lett. 40::17880
    [Crossref] [Google Scholar]
  5. 5.
    Itaya K. 1998.. In situ scanning tunneling microscopy in electrolyte solutions. . Prog. Surf. Sci. 58::121247
    [Crossref] [Google Scholar]
  6. 6.
    Kolb DM. 2001.. Electrochemical surface science. . Angew. Chem. Int. Ed. 40::116281
    [Crossref] [Google Scholar]
  7. 7.
    Weaver MJ, Gao X. 1993.. In-situ electrochemical surface science. . Annu. Rev. Phys. Chem. 44::45994
    [Crossref] [Google Scholar]
  8. 8.
    Binnig G, Quate CF, Gerber C. 1986.. Atomic force microscope. . Phys. Rev. Lett. 56::93033
    [Crossref] [Google Scholar]
  9. 9.
    Marti O, Drake B, Hansma PK. 1987.. Atomic force microscopy of liquid-covered surfaces: atomic resolution images. . Appl. Phys. Lett. 51::48486
    [Crossref] [Google Scholar]
  10. 10.
    Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, et al. 1989.. Imaging crystals, polymers, and processes in water with the atomic force microscope. . Science 243::158689
    [Crossref] [Google Scholar]
  11. 11.
    Chen X, Li B, Liao Z, Li J, Li X, et al. 2022.. Principles and applications of liquid-environment atomic force microscopy. . Adv. Mater. Interfaces 9::2201864
    [Crossref] [Google Scholar]
  12. 12.
    Manne S, Hansma PK, Massie J, Elings VB, Gewirth AA. 1991.. Atomic-resolution electrochemistry with the atomic force microscope: copper deposition on gold. . Science 251::18386
    [Crossref] [Google Scholar]
  13. 13.
    Chen CH, Vesecky SM, Gewirth AA. 1992.. In situ atomic force microscopy of underpotential deposition of silver on gold(111). . J. Am. Chem. Soc. 114::45158
    [Crossref] [Google Scholar]
  14. 14.
    Gewirth AA, Niece BK. 1997.. Electrochemical applications of in situ scanning probe microscopy. . Chem. Rev. 97::112962
    [Crossref] [Google Scholar]
  15. 15.
    Herrero E, Buller LJ, Abruña HD. 2001.. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. . Chem. Rev. 101::1897930
    [Crossref] [Google Scholar]
  16. 16.
    Wang Y, Skaanvik SA, Xiong X, Wang S, Dong M. 2021.. Scanning probe microscopy for electrocatalysis. . Matter 4::3483514
    [Crossref] [Google Scholar]
  17. 17.
    Chen HB, Qin ZB, He MF, Liu YC, Wu Z. 2020.. Application of electrochemical atomic force microscopy (EC-AFM) in the corrosion study of metallic materials. . Materials 13::668
    [Crossref] [Google Scholar]
  18. 18.
    Kolb DM. 2011.. Electrochemical surface science: past, present and future. . J. Solid State Electrochem. 15::139199
    [Crossref] [Google Scholar]
  19. 19.
    García R, Pérez R. 2002.. Dynamic atomic force microscopy methods. . Surf. Sci. Rep. 47::197301
    [Crossref] [Google Scholar]
  20. 20.
    Yan J-W, Tian Z-Q, Mao B-W. 2017.. Molecular-level understanding of electric double layer in ionic liquids. . Curr. Opin. Electrochem. 4::10511
    [Crossref] [Google Scholar]
  21. 21.
    Liu D, Shadike Z, Lin R, Qian K, Li H, et al. 2019.. Review of recent development of in situ/operando characterization techniques for lithium battery research. . Adv. Mater. 31::1806620
    [Crossref] [Google Scholar]
  22. 22.
    Zhang Z, Said S, Smith K, Jervis R, Howard CA, et al. 2021.. Characterizing batteries by in situ electrochemical atomic force microscopy: a critical review. . Adv. Energy Mater. 11::2101518
    [Crossref] [Google Scholar]
  23. 23.
    Bhushan B, Marti O. 2005.. Scanning probe microscopy: principle of operation, instrumentation, and probes. . In Nanotribology and Nanomechanics: An Introduction, ed. B Bhushan , pp. 41115. Cham, Switz.:: Springer
    [Google Scholar]
  24. 24.
    Israelachvili JN. 2011.. Intermolecular Surface Forces. Cambridge, UK:: Academic Press. , 3rd ed..
    [Google Scholar]
  25. 25.
    Butt H-J, Jaschke M, Ducker W. 1995.. Measuring surface forces in aqueous-electrolyte solution with the atomic-force microscope. . Bioelectrochem. Bioenerg. 38::191201
    [Crossref] [Google Scholar]
  26. 26.
    Butt H-J, Cappella B, Kappl M. 2005.. Force measurements with the atomic force microscope: technique, interpretation and applications. . Surf. Sci. Rep. 59::1152
    [Crossref] [Google Scholar]
  27. 27.
    Cappella B, Dietler G. 1999.. Force-distance curves by atomic force microscopy. . Surf. Sci. Rep. 34::1104
    [Crossref] [Google Scholar]
  28. 28.
    Hillier AC, Kim S, Bard AJ. 1996.. Measurement of double-layer forces at the electrode/electrolyte interface using the atomic force microscope: potential and anion dependent interactions. . J. Phys. Chem. 100::1880817
    [Crossref] [Google Scholar]
  29. 29.
    Wang J, Feldberg SW, Bard AJ. 2002.. Measurement of double-layer forces at the polymer film/electrolyte interfaces using atomic force microscopy: concentration and potential-dependent interactions. . J. Phys. Chem. B 106::1044046
    [Crossref] [Google Scholar]
  30. 30.
    Atkin R, Warr GG. 2007.. Structure in confined room-temperature ionic liquids. . J. Phys. Chem. C 111::516268
    [Crossref] [Google Scholar]
  31. 31.
    Umeda K, Kobayashi K, Minato T, Yamada H. 2020.. Atomic-scale three-dimensional local solvation structures of ionic liquids. . J. Phys. Chem. Lett. 11::134348
    [Crossref] [Google Scholar]
  32. 32.
    Martin-Jimenez D, Chacon E, Tarazona P, Garcia R. 2016.. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface. . Nat. Commun. 7::12164
    [Crossref] [Google Scholar]
  33. 33.
    Zhou S, Panse KS, Motevaselian MH, Aluru NR, Zhang YJ. 2020.. Three-dimensional molecular mapping of ionic liquids at electrified interfaces. . ACS Nano 14::1751523
    [Crossref] [Google Scholar]
  34. 34.
    Zhang J, Wang R, Yang XC, Lu W, Wu XD, et al. 2012.. Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy. . Nano Lett. 12::215357
    [Crossref] [Google Scholar]
  35. 35.
    Rugar D, Hansma P. 1990.. Atomic force microscopy. . Phys. Today 43::2330
    [Crossref] [Google Scholar]
  36. 36.
    Ohnesorge F, Binnig G. 1993.. True atomic resolution by atomic force microscopy through repulsive and attractive forces. . Science 260::145156
    [Crossref] [Google Scholar]
  37. 37.
    Manne S, Butt HJ, Gould SAC, Hansma PK. 1990.. Imaging metal atoms in air and water using the atomic force microscope. . Appl. Phys. Lett. 56::175859
    [Crossref] [Google Scholar]
  38. 38.
    Martin Y, Williams CC, Wickramasinghe HK. 1987.. Atomic force microscope–force mapping and profiling on a sub 100-Å scale. . J. Appl. Phys. 61::472329
    [Crossref] [Google Scholar]
  39. 39.
    Zhong Q, Inniss D, Kjoller K, Elings VB. 1993.. Fractured polymer silica fiber surface studied by tapping mode atomic force microscopy. . Surf. Sci. 290::L68892
    [Crossref] [Google Scholar]
  40. 40.
    Albrecht TR, Grütter P, Horne D, Rugar D. 1991.. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. . J. Appl. Phys. 69::66873
    [Crossref] [Google Scholar]
  41. 41.
    Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, et al. 1994.. Tapping mode atomic force microscopy in liquids. . Appl. Phys. Lett. 64::173840
    [Crossref] [Google Scholar]
  42. 42.
    Putman CAJ, Van der Werf KO, De Grooth BG, Van Hulst NF, Greve J. 1994.. Tapping mode atomic force microscopy in liquid. . Appl. Phys. Lett. 64::245456
    [Crossref] [Google Scholar]
  43. 43.
    Giessibl FJ. 2003.. Advances in atomic force microscopy. . Rev. Mod. Phys. 75::94983
    [Crossref] [Google Scholar]
  44. 44.
    Fukuma T, Kimura M, Kobayashi K, Matsushige K, Yamada H. 2005.. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. . Rev. Sci. Instrum. 76::053704
    [Crossref] [Google Scholar]
  45. 45.
    Fukuma T, Kobayashi K, Matsushige K, Yamada H. 2005.. True molecular resolution in liquid by frequency-modulation atomic force microscopy. . Appl. Phys. Lett. 86::193108
    [Crossref] [Google Scholar]
  46. 46.
    Umeda K, Fukui K. 2010.. Observation of redox-state-dependent reversible local structural change of ferrocenyl-terminated molecular island by electrochemical frequency modulation AFM. . Langmuir 26::910410
    [Crossref] [Google Scholar]
  47. 47.
    Yokota Y, Harada T, Fukui K-I. 2010.. Direct observation of layered structures at ionic liquid/solid interfaces by using frequency-modulation atomic force microscopy. . Chem. Commun. 46::862729
    [Crossref] [Google Scholar]
  48. 48.
    Fukuma T, Ueda Y, Yoshioka S, Asakawa H. 2010.. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. . Phys. Rev. Lett. 104::016101
    [Crossref] [Google Scholar]
  49. 49.
    Hernández-Muñoz J, Uhlig MR, Benaglia S, Chacón E, Tarazona P, Garcia R. 2020.. Subnanometer interfacial forces in three-dimensional atomic force microscopy: water and octane near a mica surface. . J. Phys. Chem. C 124::26296303
    [Crossref] [Google Scholar]
  50. 50.
    Hu SQ, Mininni L, Hu Y, Erina N, Kindt J, Su CM. 2012.. High-speed atomic force microscopy and peak force tapping control. . Proc SPIE 8324::83241O. https://doi.org/10.1117/12.928545
    [Crossref] [Google Scholar]
  51. 51.
    Xu K, Sun WH, Shao YJ, Wei FN, Zhang XX, et al. 2018.. Recent development of PeakForce Tapping mode atomic force microscopy and its applications on nanoscience. . Nanotechnol. Rev. 7::60521
    [Crossref] [Google Scholar]
  52. 52.
    Nellist MR, Chen YK, Mark A, Gödrich S, Stelling C, et al. 2017.. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. . Nanotechnology 28::095711
    [Crossref] [Google Scholar]
  53. 53.
    Macpherson JV, Unwin PR. 2000.. Combined scanning electrochemical-atomic force microscopy. . Anal. Chem. 72::27685
    [Crossref] [Google Scholar]
  54. 54.
    Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J. 2001.. Integrating an ultramicroelectrode in an AFM cantilever: combined technology for enhanced information. . Anal. Chem. 73::2491500
    [Crossref] [Google Scholar]
  55. 55.
    Bard AJ, Fan FRF, Kwak J, Lev O. 1989.. Scanning electrochemical microscopy. Introduction and principles. . Anal. Chem. 61::13238
    [Crossref] [Google Scholar]
  56. 56.
    Knittel P, Mizaikoff B, Kranz C. 2016.. Simultaneous nanomechanical and electrochemical mapping: combining peak force tapping atomic force microscopy with scanning electrochemical microscopy. . Anal. Chem. 88::617478
    [Crossref] [Google Scholar]
  57. 57.
    Caniglia G, Tezcan G, Meloni GN, Unwin PR, Kranz C. 2022.. Probing and visualizing interfacial charge at surfaces in aqueous solution. . Annu. Rev. Anal. Chem. 15::24767
    [Crossref] [Google Scholar]
  58. 58.
    Magnussen OM. 2002.. Ordered anion adlayers on metal electrode surfaces. . Chem. Rev. 102::679726
    [Crossref] [Google Scholar]
  59. 59.
    Ikemiya N, Miyaoka S, Hara S. 1994.. Observations of the Cu(1 × 1) adlayer on Au(111) in a sulfuric acid solution using atomic force microscopy. . Surf. Sci. 311::L64148
    [Crossref] [Google Scholar]
  60. 60.
    Chen CH, Gewirth AA. 1992.. Correlation of electrode surface structure with activity toward peroxide electroreduction for bismuth monolayers on gold(111). . J. Am. Chem. Soc. 114::543940
    [Crossref] [Google Scholar]
  61. 61.
    Toney MF, Howard JN, Richer J, Borges GL, Gordon JG, et al. 1995.. Electrochemical deposition of copper on a gold electrode in sulfuric acid: resolution of the interfacial structure. . Phys. Rev. Lett. 75::447275
    [Crossref] [Google Scholar]
  62. 62.
    Freeman JS, Mamme MH, Ustarroz J, Warr GG, Li H, Atkin R. 2023.. Molecular resolution nanostructure and dynamics of the deep eutectic solvent—graphite interface as a function of potential. . Small 19::2204993
    [Crossref] [Google Scholar]
  63. 63.
    LaGraff JR, Gewirth AA. 1995.. In-situ observation of oxygen adlayer formation on Cu(110) electrode surfaces. . Surf. Sci. 326::L146166
    [Crossref] [Google Scholar]
  64. 64.
    Kubo K, Hirai N, Tanaka T, Hara S. 2003.. In situ observation on Au(100) surface in molten EMImBF4 by electrochemical atomic force microscopy (EC-AFM). . Surf. Sci. 546::L78588
    [Crossref] [Google Scholar]
  65. 65.
    Utsunomiya T, Tatsumi S, Yokota Y, Fukui K-I. 2015.. Potential-dependent structures investigated at the perchloric acid solution/iodine modified Au(111) interface by electrochemical frequency-modulation atomic force microscopy. . Phys. Chem. Chem. Phys. 17::1261622
    [Crossref] [Google Scholar]
  66. 66.
    Park I, Baltruschat H. 2022.. Atomic-scale friction study by EC-AFM: underpotential deposition (UPD) of Ag on I-modified Au(111) and its tip penetration. . J. Electrochem. Soc. 169::122501
    [Crossref] [Google Scholar]
  67. 67.
    Ikemiya N, Miyaoka S, Hara S. 1995.. In-situ observations of the initial-stage of electrodeposition of Cu on Au(100) from an aqueous sulfuric acid solution using atomic force microscopy. . Surf. Sci. 327::26173
    [Crossref] [Google Scholar]
  68. 68.
    Ikemiya N, Yamada K, Hara S. 1996.. Initial stage of the electrodeposition of Ag on Au(100) observed by in-situ atomic force microscopy. . Surf. Sci. 348::25360
    [Crossref] [Google Scholar]
  69. 69.
    Chen RR, Mo YB, Scherson DA. 1994.. In situ atomic force microscopy imaging of electroprecipitated nickel hydrous oxide films in alkaline electrolytes. . Langmuir 10::393336
    [Crossref] [Google Scholar]
  70. 70.
    Yamaguchi Y, Shiota M, Nakayama Y, Hirai N, Hara S. 2001.. Combined in situ EC-AFM and CV measurement study on lead electrode for lead-acid batteries. . J. Power Sources 93::10411
    [Crossref] [Google Scholar]
  71. 71.
    Smith EL, Barron JC, Abbott AP, Ryder KS. 2009.. Time resolved in situ liquid atomic force microscopy and simultaneous acoustic impedance electrochemical quartz crystal microbalance measurements: a study of Zn deposition. . Anal. Chem. 81::846671
    [Crossref] [Google Scholar]
  72. 72.
    Wang SN, Wang ZY, Yin YB, Li TY, Chang NN, et al. 2021.. A highly reversible zinc deposition for flow batteries regulated by critical concentration induced nucleation. . Energy Environ. Sci. 14::407784
    [Crossref] [Google Scholar]
  73. 73.
    Zhou X, Zhang Q, Hao Z, Ma Y, Drozhzhin OA, Li F. 2021.. Unlocking the allometric growth and dissolution of Zn anodes at initial nucleation and an early stage with atomic force microscopy. . ACS Appl. Mater. Interfaces 13::5322734
    [Crossref] [Google Scholar]
  74. 74.
    Chen X, Koper MTM. 2023.. In situ EC-AFM study of the initial stages of cathodic corrosion of Pt(111) and polycrystalline Pt in acid solution. . J. Phys. Chem. Lett. 14::49975003
    [Crossref] [Google Scholar]
  75. 75.
    Akbashev AR, Roddatis V, Baeumer C, Liu T, Mefford JT, Chueh WC. 2023.. Probing the stability of SrIrO3 during active water electrolysis via operando atomic force microscopy. . Energy Environ. Sci. 16::51322
    [Crossref] [Google Scholar]
  76. 76.
    Mefford JT, Akbashev AR, Kang M, Bentley CL, Gent WE, et al. 2021.. Correlative operando microscopy of oxygen evolution electrocatalysts. . Nature 593::6773
    [Crossref] [Google Scholar]
  77. 77.
    Grosse P, Gao D, Scholten F, Sinev I, Mistry H, Roldan Cuenya B. 2018.. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction: size and support effects. . Angew. Chem. Int. Ed. 57::619297
    [Crossref] [Google Scholar]
  78. 78.
    Deng J, Nellist MR, Stevens MB, Dette C, Wang Y, Boettcher SW. 2017.. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy. . Nano Lett. 17::692226
    [Crossref] [Google Scholar]
  79. 79.
    Dette C, Hurst MR, Deng J, Nellist MR, Boettcher SW. 2019.. Structural evolution of metal (Oxy)hydroxide nanosheets during the oxygen evolution reaction. . ACS Appl. Mater. Interfaces 11::559094
    [Crossref] [Google Scholar]
  80. 80.
    Hu K, Chai Z, Whitesell JK, Bard AJ. 1999.. In situ monitoring of diffuse double layer structure changes of electrochemically addressable self-assembled monolayers with an atomic force microscope. . Langmuir 15::334347
    [Crossref] [Google Scholar]
  81. 81.
    Wang J, Bard AJ. 2001.. Direct atomic force microscopic determination of surface charge at the gold/electrolyte interface—the inadequacy of classical GCS theory in describing the double-layer charge distribution. . J. Phys. Chem. B 105::521722
    [Crossref] [Google Scholar]
  82. 82.
    Rentsch S, Siegenthaler H, Papastavrou G. 2007.. Diffuse layer properties of thiol-modified gold electrodes probed by direct force measurements. . Langmuir 23::908391
    [Crossref] [Google Scholar]
  83. 83.
    Barten D, Kleijn JM, Duval J, von Leeuwen HP, Lyklema J, Stuart MAC. 2003.. Double layer of a gold electrode probed by AFM force measurements. . Langmuir 19::113339
    [Crossref] [Google Scholar]
  84. 84.
    Atkin R, Borisenko N, Drüschler M, El Abedin SZ, Endres F, et al. 2011.. An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction. . Phys. Chem. Chem. Phys. 13::684957
    [Crossref] [Google Scholar]
  85. 85.
    Hayes R, Borisenko N, Tam MK, Howlett PC, Endres F, Atkin R. 2011.. Double layer structure of ionic liquids at the Au(111) electrode interface: an atomic force microscopy investigation. . J. Phys. Chem. C 115::685563
    [Crossref] [Google Scholar]
  86. 86.
    Zhang X, Zhong Y-X, Yan J-W, Su Y-Z, Zhang M, Mao B-W. 2012.. Probing double layer structures of Au (111)-BMIPF6 ionic liquid interfaces from potential-dependent AFM force curves. . Chem. Commun. 48::58284
    [Crossref] [Google Scholar]
  87. 87.
    Zhong Y-X, Yan J-W, Li M-G, Zhang X, He D-W, Mao B-W. 2014.. Resolving fine structures of the electric double layer of electrochemical interfaces in ionic liquids with an AFM tip modification strategy. . J. Am. Chem. Soc. 136::1468285
    [Crossref] [Google Scholar]
  88. 88.
    Li M-G, Chen L, Zhong Y-X, Chen Z-B, Yan J-W, Mao B-W. 2016.. The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—a combined in-situ scanning probe microscopy and impedance study. . Electrochim. Acta 197::28289
    [Crossref] [Google Scholar]
  89. 89.
    Zhang M, Duan S, Luo S, Zhong Y, Yan J, et al. 2020.. Structural exploration of multilayered ionic liquid/Ag electrode interfaces by atomic force microscopy and surface-enhanced Raman spectroscopy. . ChemElectroChem 7::493642
    [Crossref] [Google Scholar]
  90. 90.
    Uhlig MR, Martin-Jimenez D, Garcia R. 2019.. Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS2 and WSe2 in water. . Nat. Commun. 10::2606
    [Crossref] [Google Scholar]
  91. 91.
    Aurbach D, Cohen Y. 1996.. The application of atomic force microscopy for the study of Li deposition processes. . J. Electrochem. Soc. 143::3525
    [Crossref] [Google Scholar]
  92. 92.
    Wang S, Liu Q, Zhao C, Lv F, Qin X, et al. 2018.. Advances in understanding materials for rechargeable lithium batteries by atomic force microscopy. . Energy Environ. Mater. 1::2840
    [Crossref] [Google Scholar]
  93. 93.
    Chen X, Lai J, Shen Y, Chen Q, Chen L. 2018.. Functional scanning force microscopy for energy nanodevices. . Adv. Mater. 30::e1802490
    [Crossref] [Google Scholar]
  94. 94.
    Zhao W, Song W, Cheong L-Z, Wang D, Li H, et al. 2019.. Beyond imaging: applications of atomic force microscopy for the study of lithium-ion batteries. . Ultramicroscopy 204::3448
    [Crossref] [Google Scholar]
  95. 95.
    Aurbach D, Koltypin M, Teller H. 2002.. In situ AFM imaging of surface phenomena on composite graphite electrodes during lithium insertion. . Langmuir 18::90009
    [Crossref] [Google Scholar]
  96. 96.
    Domi Y, Ochida M, Tsubouchi S, Nakagawa H, Yamanaka T, et al. 2011.. In situ AFM study of surface film formation on the edge plane of HOPG for lithium-ion batteries. . J. Phys. Chem. C 115::2548489
    [Crossref] [Google Scholar]
  97. 97.
    Yao Y-X, Wan J, Liang N-Y, Yan C, Wen R, Zhang Q. 2023.. Nucleation and growth mode of solid electrolyte interphase in Li-ion batteries. . J. Am. Chem. Soc. 145::80016
    [Crossref] [Google Scholar]
  98. 98.
    Lucas IT, Pollak E, Kostecki R. 2009.. In situ AFM studies of SEI formation at a Sn electrode. . Electrochem. Commun. 11::215760
    [Crossref] [Google Scholar]
  99. 99.
    Kumar R, Tokranov A, Sheldon BW, Xiao X, Huang Z, et al. 2016.. In situ and operando investigations of failure mechanisms of the solid electrolyte interphase on silicon electrodes. . ACS Energy Lett. 1::68997
    [Crossref] [Google Scholar]
  100. 100.
    Morigaki K-I, Fujii T, Ohta A. 1998.. The in situ analysis of interfacial reactions between electrode and organic electrolytes I. Reduction of electrolytes at Cu electrode. . Denki Kagaku oyobi Kogyo Butsuri Kagaku 66::82430
    [Crossref] [Google Scholar]
  101. 101.
    Mogi R, Inaba M, Iriyama Y, Abe T, Ogumi Z. 2002.. Surface film formation on nickel electrodes in a propylene carbonate solution at elevated temperatures. . J. Power Sources 108::16373
    [Crossref] [Google Scholar]
  102. 102.
    Hirasawa KA, Sato T, Asahina H, Yamaguchi S, Mori S. 1997.. In situ electrochemical atomic force microscope study on graphite electrodes. . J. Electrochem. Soc. 144::L8184
    [Crossref] [Google Scholar]
  103. 103.
    Shen C, Wang S, Jin Y, Han W-Q. 2015.. In situ AFM imaging of solid electrolyte interfaces on HOPG with ethylene carbonate and fluoroethylene carbonate-based electrolytes. . ACS Appl. Mater. Interfaces 7::2544147
    [Crossref] [Google Scholar]
  104. 104.
    Alliata D, Kötz R, Novák P, Siegenthaler H. 2000.. Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. . Electrochem. Commun. 2::43640
    [Crossref] [Google Scholar]
  105. 105.
    Cresce A, Russell SM, Baker DR, Gaskell KJ, Xu K. 2014.. In situ and quantitative characterization of solid electrolyte interphases. . Nano Lett. 14::140512
    [Crossref] [Google Scholar]
  106. 106.
    Wang M, Huai L, Hu G, Yang S, Ren F, et al. 2018.. Effect of LiFSI concentrations to form thickness- and modulus-controlled SEI layers on lithium metal anodes. . J. Phys. Chem. C 122::982534
    [Crossref] [Google Scholar]
  107. 107.
    Liu R-R, Deng X, Liu X-R, Yan H-J, Cao A-M, Wang D. 2014.. Facet dependent SEI formation on the LiNi0.5Mn1.5O4 cathode identified by in situ single particle atomic force microscopy. . Chem. Commun. 50::1575659
    [Crossref] [Google Scholar]
  108. 108.
    Gao Y, Zhang B. 2022.. Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. . Adv. Mater. 35::2205421
    [Crossref] [Google Scholar]
  109. 109.
    Zheng J, Zheng H, Wang R, Ben L, Lu W, et al. 2014.. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. . Phys. Chem. Chem. Phys. 16::1322938
    [Crossref] [Google Scholar]
  110. 110.
    Gu Y, Wang W-W, Li Y-J, Wu Q-H, Tang S, et al. 2018.. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. . Nat. Commun. 9::1339
    [Crossref] [Google Scholar]
  111. 111.
    Wang W-W, Gu Y, Yan H, Li S, He J-W, et al. 2020.. Evaluating solid-electrolyte interphases for lithium and lithium-free anodes from nanoindentation features. . Chem 6::272845
    [Crossref] [Google Scholar]
  112. 112.
    Gao Y, Du X, Hou Z, Shen X, Mai Y-W, et al. 2021.. Unraveling the mechanical origin of stable solid electrolyte interphase. . Joule 5::186072
    [Crossref] [Google Scholar]
  113. 113.
    Liu X-R, Deng X, Liu R-R, Yan H-J, Guo Y-G, et al. 2014.. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties. . ACS Appl. Mater. Interfaces 6::2031723
    [Crossref] [Google Scholar]
  114. 114.
    Zhang Z, Smith K, Jervis R, Shearing PR, Miller TS, Brett DJL. 2020.. Operando electrochemical atomic force microscopy of solid-electrolyte interphase formation on graphite anodes: the evolution of SEI morphology and mechanical properties. . ACS Appl. Mater. Interfaces 12::3513241
    [Crossref] [Google Scholar]
  115. 115.
    Wang W-W, Gu Y, Wang J-H, Chen Z-B, Yin X-T, et al. 2022.. Probing mechanical properties of solid-electrolyte interphases on Li nuclei by in situ AFM. . J. Electrochem. Soc. 169::020563
    [Crossref] [Google Scholar]
  116. 116.
    Guo Y, Li H, Zhai T. 2017.. Reviving lithium-metal anodes for next-generation high-energy batteries. . Adv. Mater. 29::1700007
    [Crossref] [Google Scholar]
  117. 117.
    Adenusi H, Chass GA, Passerini S, Tian KV, Chen G. 2023.. Lithium batteries and the solid electrolyte interphase (SEI)—progress and outlook. . Adv. Energy Mater. 13::2203307
    [Crossref] [Google Scholar]
  118. 118.
    Morigaki K-I, Morita A, Ohta A. 1998.. The in situ analysis of interfacial reactions between electrode and organic electrolytes II. Electrodeposition of lithium at Cu electrode. . Denki Kagaku oyobi Kogyo Butsuri Kagaku 66::83137
    [Crossref] [Google Scholar]
  119. 119.
    Mogi R, Inaba M, Jeong S-K, Iriyama Y, Abe T, Ogumi Z. 2002.. Effects of some organic additives on lithium deposition in propylene carbonate. . J. Electrochem. Soc. 149::A157883
    [Crossref] [Google Scholar]
  120. 120.
    Li N-W, Shi Y, Yin Y-X, Zeng X-X, Li J-Y, et al. 2018.. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. . Angew. Chem. Int. Ed. 57::15059
    [Crossref] [Google Scholar]
  121. 121.
    Cohen YS, Cohen Y, Aurbach D. 2000.. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. . J. Phys. Chem. B 104::1228291
    [Crossref] [Google Scholar]
  122. 122.
    Shiraishi S, Kanamura K. 1998.. The observation of electrochemical dissolution of lithium metal using electrochemical quartz crystal microbalance and in-situ tapping mode atomic force microscopy. . Langmuir 14::708286
    [Crossref] [Google Scholar]
  123. 123.
    Shi Y, Liu G-X, Wan J, Wen R, Wan L-J. 2021.. In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries. . Sci. China Chem. 64::73438
    [Crossref] [Google Scholar]
  124. 124.
    Wang W-W, Gu Y, Yan H, Li K-X, Chen Z-B, et al. 2022.. Formation sequence of solid electrolyte interphases and impacts on lithium deposition and dissolution on copper: an in situ atomic force microscopic study. . Faraday Discuss. 233::190205
    [Crossref] [Google Scholar]
  125. 125.
    Kitta M, Sano H. 2017.. Real-time observation of Li deposition on a Li electrode with operand atomic force microscopy and surface mechanical imaging. . Langmuir 33::186166
    [Crossref] [Google Scholar]
  126. 126.
    Wang S, Yin X, Liu D, Liu Y, Qin X, et al. 2020.. Nanoscale observation of the solid electrolyte interface and lithium dendrite nucleation–growth process during the initial lithium electrodeposition. . J. Mater. Chem. A 8::1834857
    [Crossref] [Google Scholar]
  127. 127.
    Liu R-Z, Shen Z-Z, Wen R, Wan L-J. 2023.. Recent advances in the application of scanning probe microscopy in interfacial electroanalytical chemistry. . J. Electroanal. Chem. 938::117443
    [Crossref] [Google Scholar]
  128. 128.
    Wen R, Hong M, Byon HR. 2013.. In situ AFM imaging of Li-O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. . J. Am. Chem. Soc. 135::1087076
    [Crossref] [Google Scholar]
  129. 129.
    Liu C, Ye S. 2016.. In situ atomic force microscopy (AFM) study of oxygen reduction reaction on a gold electrode surface in a dimethyl sulfoxide (DMSO)-based electrolyte solution. . J. Phys. Chem. C 120::2524655
    [Crossref] [Google Scholar]
  130. 130.
    Shen Z-Z, Zhou C, Wen R, Wan L-J. 2020.. Surface mechanism of catalyst in lithium-oxygen batteries: how nanostructures mediate the interfacial reactions. . J. Am. Chem. Soc. 142::1600715
    [Crossref] [Google Scholar]
  131. 131.
    Shen Z-Z, Lang S-Y, Shi Y, Ma J-M, Wen R, Wan L-J. 2019.. Revealing the surface effect of the soluble catalyst on oxygen reduction/evolution in Li-O2 batteries. . J. Am. Chem. Soc. 141::69005
    [Crossref] [Google Scholar]
  132. 132.
    Virwani K, Ansari Y, Nguyen K, Moreno-Ortiz FJA, Kim J, et al. 2019.. In situ AFM visualization of Li-O2 battery discharge products during redox cycling in an atmospherically controlled sample cell. . Beilstein J. Nanotechnol. 10::93040
    [Crossref] [Google Scholar]
  133. 133.
    Lang S-Y, Shi Y, Guo Y-G, Wang D, Wen R, Wan L-J. 2016.. Insight into the interfacial process and mechanism in lithium-sulfur batteries: an in situ AFM study. . Angew. Chem. Int. Ed. 55::1583539
    [Crossref] [Google Scholar]
  134. 134.
    Lang S-Y, Xiao R-J, Gu L, Guo Y-G, Wen R, Wan L-J. 2018.. Interfacial mechanism in lithium-sulfur batteries: how salts mediate the structure evolution and dynamics. . J. Am. Chem. Soc. 140::814755
    [Crossref] [Google Scholar]
  135. 135.
    Lee W, Muhammad S, Sergey C, Lee H, Yoon J, et al. 2020.. Advances in the cathode materials for lithium rechargeable batteries. . Angew. Chem. Int. Ed. 59::2578605
    [Crossref] [Google Scholar]
  136. 136.
    Balke N, Jesse S, Morozovska AN, Eliseev E, Chung DW, et al. 2010.. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. . Nat. Nanotechnol. 5::74954
    [Crossref] [Google Scholar]
  137. 137.
    Zhu X, Ong CS, Xu X, Hu B, Shang J, et al. 2013.. Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. . Sci. Rep. 3::1084
    [Crossref] [Google Scholar]
  138. 138.
    Chen Y, Niu Y, Lin C, Li J, Lin Y, et al. 2020.. Insight into the intrinsic mechanism of improving electrochemical performance via constructing the preferred crystal orientation in lithium cobalt dioxide. . Chem. Eng. J. 399::125708
    [Crossref] [Google Scholar]
  139. 139.
    Xia S, Wu X, Zhang Z, Cui Y, Liu W. 2019.. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. . Chem 5::75385
    [Crossref] [Google Scholar]
  140. 140.
    Shen C, Huang Y, Yang J, Chen M, Liu Z. 2021.. Unraveling the mechanism of ion and electron migration in composite solid-state electrolyte using conductive atomic force microscopy. . Energy Storage Mater. 39::27177
    [Crossref] [Google Scholar]
  141. 141.
    Zhu J, Feng J, Lu L, Zeng K. 2012.. In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe microscopy. . J. Power Sources 197::22430
    [Crossref] [Google Scholar]
  142. 142.
    Wang Z, Kotobuki M, Lu L, Zeng K. 2020.. Nanoscale characterization of solid electrolyte by scanning probe microscopy techniques. . Electrochim. Acta 334::135553
    [Crossref] [Google Scholar]
  143. 143.
    Wan J, Song Y-X, Chen W-P, Guo H-J, Shi Y, et al. 2021.. Micromechanism in all-solid-state alloy-metal batteries: regulating homogeneous lithium precipitation and flexible solid electrolyte interphase evolution. . J. Am. Chem. Soc. 143::83948
    [Crossref] [Google Scholar]
  144. 144.
    Guo H-J, Wang H-X, Guo Y-J, Liu G-X, Wan J, et al. 2020.. Dynamic evolution of a cathode interphase layer at the surface of LiNi0.5Co0.2Mn0.3O2 in quasi-solid-state lithium batteries. . J. Am. Chem. Soc. 142::2075262
    [Crossref] [Google Scholar]
  145. 145.
    Masuda H, Matsushita K, Ito D, Fujita D, Ishida N. 2019.. Dynamically visualizing battery reactions by operando Kelvin probe force microscopy. . Commun. Chem. 2::140
    [Crossref] [Google Scholar]
  146. 146.
    Ando T, Uchihashi T, Fukuma T. 2008.. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. . Prog. Surf. Sci. 83::337437
    [Crossref] [Google Scholar]
  147. 147.
    Pürckhauer K, Weymouth AJ, Pfeffer K, Kullmann L, Mulvihill E, et al. 2018.. Imaging in biologically-relevant environments with AFM using stiff qPlus sensors. . Sci. Rep. 8::9330
    [Crossref] [Google Scholar]
  148. 148.
    Nellist MR, Laskowski FAL, Qiu JJ, Hajibabaei H, Sivula K, et al. 2018.. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. . Nat. Energy 3::4652
    [Crossref] [Google Scholar]
  149. 149.
    Dazzi A, Prater CB. 2017.. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. . Chem. Rev. 117::514673
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061422-020428
Loading
/content/journals/10.1146/annurev-anchem-061422-020428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error