1932

Abstract

The last decade has been incredibly fruitful in proving the multifunctionality of paper for delivering innovative electrochemical (bio)sensors. The paper material exhibits unprecedented versatility to deal with complex liquid matrices and facilitate analytical detection in aerosol and solid phases. Such remarkable capabilities are feasible by exploiting the intrinsic features of paper, including porosity, capillary forces, and its easy modification, which allow for the fine designing of a paper device. In this review, we shed light on the most relevant paper-based electrochemical (bio)sensors published in the literature so far to identify the smart functional roles that paper can play to bridge the gap between academic research and real-world applications in the biomedical, environmental, agrifood, and security fields. Our analysis aims to highlight how paper's multifarious properties can be artfully harnessed for breaking the boundaries of the most classical applications of electrochemical (bio)sensors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061522-034228
2024-07-17
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061522-034228.html?itemId=/content/journals/10.1146/annurev-anchem-061522-034228&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Anastas PT, Warner JC. 1998.. Green Chemistry: Theory and Practice. Oxford, UK/New York:: Oxford Univ. Press
    [Google Scholar]
  2. 2.
    Anastas PT. 1999.. Green chemistry and the role of analytical methodology development. . Crit. Rev. Anal. Chem. 29:(3):16775
    [Crossref] [Google Scholar]
  3. 3.
    Gałuszka A, Migaszewski Z, Namieśnik J. 2013.. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. . Trends Anal. Chem. 50::7884
    [Crossref] [Google Scholar]
  4. 4.
    Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. 2021.. White Analytical Chemistry: an approach to reconcile the principles of Green Analytical Chemistry and functionality. . Trends Anal. Chem. 138::116223
    [Crossref] [Google Scholar]
  5. 5.
    Dungchai W, Chailapakul O, Henry CS. 2009.. Electrochemical detection for paper-based microfluidics. . Anal. Chem. 81:(14):582126
    [Crossref] [Google Scholar]
  6. 6.
    Fact.MR. 2021.. Paper diagnostics market. Rep. FACT5454MR , Fact.MR, Rockville, MD:. https://www.factmr.com/report/paper-diagnostics-market/toc
    [Google Scholar]
  7. 7.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E. 2010.. Diagnostics for the developing world: microfluidic paper-based analytical devices. . Anal. Chem. 82:(1):310
    [Crossref] [Google Scholar]
  8. 8.
    Land KJ, Boeras DI, Chen X-S, Ramsay AR, Peeling RW. 2019.. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. . Nat. Microbiol. 4::4654
    [Crossref] [Google Scholar]
  9. 9.
    Noviana E, McCord CP, Clark KM, Jang I, Henry CS. 2019.. Electrochemical paper-based devices: sensing approaches and progress toward practical applications. . Lab Chip 20:(1):934
    [Crossref] [Google Scholar]
  10. 10.
    Noviana E, Henry CS. 2020.. Simultaneous electrochemical detection in paper-based analytical devices. . Curr. Opin. Electrochem. 23::16
    [Crossref] [Google Scholar]
  11. 11.
    Baharfar M, Rahbar M, Tajik M, Liu G. 2020.. Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices. . Biosens. Bioelectron. 167::112506
    [Crossref] [Google Scholar]
  12. 12.
    Nery EW, Kubota LT. 2013.. Sensing approaches on paper-based devices: a review. . Anal. Bioanal. Chem. 405:(24):757395
    [Crossref] [Google Scholar]
  13. 13.
    Adkins J, Boehle K, Henry C. 2015.. Electrochemical paper-based microfluidic devices: microfluidics and miniaturization. . Electrophoresis 36:(16):181124
    [Crossref] [Google Scholar]
  14. 14.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, et al. 2014.. Advances in paper-based point-of-care diagnostics. . Biosens. Bioelectron. 54::58597
    [Crossref] [Google Scholar]
  15. 15.
    Ozer T, McMahon C, Henry CS. 2020.. Advances in paper-based analytical devices. . Annu. Rev. Anal. Chem. 13::85109
    [Crossref] [Google Scholar]
  16. 16.
    Carrell C, Kava A, Nguyen M, Menger R, Munshi Z, et al. 2019.. Beyond the lateral flow assay: a review of paper-based microfluidics. . Microelectron. Eng. 206::4554
    [Crossref] [Google Scholar]
  17. 17.
    Mahato K, Srivastava A, Chandra P. 2017.. Paper based diagnostics for personalized health care: emerging technologies and commercial aspects. . Biosens. Bioelectron. 96::24659
    [Crossref] [Google Scholar]
  18. 18.
    Mettakoonpitak J, Boehle K, Nantaphol S, Teengam P, Adkins JA, et al. 2016.. Electrochemistry on paper-based analytical devices: a review. . Electroanalysis 28:(7):142036
    [Crossref] [Google Scholar]
  19. 19.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. 2015.. Recent developments in paper-based microfluidic devices. . Anal. Chem. 87:(1):1941
    [Crossref] [Google Scholar]
  20. 20.
    Noviana E, Carrão DB, Pratiwi R, Henry CS. 2020.. Emerging applications of paper-based analytical devices for drug analysis: a review. . Anal. Chim. Acta 1116::7090
    [Crossref] [Google Scholar]
  21. 21.
    Xia Y, Si J, Li Z. 2016.. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. . Biosens. Bioelectron. 77::77489
    [Crossref] [Google Scholar]
  22. 22.
    Mazurkiewicz W, Podrażka M, Jarosińska E, Kappalakandy Valapil K, Wiloch M, et al. 2020.. Paper-based electrochemical sensors and how to make them (work). . ChemElectroChem 7:(14):293956
    [Crossref] [Google Scholar]
  23. 23.
    Noviana E, Ozer T, Carrell CS, Link JS, McMahon C, et al. 2021.. Microfluidic paper-based analytical devices: from design to applications. . Chem. Rev. 121:(19):1183585
    [Crossref] [Google Scholar]
  24. 24.
    Sahab ZJ, Semaan SM, Sang Q-XA. 2007.. Methodology and applications of disease biomarker identification in human serum. . Biomarker Insights 2::2143
    [Crossref] [Google Scholar]
  25. 25.
    Wei B, Mao K, Liu N, Zhang M, Yang Z. 2018.. Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. . Biosens. Bioelectron. 121::4146
    [Crossref] [Google Scholar]
  26. 26.
    Wang Y, Luo J, Liu J, Li X, Kong Z, et al. 2018.. Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. . Biosens. Bioelectron. 107::4753
    [Crossref] [Google Scholar]
  27. 27.
    Boonkaew S, Yakoh A, Chuaypen N, Tangkijvanich P, Rengpipat S, et al. 2021.. An automated fast-flow/delayed paper-based platform for the simultaneous electrochemical detection of hepatitis B virus and hepatitis C virus core antigen. . Biosens. Bioelectron. 193::113543
    [Crossref] [Google Scholar]
  28. 28.
    Wang Y, Luo J, Liu J, Sun S, Xiong Y, et al. 2019.. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. . Biosens. Bioelectron. 136::8490
    [Crossref] [Google Scholar]
  29. 29.
    Wang P, Ge L, Yan M, Song X, Ge S, Yu J. 2012.. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. . Biosens. Bioelectron. 32:(1):23843
    [Crossref] [Google Scholar]
  30. 30.
    Miglione A, Spinelli M, Amoresano A, Cinti S. 2022.. Sustainable copper electrochemical stripping onto a paper-based substrate for clinical application. . ACS Meas. Sci. Au 2:(2):17784
    [Crossref] [Google Scholar]
  31. 31.
    Scordo G, Moscone D, Palleschi G, Arduini F. 2018.. A reagent-free paper-based sensor embedded in a 3D printing device for cholinesterase activity measurement in serum. . Sens. Actuators B Chem. 258::101521
    [Crossref] [Google Scholar]
  32. 32.
    Shi D, Zhang C, Li X, Yuan J. 2023.. An electrochemical paper-based hydrogel immunosensor to monitor serum cytokine for predicting the severity of COVID-19 patients. . Biosens. Bioelectron. 220::114898
    [Crossref] [Google Scholar]
  33. 33.
    Yakoh A, Mehmeti E, Kalcher K, Chaiyo S. 2022.. Hand-operated, paper-based rotational vertical-flow immunosensor for the impedimetric detection of α-fetoprotein. . Anal. Chem. 94:(15):5893900
    [Crossref] [Google Scholar]
  34. 34.
    Qi J, Li B, Zhou N, Wang X, Deng D, et al. 2019.. The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. . Biosens. Bioelectron. 142::111533
    [Crossref] [Google Scholar]
  35. 35.
    Srisomwat C, Yakoh A, Chuaypen N, Tangkijvanich P, Vilaivan T, Chailapakul O. 2021.. Amplification-free DNA sensor for the one-step detection of the hepatitis B virus using an automated paper-based lateral flow electrochemical device. . Anal. Chem. 93:(5):287987
    [Crossref] [Google Scholar]
  36. 36.
    Li L, Xu J, Zheng X, Ma C, Song X, et al. 2014.. Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. . Biosens. Bioelectron. 61::7682
    [Crossref] [Google Scholar]
  37. 37.
    Li X, Liu X. 2016.. A microfluidic paper-based origami nanobiosensor for label-free, ultrasensitive immunoassays. . Adv. Health Mater. 5:(11):132635
    [Crossref] [Google Scholar]
  38. 38.
    Tian R, Li Y, Bai J. 2019.. Hierarchical assembled nanomaterial paper based analytical devices for simultaneously electrochemical detection of microRNAs. . Anal. Chim. Acta 1058::8996
    [Crossref] [Google Scholar]
  39. 39.
    Kumar S, Umar M, Saifi A, Kumar S, Augustine S, et al. 2019.. Electrochemical paper based cancer biosensor using iron oxide nanoparticles decorated PEDOT:PSS. . Anal. Chim. Acta 1056::13545
    [Crossref] [Google Scholar]
  40. 40.
    Sun G, Zhang L, Zhang Y, Yang H, Ma C, et al. 2015.. Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. . Biosens. Bioelectron. 71::3036
    [Crossref] [Google Scholar]
  41. 41.
    Moreira CM, Pereira SV, Raba J, Bertolino FA, Messina GA. 2018.. Paper-based enzymatic platform coupled to screen printed graphene-modified electrode for the fast neonatal screening of phenylketonuria. . Clin. Chim. Acta 486::5965
    [Crossref] [Google Scholar]
  42. 42.
    Kong F-Y, Gu S-X, Li W-W, Chen T-T, Xu Q, Wang W. 2014.. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. . Biosens. Bioelectron. 56::7782
    [Crossref] [Google Scholar]
  43. 43.
    Labroo P, Cui Y. 2014.. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites. . Anal. Chim. Acta 813::9096
    [Crossref] [Google Scholar]
  44. 44.
    Li W, Qian D, Wang Q, Li Y, Bao N, et al. 2016.. Fully-drawn origami paper analytical device for electrochemical detection of glucose. . Sens. Actuators B Chem. 231::23038
    [Crossref] [Google Scholar]
  45. 45.
    Wang C-C, Hennek JW, Ainla A, Kumar AA, Lan W-J, et al. 2016.. A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. . Anal. Chem. 88:(12):632633
    [Crossref] [Google Scholar]
  46. 46.
    Sun S, Luo J, Zhu Y, Kong F, Mao G, et al. 2022.. Multifunctional self-driven origami paper-based integrated microfluidic chip to detect CRP and PAB in whole blood. . Biosens. Bioelectron. 208::114225
    [Crossref] [Google Scholar]
  47. 47.
    Samper IC, Sánchez-Cano A, Khamcharoen W, Jang I, Siangproh W, et al. 2021.. Electrochemical capillary-flow immunoassay for detecting anti-SARS-COV-2 nucleocapsid protein antibodies at the point of care. . ACS Sens. 6:(11):406775
    [Crossref] [Google Scholar]
  48. 48.
    Caratelli V, Ciampaglia A, Guiducci J, Sancesario G, Moscone D, Arduini F. 2020.. Precision medicine in Alzheimer's disease: an origami paper-based electrochemical device for cholinesterase inhibitors. . Biosens. Bioelectron. 165::112411
    [Crossref] [Google Scholar]
  49. 49.
    Teengam P, Siangproh W, Tuantranont A, Vilaivan T, Chailapakul O, Henry CS. 2018.. Electrochemical impedance-based DNA sensor using pyrrolidinyl peptide nucleic acids for tuberculosis detection. . Anal. Chim. Acta 1044::1029
    [Crossref] [Google Scholar]
  50. 50.
    Cinti S, Cusenza R, Moscone D, Arduini F. 2018.. Paper-based synthesis of Prussian blue nanoparticles for the development of whole blood glucose electrochemical biosensor. . Talanta 187::5964
    [Crossref] [Google Scholar]
  51. 51.
    Amatatongchai M, Sitanurak J, Sroysee W, Sodanat S, Chairam S, et al. 2019.. Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. . Anal. Chim. Acta 1077::25565
    [Crossref] [Google Scholar]
  52. 52.
    Wang W, Ding S, Wang Z, Lv Q, Zhang Q. 2021.. Electrochemical paper-based microfluidic device for on-line isolation of proteins and direct detection of lead in urine. . Biosens. Bioelectron. 187::113310
    [Crossref] [Google Scholar]
  53. 53.
    Fava EL, Silva TA, Prado TMD, Moraes FCD, Faria RC, Fatibello-Filho O. 2019.. Electrochemical paper-based microfluidic device for high throughput multiplexed analysis. . Talanta 203::28086
    [Crossref] [Google Scholar]
  54. 54.
    Cincotto FH, Fava EL, Moraes FC, Fatibello-Filho O, Faria RC. 2019.. A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. . Talanta 195::6268
    [Crossref] [Google Scholar]
  55. 55.
    Fiore L, Sinha A, Seddaoui N, Di Biasio J, Ricci F, et al. 2023.. Paper card-like electrochemical platform as a smart point-of-care device for reagent-free glucose measurement in tears. . Chem. Commun. 59:(29):43003
    [Crossref] [Google Scholar]
  56. 56.
    Huang X, Shi W, Li J, Bao N, Yu C, Gu H. 2020.. Determination of salivary uric acid by using poly(3,4-ethylenedioxythipohene) and graphene oxide in a disposable paper-based analytical device. . Anal. Chim. Acta 1103::7583
    [Crossref] [Google Scholar]
  57. 57.
    Bhardwaj J, Sharma A, Jang J. 2019.. Vertical flow-based paper immunosensor for rapid electrochemical and colorimetric detection of influenza virus using a different pore size sample pad. . Biosens. Bioelectron. 126::3643
    [Crossref] [Google Scholar]
  58. 58.
    Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, et al. 2022.. End-to-end design of wearable sensors. . Nat. Rev. Mater. 7::887907
    [Crossref] [Google Scholar]
  59. 59.
    Cao Q, Liang B, Mao X, Wei J, Tu T, et al. 2021.. A smartwatch integrated with a paper-based microfluidic patch for sweat electrolytes monitoring. . Electroanalysis 33:(3):64351
    [Crossref] [Google Scholar]
  60. 60.
    Cheng Y, Feng S, Ning Q, Li T, Xu H, et al. 2023.. Dual-signal readout paper-based wearable biosensor with a 3D origami structure for multiplexed analyte detection in sweat. . Microsyst. Nanoeng. 9:(1):36
    [Crossref] [Google Scholar]
  61. 61.
    Li M, Wang L, Liu R, Li J, Zhang Q, et al. 2021.. A highly integrated sensing paper for wearable electrochemical sweat analysis. . Biosens. Bioelectron. 174::112828
    [Crossref] [Google Scholar]
  62. 62.
    Mazzaracchio V, Fiore L, Nappi S, Marrocco G, Arduini F. 2021.. Medium-distance affordable, flexible and wireless epidermal sensor for pH monitoring in sweat. . Talanta 222::121502
    [Crossref] [Google Scholar]
  63. 63.
    Fiore L, Mazzaracchio V, Serani A, Fabiani G, Fabiani L, et al. 2023.. Microfluidic paper-based wearable electrochemical biosensor for reliable cortisol detection in sweat. . Sens. Actuators B Chem. 379::133258
    [Crossref] [Google Scholar]
  64. 64.
    Jaewjaroenwattana J, Phoolcharoen W, Pasomsub E, Teengam P, Chailapakul O. 2023.. Electrochemical paper-based antigen sensing platform using plant-derived monoclonal antibody for detecting SARS-CoV-2. . Talanta 251::123783
    [Crossref] [Google Scholar]
  65. 65.
    Lomae A, Preechakasedkit P, Hanpanich O, Ozer T, Henry CS, et al. 2023.. Label free electrochemical DNA biosensor for COVID-19 diagnosis. . Talanta 253::123992
    [Crossref] [Google Scholar]
  66. 66.
    Krishnakumar A, Mishra RK, Kadian S, Zareei A, Rivera UH, Rahimi R. 2022.. Printed graphene-based electrochemical sensor with integrated paper microfluidics for rapid lidocaine detection in blood. . Anal. Chim. Acta 1229::340332
    [Crossref] [Google Scholar]
  67. 67.
    Amatatongchai M, Nontawong N, Ngaosri P, Chunta S, Wanram S, et al. 2022.. Facile and compact electrochemical paper-based analytical device for point-of-care diagnostic of dual carcinogen oxidative stress biomarkers through a molecularly imprinted polymer coated on graphene quantum-dot capped gold. . Anal. Chem. 94:(48):16692700
    [Crossref] [Google Scholar]
  68. 68.
    Parrilla M, Vanhooydonck A, Watts R, De Wael K. 2022.. Wearable wristband-based electrochemical sensor for the detection of phenylalanine in biofluids. . Biosens. Bioelectron. 197::113764
    [Crossref] [Google Scholar]
  69. 69.
    Cinti S, Fiore L, Massoud R, Cortese C, Moscone D, et al. 2018.. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. . Talanta 179::18692
    [Crossref] [Google Scholar]
  70. 70.
    Bagheri N, Mazzaracchio V, Cinti S, Colozza N, Di Natale C, et al. 2021.. Electroanalytical sensor based on gold-nanoparticle-decorated paper for sensitive detection of copper ions in sweat and serum. . Anal. Chem. 93:(12):522533
    [Crossref] [Google Scholar]
  71. 71.
    Cao L, Han G-C, Xiao H, Chen Z, Fang C. 2020.. A novel 3D paper-based microfluidic electrochemical glucose biosensor based on rGO-TEPA/PB sensitive film. . Anal. Chim. Acta 1096::3443
    [Crossref] [Google Scholar]
  72. 72.
    Han SH, Ha Y-J, Kang EH, Shin K, Lee YJ, Lee G-J. 2022.. Electrochemical detection of uric acid in undiluted human saliva using uricase paper integrated electrodes. . Sci. Rep. 12::12033
    [Crossref] [Google Scholar]
  73. 73.
    Ninwong B, Ratnarathorn N, Henry CS, Mace CR, Dungchai W. 2020.. Dual sample preconcentration for simultaneous quantification of metal ions using electrochemical and colorimetric assays. . ACS Sens. 5:(12):39994008
    [Crossref] [Google Scholar]
  74. 74.
    Costa-Rama E, Nouws HPA, Delerue-Matos C, Blanco-López MC, Fernández-Abedul MT. 2019.. Preconcentration and sensitive determination of the anti-inflammatory drug diclofenac on a paper-based electroanalytical platform. . Anal. Chim. Acta 1074::8997
    [Crossref] [Google Scholar]
  75. 75.
    Shimizu FM, Pasqualeti AM, Nicoliche CYN, Gobbi AL, Santhiago M, Lima RS. 2021.. Alcohol-triggered capillarity through porous pyrolyzed paper-based electrodes enables ultrasensitive electrochemical detection of phosphate. . ACS Sens. 6:(8):312532
    [Crossref] [Google Scholar]
  76. 76.
    Cinti S, Talarico D, Palleschi G, Moscone D, Arduini F. 2016.. Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. . Anal. Chim. Acta 919::7884
    [Crossref] [Google Scholar]
  77. 77.
    Jemmeli D, Marcoccio E, Moscone D, Dridi C, Arduini F. 2020.. Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. . Talanta 216::120924
    [Crossref] [Google Scholar]
  78. 78.
    Cinti S, Minotti C, Moscone D, Palleschi G, Arduini F. 2017.. Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. . Biosens. Bioelectron. 93::4651
    [Crossref] [Google Scholar]
  79. 79.
    Bui M-PN, Brockgreitens J, Ahmed S, Abbas A. 2016.. Dual detection of nitrate and mercury in water using disposable electrochemical sensors. . Biosens. Bioelectron. 85::28086
    [Crossref] [Google Scholar]
  80. 80.
    Scala-Benuzzi ML, Raba J, Soler-Illia GJAA, Schneider RJ, Messina GA. 2018.. Novel electrochemical paper-based immunocapture assay for the quantitative determination of ethinylestradiol in water samples. . Anal. Chem. 90:(6):410411
    [Crossref] [Google Scholar]
  81. 81.
    Yao L, He L, Yang Y, Zhang Y, Liu Z, et al. 2021.. Nanobiochar paper based electrochemical immunosensor for fast and ultrasensitive detection of microcystin-LR. . Sci. Total Environ. 750::141692
    [Crossref] [Google Scholar]
  82. 82.
    Ruan X, Wang Y, Kwon EY, Wang L, Cheng N, et al. 2021.. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. . Biosens. Bioelectron. 184::113238
    [Crossref] [Google Scholar]
  83. 83.
    Arduini F, Cinti S, Caratelli V, Amendola L, Palleschi G, Moscone D. 2019.. Origami multiple paper-based electrochemical biosensors for pesticide detection. . Biosens. Bioelectron. 126::34654
    [Crossref] [Google Scholar]
  84. 84.
    Jiang H, Guo Q, Zhang C, Sun Z, Weng X. 2021.. Microfluidic origami nano-aptasensor for peanut allergen Ara h1 detection. . Food Chem. 365::130511
    [Crossref] [Google Scholar]
  85. 85.
    Silva LRG, Stefano JS, Crapnell RD, Banks CE, Janegitz BC. 2023.. Additive manufactured microfluidic device for electrochemical detection of carbendazim in honey samples. . Talanta Open 7::100213
    [Crossref] [Google Scholar]
  86. 86.
    Padela-Filho LA, Noviana E, Araújo DAG, Takeuchi RM, Santos AL, Henry CS. 2020.. Rapid analysis in continuous-flow electrochemical paper-based analytical devices. . ACS Sens. 5:(1):27481
    [Crossref] [Google Scholar]
  87. 87.
    Prasertying P, Ninlapath T, Jantawong N, Wongpakdee T, Sonsa-ard T, et al. 2022.. Disposable microchamber with a microfluidic paper-based lid for generation and membrane separation of SO2 gas employing an in situ electrochemical gas sensor for quantifying sulfite in wine. . Anal. Chem. 94:(22):7892900
    [Crossref] [Google Scholar]
  88. 88.
    Khamcharoen W, Henry CS, Siangproh W. 2022.. A novel l-cysteine sensor using in-situ electropolymerization of l-cysteine: potential to simple and selective detection. . Talanta 237::122983
    [Crossref] [Google Scholar]
  89. 89.
    Sun X, Jian Y, Wang H, Ge S, Yan M, Yu J. 2019.. Ultrasensitive microfluidic paper-based electrochemical biosensor based on molecularly imprinted film and boronate affinity sandwich assay for glycoprotein detection. . ACS Appl. Mater. Interfaces 11:(17):16198206
    [Crossref] [Google Scholar]
  90. 90.
    Svigelj R, Dossi N, Grazioli C, Toniolo R. 2022.. Paper-based aptamer-antibody biosensor for gluten detection in a deep eutectic solvent (DES). . Anal. Bioanal. Chem. 414:(11):334148
    [Crossref] [Google Scholar]
  91. 91.
    Pagkali V, Soulis D, Kokkinos C, Economou A. 2022.. Fully drawn electrochemical paper-based glucose biosensors fabricated by a high-throughput dual-step pen-on-paper approach with commercial writing stationery. . Sens. Actuators B Chem. 358::131546
    [Crossref] [Google Scholar]
  92. 92.
    Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul MT. 2021.. Fully integrated sampler and dilutor in an electrochemical paper-based device for glucose sensing. . Microchim. Acta 188:(9):302
    [Crossref] [Google Scholar]
  93. 93.
    Colozza N, Di Meo E, Mucaria A, Moscone D, Arduini F. 2022.. An origami paper-based electrochemical biosensing platform for quality control of agri-food waste in the valorization strategy. . Microchim. Acta 189:(8):311
    [Crossref] [Google Scholar]
  94. 94.
    Maier D, Laubender E, Basavanna A, Schumann S, Güder F, et al. 2019.. Toward continuous monitoring of breath biochemistry: a paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. . ACS Sens. 4:(11):294551
    [Crossref] [Google Scholar]
  95. 95.
    Fiore L, Mazzaracchio V, Galloni P, Sabuzi F, Pezzola S, et al. 2021.. A paper-based electrochemical sensor for H2O2 detection in aerosol phase: Measure of H2O2 nebulized by a reconverted ultrasonic aroma diffuser as a case of study. . Microchem. J. 166::106249
    [Crossref] [Google Scholar]
  96. 96.
    Park C, Lee J, Lee D, Jang J. 2022.. Paper-based electrochemical peptide sensor for label-free and rapid detection of airborne Bacillus anthracis simulant spores. . Sens. Actuators B Chem. 355::131321
    [Crossref] [Google Scholar]
  97. 97.
    Colozza N, Kehe K, Dionisi G, Popp T, Tsoutsoulopoulos A, et al. 2019.. A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. . Biosens. Bioelectron. 129::1523
    [Crossref] [Google Scholar]
  98. 98.
    Caratelli V, Fegatelli G, Moscone D, Arduini F. 2022.. A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: a flower-like origami biosensor for precision agriculture. . Biosens. Bioelectron. 205::114119
    [Crossref] [Google Scholar]
  99. 99.
    Mettakoonpitak J, Volckens J, Henry CS. 2020.. Janus electrochemical paper-based analytical devices for metals detection in aerosol samples. . Anal. Chem. 92:(1):143946
    [Crossref] [Google Scholar]
  100. 100.
    Mettakoonpitak J, Sawatdichai N, Thepnuan D, Siripinyanond A, Henry CS, Chantara S. 2023.. Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples. . Microchim. Acta 190:(6):241
    [Crossref] [Google Scholar]
  101. 101.
    Colozza N, Sassolini A, Agosta L, Bonfanti A, Hermansson K, Arduini F. 2020.. A paper-based potentiometric sensor for solid samples: corrosion evaluation of reinforcements embedded in concrete structures as a case study. . ChemElectroChem 7:(10):227482
    [Crossref] [Google Scholar]
  102. 102.
    Colozza N, Tazzioli S, Sassolini A, Agosta L, Di Monte MG, et al. 2021.. Multiparametric analysis by paper-assisted potentiometric sensors for diagnostic and monitoring of reinforced concrete structures. . Sens. Actuators B Chem. 345::130352
    [Crossref] [Google Scholar]
  103. 103.
    Colozza N, Tazzioli S, Sassolini A, Agosta L, Di Monte MG, et al. 2021.. Vertical-flow paper sensor for on-site and prompt evaluation of chloride contamination in concrete structures. . Anal. Chem. 93:(43):1436974
    [Crossref] [Google Scholar]
  104. 104.
    Martins TS, Machado SAS, Oliveira ON, Bott-Neto JL. 2023.. Optimized paper-based electrochemical sensors treated in acidic media to detect carbendazim on the skin of apple and cabbage. . Food Chem. 410::135429
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061522-034228
Loading
/content/journals/10.1146/annurev-anchem-061522-034228
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error