1932

Abstract

Raman scattering provides a chemical-specific and label-free method for identifying and quantifying molecules in flowing solutions. This review provides a comprehensive examination of the application of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to flowing liquid samples. We summarize developments in online and at-line detection using Raman and SERS analysis, including the design of microfluidic devices, the development of unique SERS substrates, novel sampling interfaces, and coupling these approaches to fluid-based chemical separations (e.g., chromatography and electrophoresis). The article highlights the challenges and limitations associated with these techniques and provides examples of their applications in a variety of fields, including chemistry, biology, and environmental science. Overall, this review demonstrates the utility of Raman and SERS for analysis of complex mixtures and highlights the potential for further development and optimization of these techniques.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061522-035207
2024-07-17
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061522-035207.html?itemId=/content/journals/10.1146/annurev-anchem-061522-035207&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dodo K, Fujita K, Sodeoka M. 2022.. Raman spectroscopy for chemical biology research. . J. Am. Chem. Soc. 144::1965167
    [Crossref] [Google Scholar]
  2. 2.
    Lima C, Muhamadali H, Goodacre R. 2021.. The role of Raman spectroscopy within quantitative metabolomics. . Annu. Rev. Anal. Chem. 14::32345
    [Crossref] [Google Scholar]
  3. 3.
    Chen W, Yu H. 2021.. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. . Water Res. 190::116759
    [Crossref] [Google Scholar]
  4. 4.
    Esmonde-White KA, Cuellar M, Lewis IR. 2022.. The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing. . Anal. Bioanal. Chem. 414::96991
    [Crossref] [Google Scholar]
  5. 5.
    Sloan-Dennison S, O'Connor E, Dear JW, Graham D, Faulds K. 2022.. Towards quantitative point of care detection using SERS lateral flow immunoassays. . Anal. Bioanal. Chem. 414::454149
    [Crossref] [Google Scholar]
  6. 6.
    Crocombe RA. 2018.. Portable spectroscopy. . Appl. Spectrosc. 72::170151
    [Crossref] [Google Scholar]
  7. 7.
    Langer J, Jimenez De Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, et al. 2019.. Present and future of surface-enhanced Raman scattering. . ACS Nano 14::28117
    [Crossref] [Google Scholar]
  8. 8.
    Mosier-Boss PA. 2017.. Review of SERS substrates for chemical sensing. . Nanomaterials 7::142
    [Crossref] [Google Scholar]
  9. 9.
    Schlucker S. 2014.. Surface-enhanced Raman spectroscopy: concepts and chemical applications. . Angew. Chem. Int. Ed. 53::475695
    [Crossref] [Google Scholar]
  10. 10.
    Yu Y, Xiao T, Wu Y, Li W, Zeng Q, et al. 2020.. Roadmap for single-molecule surface-enhanced Raman spectroscopy. . Adv. Photonics 2::014002
    [Crossref] [Google Scholar]
  11. 11.
    Xu Z, He Z, Song Y, Fu X, Rommel M, et al. 2018.. Topic review: application of Raman spectroscopy characterization in micro/nano-machining. . Micromachines 9::361
    [Crossref] [Google Scholar]
  12. 12.
    Orlando A, Franceschini F, Muscas C, Pidkova S, Bartoli M, et al. 2021.. A comprehensive review on Raman spectroscopy applications. . Chemosensors 9::262
    [Crossref] [Google Scholar]
  13. 13.
    Streets AM, Huang Y. 2013.. Chip in a lab: microfluidics for next generation life science research. . Biomicrofluidics 7::11302
    [Crossref] [Google Scholar]
  14. 14.
    Xia L, Li G. 2021.. Recent progress of microfluidics in surface-enhanced Raman spectroscopic analysis. . J. Sep. Sci. 44::175268
    [Crossref] [Google Scholar]
  15. 15.
    Morder CJ, Scarpitti BT, Balss KM, Schultz ZD. 2022.. Determination of lentiviral titer by surface enhanced Raman scattering. . Anal. Methods 14::138795
    [Crossref] [Google Scholar]
  16. 16.
    Chen J, Li S, Yao F, Bao F, Ge Y, et al. 2022.. Progress of microfluidics combined with SERS technology in the trace detection of harmful substances. . Chemosensors 10::449
    [Crossref] [Google Scholar]
  17. 17.
    Küster T, Bothun GD. 2021.. In situ SERS detection of dissolved nitrate on hydrated gold substrates. . Nanoscale Adv. 3::4098115
    [Crossref] [Google Scholar]
  18. 18.
    Kniggendorf A, Wetzel C, Roth B. 2019.. Microplastics detection in streaming tap water with Raman spectroscopy. . Sensors 19::1839
    [Crossref] [Google Scholar]
  19. 19.
    Canyelles Pericàs P, Sundararajan A, Wiegerink R, Lötters JC, Gray BL, Becker H. 2022.. Towards in-flow monitoring of fat content and fluid composition of dairy milk using microfluidic confocal Raman spectroscopy. . Proc. SPIE 11955, Microfluidics BioMEMS Med. Microsyst. XX, 119550A. https://doi.org/10.1117/12.2610154
    [Google Scholar]
  20. 20.
    Paccotti N, Chiadò A, Novara C, Rivolo P, Montesi D, et al. 2021.. Real-time monitoring of the in situ microfluidic synthesis of Ag nanoparticles on solid substrate for reliable SERS detection. . Biosensors 11::520
    [Crossref] [Google Scholar]
  21. 21.
    Lawanstiend D, Gatemala H, Nootchanat S, Eakasit S, Wongravee K, Srisa-Art M. 2018.. Microfluidic approach for in situ synthesis of nanoporous silver microstructures as on-chip SERS substrates. . Sens. Actuators B Chem. 270::46674
    [Crossref] [Google Scholar]
  22. 22.
    Emonds-Alt G, Malherbe C, Kasemiire A, Avohou HT, Hubert P, et al. 2022.. Development and validation of an integrated microfluidic device with an in-line surface enhanced Raman spectroscopy (SERS) detection of glyphosate in drinking water. . Talanta 249::123640
    [Crossref] [Google Scholar]
  23. 23.
    Viehrig M, Thilsted AH, Matteucci M, Wu K, Catak D, et al. 2018.. Injection-molded microfluidic device for SERS sensing using embedded Au-capped polymer nanocones. . ACS Appl. Mater. Interfaces 10::3741725
    [Crossref] [Google Scholar]
  24. 24.
    Lafuente M, Pellejero I, Clemente A, Urbiztondo MA, Mallada R, et al. 2020.. In situ synthesis of SERS-active Au@POM nanostructures in a microfluidic device for real-time detection of water pollutants. . ACS Appl. Mater. Interfaces 12::36458
    [Crossref] [Google Scholar]
  25. 25.
    Bailey MR, Martin RS, Schultz ZD. 2016.. Role of surface adsorption in the surface-enhanced Raman scattering and electrochemical detection of neurotransmitters. . J. Phys. Chem. C 120::2062433
    [Crossref] [Google Scholar]
  26. 26.
    Perozziello G, Candeloro P, Gentile F, Coluccio ML, Tallerico M, et al. 2015.. A microfluidic dialysis device for complex biological mixture SERS analysis. . Microelectron. Eng. 144::3741
    [Crossref] [Google Scholar]
  27. 27.
    Zhu J, Chen Q, Kutsanedzie FYH, Yang M, Ouyang Q, Jiang H. 2017.. Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. . Anal. Methods 9::618693
    [Crossref] [Google Scholar]
  28. 28.
    Lendl B, Ehmoser H, Frank J, Schindler R. 2000.. Flow analysis-based surface-enhanced Raman spectroscopy employing exchangeable microbeads as SERS-active surfaces. . Appl. Spectrosc. 54::101218
    [Crossref] [Google Scholar]
  29. 29.
    Ayora Cañada MJ, Ruiz Medina A, Frank J, Lendl B. 2002.. Bead injection for surface enhanced Raman spectroscopy: automated on-line monitoring of substrate generation and application in quantitative analysis. . Analyst 127::136569
    [Crossref] [Google Scholar]
  30. 30.
    Yue S, Fang J, Xu Z. 2022.. Advances in droplet microfluidics for SERS and Raman analysis. . Biosens. Bioelectron. 198::113822
    [Crossref] [Google Scholar]
  31. 31.
    Jeon J, Choi N, Chen H, Moon J, Chen L, Choo J. 2019.. SERS-based droplet microfluidics for high-throughput gradient analysis. . Lab Chip 19::67481
    [Crossref] [Google Scholar]
  32. 32.
    Tim B, Błaszkiewicz P, Kotkowiak M. 2021.. Recent advances in metallic nanoparticle assemblies for surface-enhanced spectroscopy. . Int. J. Mol. Sci. 23::291
    [Crossref] [Google Scholar]
  33. 33.
    Naqvi TK, Srivastava AK, Kulkarni MM, Siddiqui AM, Dwivedi PK. 2019.. Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes. . Appl. Surface Sci. 478::88795
    [Crossref] [Google Scholar]
  34. 34.
    Nie Y, Jin C, Zhang JXJ. 2021.. Microfluidic in situ patterning of silver nanoparticles for surface-enhanced Raman spectroscopic sensing of biomolecules. . ACS Sens. 6::258492
    [Crossref] [Google Scholar]
  35. 35.
    Adamo CB, Junger AS, Bressan LP, da Silva JAF, Poppi RJ, de Jesus DP. 2020.. Fast and straightforward in-situ synthesis of gold nanoparticles on a thread-based microfluidic device for application in surface-enhanced Raman scattering detection. . Microchem. J. 156::104985
    [Crossref] [Google Scholar]
  36. 36.
    Visaveliya N, Lenke S, Groß A, Köhler JM. 2015.. Microflow SERS measurements using sensing particles of polyacrylamide/silver composite materials. . Chem. Eng. Technol. 38::114449
    [Crossref] [Google Scholar]
  37. 37.
    Ochoa-Vazquez G, Kharisov B, Arizmendi-Morquecho A, Cario A, Aymonier C, et al. 2019.. Microfluidics and surface-enhanced Raman spectroscopy: a perfect match for new analytical tools. . IEEE Trans. Nanobiosci. 18::55866
    [Crossref] [Google Scholar]
  38. 38.
    Shahzad K, Aeken WV, Mottaghi M, Kamyab VK, Kuhn S. 2018.. Aggregation and clogging phenomena of rigid microparticles in microfluidics. . Microfluid Nanofluid. 22::104
    [Crossref] [Google Scholar]
  39. 39.
    EL-Zahry MR, Genner A, Refaat IH, Mohamed HA, Lendl B. 2013.. Highly reproducible SERS detection in sequential injection analysis: real time preparation and application of photo-reduced silver substrate in a moving flow-cell. . Talanta 116::97277
    [Crossref] [Google Scholar]
  40. 40.
    Leem J, Kang HW, Ko SH, Sung HJ. 2014.. Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems. . Nanoscale 6::2895901
    [Crossref] [Google Scholar]
  41. 41.
    Zhang X, Zhang H, Yan S, Zeng Z, Huang A, et al. 2019.. Organic molecule detection based on SERS in microfluidics. . Sci. Rep. 9::1763437
    [Crossref] [Google Scholar]
  42. 42.
    Dina NE, Colniţă A, Marconi D, Gherman AMR. 2020.. Microfluidic portable device for pathogens’ rapid SERS detection. . In Proceedings of the 1st International Electronic Conference on Biosensors, ed. G Marrazza, S Tombelli , p. 2. Basel:: MDPI
    [Google Scholar]
  43. 43.
    Buja O, Gordan OD, Leopold N, Morschhauser A, Nestler J, Zahn DRT. 2017.. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate. . Beilstein J. Nanotechnol. 8::23743
    [Crossref] [Google Scholar]
  44. 44.
    Sevim S, Franco C, Chen X, Sorrenti A, Rodríguez San Miguel D, et al. 2020.. SERS barcode libraries: a microfluidic approach. . Adv. Sci. 7::1903172
    [Crossref] [Google Scholar]
  45. 45.
    Parisi J, Su L, Lei Y. 2013.. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing. . Lab Chip 13::15018
    [Crossref] [Google Scholar]
  46. 46.
    Parisi J, Dong Q, Lei Y. 2015.. In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing. . RSC Adv. 5::148189
    [Google Scholar]
  47. 47.
    Wu Y, Jiang Y, Zheng X, Jia S, Zhu Z, et al. 2018.. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography. . R. Soc. Open Sci. 5::172034
    [Crossref] [Google Scholar]
  48. 48.
    Kant K, Abalde-Cela S. 2018.. Surface-enhanced Raman scattering spectroscopy and microfluidics: towards ultrasensitive label-free sensing. . Biosensors 8::62
    [Crossref] [Google Scholar]
  49. 49.
    Nguyen CQ, Thrift WJ, Bhattacharjee A, Ranjbar S, Gallagher T, et al. 2018.. Longitudinal monitoring of biofilm formation via robust surface-enhanced Raman scattering quantification of Pseudomonas aeruginosa-produced metabolites. . ACS Appl. Mater. Interfaces 10::1236473
    [Crossref] [Google Scholar]
  50. 50.
    Gutiérrez Y, Losurdo M, Prinz I, Prinz A, Bauer G, et al. 2022.. Paving the way to industrially fabricated disposable and customizable surface-enhanced Raman scattering microfluidic chips for diagnostic applications. . Adv. Eng. Mater. 24::2101365
    [Crossref] [Google Scholar]
  51. 51.
    Yang K, Zong S, Zhang Y, Qian Z, Liu Y, et al. 2020.. Array-assisted SERS microfluidic chips for highly sensitive and multiplex gas sensing. . ACS Appl. Mater. Interfaces 12::1395403
    [Crossref] [Google Scholar]
  52. 52.
    Saha A, Jana NR. 2015.. Paper-based microfluidic approach for surface-enhanced Raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration. . ACS Appl. Mater. Interfaces 7::9961003
    [Crossref] [Google Scholar]
  53. 53.
    Mabbott S, Fernandes SC, Schechinger M, Cote GL, Faulds K, et al. 2020.. Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering. . Analyst 145::98391
    [Crossref] [Google Scholar]
  54. 54.
    Lin X, Lin S, Liu Y, Zhao H, Liu B, Wang L. 2019.. Lab-on-paper surface-enhanced Raman spectroscopy platform based on self-assembled Au@Ag nanocube monolayer for on-site detection of thiram in soil. . J. Raman Spectrosc. 50::91625
    [Crossref] [Google Scholar]
  55. 55.
    Pallaoro A, Hoonejani MR, Braun GB, Meinhart CD, Moskovits M. 2015.. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. . ACS Nano 9::432836
    [Crossref] [Google Scholar]
  56. 56.
    Riordan CM, Jacobs KT, Negri P, Schultz ZD. 2016.. Sheath flow SERS for chemical profiling in urine. . Faraday Discuss. 187::47384
    [Crossref] [Google Scholar]
  57. 57.
    Negri P, Jacobs KT, Dada OO, Schultz ZD. 2013.. Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing. . Anal. Chem. 85::1015966
    [Crossref] [Google Scholar]
  58. 58.
    Negri P, Schultz ZD. 2014.. Online SERS detection of the 20 proteinogenic L-amino acids separated by capillary zone electrophoresis. . Analyst 139::598998
    [Crossref] [Google Scholar]
  59. 59.
    Negri P, Sarver SA, Schiavone NM, Dovichi NJ, Schultz ZD. 2015.. Online SERS detection and characterization of eight biologically-active peptides separated by capillary zone electrophoresis. . Analyst 140::151622
    [Crossref] [Google Scholar]
  60. 60.
    Negri P, Flaherty RJ, Dada OO, Schultz ZD. 2014.. Ultrasensitive online SERS detection of structural isomers separated by capillary zone electrophoresis. . Chem. Commun. 50::270710
    [Crossref] [Google Scholar]
  61. 61.
    Schorr HC, Schultz ZD. 2023.. Chemical conjugation to differentiate monosaccharides by Raman and surface enhanced Raman spectroscopy. . Analyst 148::23544
    [Crossref] [Google Scholar]
  62. 62.
    Do H, Kwon S, Fu K, Morales-Soto N, Shrout JD, Bohn PW. 2019.. Electrochemical surface-enhanced Raman spectroscopy of pyocyanin secreted by Pseudomonas aeruginosa communities. . Langmuir 35::704349
    [Crossref] [Google Scholar]
  63. 63.
    González-Hernández J, Ott CE, Arcos-Martínez MJ, Colina Á, Heras A, et al. 2021.. Rapid determination of the ‘legal highs’ 4-MMC and 4-MEC by spectroelectrochemistry: Simultaneous cyclic voltammetry and in situ surface-enhanced Raman spectroscopy. . Sensors 22::295
    [Crossref] [Google Scholar]
  64. 64.
    Poonia M, Küster T, Bothun GD. 2022.. Organic anion detection with functionalized SERS substrates via coupled electrokinetic preconcentration, analyte capture, and charge transfer. . ACS Appl. Mater. Interfaces 14::2396472
    [Crossref] [Google Scholar]
  65. 65.
    Tai Y, Lo S, Montagne K, Tsai P, Liao C, et al. 2021.. Enhancing Raman signals from bacteria using dielectrophoretic force between conductive lensed fiber and black silicon. . Biosens. Bioelectron. 191::113463
    [Crossref] [Google Scholar]
  66. 66.
    Ge T, Yan S, Zhang L, He H, Wang L, et al. 2019.. Nanowire assisted repeatable DEP–SERS detection in microfluidics. . Nanotechnology 30::475202
    [Crossref] [Google Scholar]
  67. 67.
    Szymborski TR, Czaplicka M, Nowicka AB, Trzcińska-Danielewicz J, Girstun A, Kamińska A. 2022.. Dielectrophoresis-based SERS sensors for the detection of cancer cells in microfluidic chips. . Biosensors 12::681
    [Crossref] [Google Scholar]
  68. 68.
    Moldovan R, Vereshchagina E, Milenko K, Iacob B, Bodoki AE, et al. 2022.. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. . Anal. Chim. Acta 1209::339250
    [Crossref] [Google Scholar]
  69. 69.
    Yang Y, Li Y, Zhai W, Li X, Li D, et al. 2021.. Electrokinetic preseparation and molecularly imprinted trapping for highly selective SERS detection of charged phthalate plasticizers. . Anal. Chem. 93::94655
    [Crossref] [Google Scholar]
  70. 70.
    Krafft B, Tycova A, Urban RD, Dusny C, Belder D. 2021.. Microfluidic device for concentration and SERS-based detection of bacteria in drinking water. . Electrophoresis 42::8694
    [Crossref] [Google Scholar]
  71. 71.
    Cheng I-F, Chang H, Chen T, Hu C, Yang F. 2013.. Rapid (5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy. . Sci. Rep. 3::2365
    [Crossref] [Google Scholar]
  72. 72.
    Park M, Oh Y, Park S, Yang S, Jeong K. 2015.. Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface enhanced Raman scattering. . Small 11::248792
    [Crossref] [Google Scholar]
  73. 73.
    Krafft B, Panneerselvam R, Geissler D, Belder D. 2020.. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes. . Anal. Bioanal. Chem. 412::26777
    [Crossref] [Google Scholar]
  74. 74.
    Viehrig M, Rajendran ST, Sanger K, Schmidt MS, Alstrøm TS, et al. 2020.. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk. . Anal. Chem. 92::431725
    [Crossref] [Google Scholar]
  75. 75.
    Greene BHC, Alhatab DS, Pye CC, Brosseau CL. 2017.. Electrochemical-surface enhanced Raman spectroscopic (EC-SERS) study of 6-thiouric acid: a metabolite of the chemotherapy drug azathioprine. . J. Phys. Chem. C 121::808490
    [Crossref] [Google Scholar]
  76. 76.
    Lin Y, Tai R, Wei S, Luo S. 2020.. Electrochemical SERS on 2D mapping for metabolites detection. . Langmuir 36::599096
    [Crossref] [Google Scholar]
  77. 77.
    Li D, Duan H, Wang Y, Zhang Q, Cao H, et al. 2018.. On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. . Microchim. Acta 185::10
    [Crossref] [Google Scholar]
  78. 78.
    Zhao L, Blackburn J, Brosseau CL. 2014.. Quantitative detection of uric acid by electrochemical-surface enhanced Raman spectroscopy using a multilayered Au/Ag substrate. . Anal. Chem. 87::44147
    [Crossref] [Google Scholar]
  79. 79.
    Zhou Q, Meng G, Liu J, Huang Z, Han F, et al. 2017.. A hierarchical nanostructure-based surface-enhanced Raman scattering sensor for preconcentration and detection of antibiotic pollutants. . Adv. Mater. Technol. 2::1700028
    [Crossref] [Google Scholar]
  80. 80.
    Lynk TP, Sit CS, Brosseau CL. 2018.. Electrochemical surface-enhanced Raman spectroscopy as a platform for bacterial detection and identification. . Anal. Chem. 90::1263946
    [Crossref] [Google Scholar]
  81. 81.
    Jiang L, Wang L, Zhan D, Jiang W, Fodjo EK, et al. 2021.. Electrochemically renewable SERS sensor: A new platform for the detection of metabolites involved in peroxide production. . Biosens. Bioelectron. 175::112918
    [Crossref] [Google Scholar]
  82. 82.
    Höhn E, Panneerselvam R, Das A, Belder D. 2019.. Raman spectroscopic detection in continuous microflow using a chip-integrated silver electrode as an electrically regenerable surface-enhanced Raman spectroscopy substrate. . Anal. Chem. 91::984451
    [Crossref] [Google Scholar]
  83. 83.
    Salemmilani R, Piorek BD, Mirsafavi RY, Fountain AW, Moskovits M, Meinhart CD. 2018.. Dielectrophoretic nanoparticle aggregation for on-demand surface enhanced Raman spectroscopy analysis. . Anal. Chem. 90::793036
    [Crossref] [Google Scholar]
  84. 84.
    Lin H, Huang C, Hsieh W, Liu L, Lin Y, et al. 2014.. On-line SERS detection of single bacterium using novel SERS nanoprobes and A microfluidic dielectrophoresis device. . Small 10::470010
    [Crossref] [Google Scholar]
  85. 85.
    Nowicka AB, Czaplicka M, Szymborski T, Kamińska A. 2021.. Combined negative dielectrophoresis with a flexible SERS platform as a novel strategy for rapid detection and identification of bacteria. . Anal. Bioanal. Chem. 413::200720
    [Crossref] [Google Scholar]
  86. 86.
    Fioravanti F, Muñetón Arboleda D, Lacconi GI, Ibañez FJ. 2020.. Characterization of SERS platforms designed by electrophoretic deposition on CVD graphene and ITO/glass. . Mater. Adv. 1::171625
    [Crossref] [Google Scholar]
  87. 87.
    Bailey MR, Pentecost AM, Selimovic A, Martin RS, Schultz ZD. 2015.. Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection. . Anal. Chem. 87::434755
    [Crossref] [Google Scholar]
  88. 88.
    Hernandez S, Garcia L, Perez-Estebanez M, Cheuquepan W, Heras A, Colina A. 2022.. Multiamperometric-SERS detection of melamine on gold screen-printed electrodes. . J. Electroanal. Chem. 918::116478
    [Crossref] [Google Scholar]
  89. 89.
    Ibáñez D, Pérez-Junquera A, González-García MB, Hernández-Santos D, Fanjul-Bolado P. 2020.. Spectroelectrochemical elucidation of B vitamins present in multivitamin complexes by EC-SERS. . Talanta 206::120190
    [Crossref] [Google Scholar]
  90. 90.
    Surowiec I, Baena JR, Frank J, Laurell T, Nilsson J, et al. 2005.. Flow-through microdispenser for interfacing μ-HPLC to Raman and mid-IR spectroscopic detection. . J. Chromatogr. A 1080::13239
    [Crossref] [Google Scholar]
  91. 91.
    Armenta S, Lendl B. 2010.. Capillary liquid chromatography with off-line mid-IR and Raman micro-spectroscopic detection: analysis of chlorinated pesticides at ppb levels. . Anal. Bioanal. Chem. 397::297308
    [Crossref] [Google Scholar]
  92. 92.
    Dijkstra RJ, Ariese F, Gooijer C, Brinkman UAT. 2005.. Raman spectroscopy as a detection method for liquid-separation techniques. . Trends Anal. Chem. 24::30423
    [Crossref] [Google Scholar]
  93. 93.
    Týčová A, Klepárník K. 2019.. Combination of liquid-based column separations with surface-enhanced Raman spectroscopy. . J. Sep. Sci. 42::43144
    [Crossref] [Google Scholar]
  94. 94.
    Chapput A, Roussel B, Montastier J. 1980.. Le spectromètre Raman comme détecteur séleitif de la chromatographie en phase liquide. . J. Raman Spectrosc. 9::19397
    [Crossref] [Google Scholar]
  95. 95.
    Dijkstra RJ, Bader AN, Hoornweg GP, Brinkman UAT, Gooijer C. 1999.. On-line coupling of column liquid chromatography and Raman spectroscopy using a liquid core waveguide. . Anal. Chem. 71::457579
    [Crossref] [Google Scholar]
  96. 96.
    Hiramatsu H, Saito T. 2014.. Vertical flow apparatus for enhancement and efficient collection of Raman signal. . J. Raman Spectrosc. 45::20810
    [Crossref] [Google Scholar]
  97. 97.
    Li S, Hiramatsu H. 2019.. A vertical flow method for sensitive Raman protein measurement in aqueous solutions. . Anal. Chem. 91::9806
    [Crossref] [Google Scholar]
  98. 98.
    Lo Y, Hiramatsu H. 2020.. Online liquid chromatography–Raman spectroscopy using the vertical flow method. . Anal. Chem. 92::146017
    [Crossref] [Google Scholar]
  99. 99.
    Somsen GW, Coulter SK, Gooijer C, Velthorst NH, Brinkman UAT. 1997.. Coupling of column liquid chromatography and surface-enhanced resonance Raman spectroscopy via a thin-layer chromatographic plate. . Anal. Chim. Acta 349::18997
    [Crossref] [Google Scholar]
  100. 100.
    Zachhuber B, Carrillo-Carrión C, Simonet Suau BM, Lendl B. 2012.. Quantification of DNT isomers by capillary liquid chromatography using at-line SERS detection or multivariate analysis of SERS spectra of DNT isomer mixtures. . J. Raman Spectrosc. 43::9981002
    [Crossref] [Google Scholar]
  101. 101.
    Carrillo-Carrión C, Armenta S, Simonet BM, Valcárcel M, Lendl B. 2011.. Determination of pyrimidine and purine bases by reversed-phase capillary liquid chromatography with at-line surface-enhanced Raman spectroscopic detection employing a novel SERS substrate based on ZnS/CdSe silver–quantum dots. . Anal. Chem. 83::939198
    [Crossref] [Google Scholar]
  102. 102.
    Freeman RD, Hammaker RM, Meloan CE, Fateley WG. 1988.. A detector for liquid chromatography and flow injection analysis using surface-enhanced Raman spectroscopy. . Appl. Spectrosc. 42::45660
    [Crossref] [Google Scholar]
  103. 103.
    Wang W, Xu M, Guo Q, Yuan Y, Gu R, Yao J. 2015.. Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy. . RSC Adv. 5::4764046
    [Crossref] [Google Scholar]
  104. 104.
    Zaffino C, Bedini GD, Mazzola G, Guglielmi V, Bruni S. 2016.. Online coupling of high-performance liquid chromatography with surface-enhanced Raman spectroscopy for the identification of historical dyes. . J. Raman Spectrosc. 47::60715
    [Crossref] [Google Scholar]
  105. 105.
    Cowcher DP, Jarvis R, Goodacre R. 2014.. Quantitative online liquid chromatography-surface-enhanced Raman scattering of purine bases. . Anal. Chem. 86::997784
    [Crossref] [Google Scholar]
  106. 106.
    Subaihi A, Trivedi DK, Hollywood KA, Bluett J, Xu Y, et al. 2017.. Quantitative online liquid chromatography–surface-enhanced Raman scattering (LC-SERS) of methotrexate and its major metabolites. . Anal. Chem. 89::67029
    [Crossref] [Google Scholar]
  107. 107.
    Nguyen A, Schultz ZD. 2016.. Quantitative online sheath-flow surface enhanced Raman spectroscopy detection for liquid chromatography. . Analyst 141::363035
    [Crossref] [Google Scholar]
  108. 108.
    Nguyen AH, Deutsch JM, Xiao L, Schultz ZD. 2018.. Online liquid chromatography–sheath-flow surface enhanced Raman detection of phosphorylated carbohydrates. . Anal. Chem. 90::11062
    [Crossref] [Google Scholar]
  109. 109.
    Xiao L, Wang C, Dai C, Littlepage LE, Li J, Schultz ZD. 2020.. Untargeted tumor metabolomics with liquid chromatography–surface-enhanced Raman spectroscopy. . Angew. Chem. Int. Ed. 59::346771
    [Crossref] [Google Scholar]
  110. 110.
    Chen C-Y, Morris MD. 1988.. Raman spectroscopic detection system for capillary zone electrophoresis. . Appl. Spectrosc. 42::51518
    [Crossref] [Google Scholar]
  111. 111.
    He L, Natan MJ, Keating CD. 2000.. Surface-enhanced Raman scattering:a structure-specific detection method for capillary electrophoresis. . Anal. Chem. 72::534855
    [Crossref] [Google Scholar]
  112. 112.
    Connatser RM, Riddle LA, Sepaniak MJ. 2004.. Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection. . J. Separat. Sci. 27::154550
    [Crossref] [Google Scholar]
  113. 113.
    Leopold N, Lendl B. 2010.. On-column silver substrate synthesis and surface-enhanced Raman detection in capillary electrophoresis. . Anal. Bioanal. Chem. 396::234148
    [Crossref] [Google Scholar]
  114. 114.
    Přikryl J, Klepárník K, Foret F. 2012.. Photodeposited silver nanoparticles for on-column surface-enhanced Raman spectrometry detection in capillary electrophoresis. . J. Chromatogr. A 1226::4347
    [Crossref] [Google Scholar]
  115. 115.
    Lee SJ, Moskovits M. 2011.. Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. . Nano Lett. 11::14550
    [Crossref] [Google Scholar]
  116. 116.
    Tycova A, Gerhardt RF, Belder D. 2018.. Surface enhanced Raman spectroscopy in microchip electrophoresis. . J. Chromatogr. A 1541::3946
    [Crossref] [Google Scholar]
  117. 117.
    Ivanov MR, Bednar HR, Haes AJ. 2009.. Investigations of the mechanism of gold nanoparticle stability and surface functionalization in capillary electrophoresis. . ACS Nano 3::38694
    [Crossref] [Google Scholar]
  118. 118.
    Ranc V, Staňová A, Marák J, Maier V, Ševčík J, Kaniansky D. 2011.. Preparative isotachophoresis with surface enhanced Raman scattering as a promising tool for clinical samples analysis. . J. Chromatogr. A 1218::20510
    [Crossref] [Google Scholar]
  119. 119.
    Masár M, Troška P, Hradski J, Talian I. 2020.. Microchip isotachophoresis coupled to surface-enhanced Raman spectroscopy for pharmaceutical analysis. . Microchim. Acta 187::448
    [Crossref] [Google Scholar]
  120. 120.
    Becker M, Budich C, Deckert V, Janasek D. 2009.. Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device. . Analyst 134::3884
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061522-035207
Loading
/content/journals/10.1146/annurev-anchem-061522-035207
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error