1932

Abstract

We critically evaluate the current status of portable mass spectrometry (pMS), particularly where this aligns with ambient ionization. Assessing the field of pMS can be quite subjective, especially in relation to the portable aspects of design, deployment, and operation. In this review, we discuss what it means to be portable and introduce a set of criteria by which pMS and ambient ionization sources can be assessed. Moreover, we consider the recent literature in terms of the most popular and significant advances in portable instrumentation for ambient ionization and miniature mass spectrometers. Finally, emerging trends and exciting future prospects are discussed and some recommendations are offered.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061522-040824
2024-07-17
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061522-040824.html?itemId=/content/journals/10.1146/annurev-anchem-061522-040824&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Maher S, Jjunju FPM, Taylor S. 2015.. Colloquium: 100 years of mass spectrometry: perspectives and future trends. . Rev. Mod. Phys. 87::11335
    [Crossref] [Google Scholar]
  2. 2.
    Jiang N, Tansukawat ND, Gonzalez-Macia L, Ates HC, Dincer C, et al. 2021.. Low-cost optical assays for point-of-care diagnosis in resource-limited settings. . ACS Sens. 6::210824
    [Crossref] [Google Scholar]
  3. 3.
    Lee S, Kulyk DS, Afriyie SO, Badu K, Badu-Tawiah AK. 2022.. Malaria diagnosis using paper-based immunoassay for clinical blood sampling and analysis by a miniature mass spectrometer. . Anal. Chem. 94::1437784
    [Crossref] [Google Scholar]
  4. 4.
    Zhang J, Sans M, Garza KY, Eberlin LS. 2021.. Mass spectrometry technologies to advance care for cancer patients in clinical and intraoperative use. . Mass Spectrom. Rev. 40::692720
    [Crossref] [Google Scholar]
  5. 5.
    Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ, et al. 2013.. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. . Sci. Transl. Med. 5::194ra93
    [Crossref] [Google Scholar]
  6. 6.
    Zhang J, Sans M, DeHoog RJ, Garza KY, King ME, et al. 2021.. Clinical translation and evaluation of a handheld and biocompatible mass spectrometry probe for surgical use. . Clin. Chem. 67::127180
    [Crossref] [Google Scholar]
  7. 7.
    Giannoukos S, Lee CP, Tarik M, Ludwig C, Biollaz S, et al. 2020.. Real-time detection of aerosol metals using online extractive electrospray ionization mass spectrometry. . Anal. Chem. 92::131625
    [Crossref] [Google Scholar]
  8. 8.
    Domin M, Cody R. 2014.. Preface. . In Ambient Ionization Mass Spectrometry, ed. M Domin, R Cody , pp. 56. London:: Royal Soc. Chem.
    [Google Scholar]
  9. 9.
    Huang M-Z, Yuan C-H, Cheng S-C, Cho Y-T, Shiea J. 2010.. Ambient ionization mass spectrometry. . Annu. Rev. Anal. Chem. 3::4365
    [Crossref] [Google Scholar]
  10. 10.
    Takáts Z, Wiseman JM, Gologan B, Cooks RG. 2004.. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. . Science 306::47173
    [Crossref] [Google Scholar]
  11. 11.
    Cody RB, Laramée JA, Durst HD. 2005.. Versatile new ion source for the analysis of materials in open air under ambient conditions. . Anal. Chem. 77::2297302
    [Crossref] [Google Scholar]
  12. 12.
    Xu Z, Jiang T, Xu Q, Zhai Y, Li D, Xu W. 2019.. Pseudo-multiple reaction monitoring (pseudo-MRM) mode on the “brick” mass spectrometer, using the grid-SWIFT waveform. . Anal. Chem. 91::1383846
    [Crossref] [Google Scholar]
  13. 13.
    Li N, Zhou X, Ouyang Z. 2021.. Tandem-in-time mass spectrometry analysis facilitated by real-time pressure adjustments. . Int. J. Mass Spectrom. 462::116523
    [Crossref] [Google Scholar]
  14. 14.
    Zhai Y, Xu Q, Tang Y, Liu S, Li D, Xu W. 2019.. Boosting the sensitivity and selectivity of a miniature mass spectrometer using a hybrid ion funnel. . Anal. Chem. 91::791119
    [Crossref] [Google Scholar]
  15. 15.
    Lanzarotta A, Kern S, Batson J, Boyd B, Kimani MM, et al. 2023.. Rapid detection of active pharmaceutical ingredients in drug products collected at an international mail facility by a satellite laboratory using a “toolkit” consisting of a handheld Raman spectrometer, portable mass spectrometer and portable FT-IR spectrometer. . J. Pharm. Biomed. Anal. 224::115153
    [Crossref] [Google Scholar]
  16. 16.
    Frey BS, Damon DE, Badu-Tawiah AK. 2020.. Emerging trends in paper spray mass spectrometry: microsampling, storage, direct analysis, and applications. . Mass Spectrom. Rev. 39::33670
    [Crossref] [Google Scholar]
  17. 17.
    Lancet Public Health. 2022.. Opioid overdose crisis: time for a radical rethink. . Lancet Public Health 7::e195
    [Crossref] [Google Scholar]
  18. 18.
    McCullough BJ, Patel K, Francis R, Cain P, Douce D, et al. 2020.. Atmospheric solids analysis probe coupled to a portable mass spectrometer for rapid identification of bulk drug seizures. . J. Am. Soc. Mass Spectrom. 31::38693
    [Crossref] [Google Scholar]
  19. 19.
    Borden SA, Saatchi A, Vandergrift GW, Palaty J, Lysyshyn M, Gill CG. 2022.. A new quantitative drug checking technology for harm reduction: pilot study in Vancouver, Canada using paper spray mass spectrometry. . Drug Alcohol Rev. 41::41018
    [Crossref] [Google Scholar]
  20. 20.
    Han Y, Yan W, Zheng Y, Khan MZ, Lu L. 2019.. The rising crisis of illicit fentanyl use, overdose, and potential therapeutic strategies. . Transl. Psychiatry 9::282
    [Crossref] [Google Scholar]
  21. 21.
    Loh LX, Lee HH, Stead S, Ng DHJ. 2022.. Manuka honey authentication by a compact atmospheric solids analysis probe mass spectrometer. . J. Food Compos. Anal. 105::104254
    [Crossref] [Google Scholar]
  22. 22.
    Mason TJ, Bettenhausen HM, Chaparro JM, Uchanski ME, Prenni JE. 2021.. Evaluation of ambient mass spectrometry tools for assessing inherent postharvest pepper quality. . Horticult. Res. 8::160
    [Crossref] [Google Scholar]
  23. 23.
    Tan HR, Chan LY, Lee HH, Xu Y-Q, Zhou W. 2022.. Rapid authentication of Chinese oolong teas using atmospheric solids analysis probe-mass spectrometry (ASAP-MS) combined with supervised pattern recognition models. . Food Control 134::108736
    [Crossref] [Google Scholar]
  24. 24.
    Maragos CM, Barnett K, Morgan L, Vaughan MM, Sieve KK. 2022.. Measurement of fumonisins in maize using a portable mass spectrometer. . Toxins 14::523
    [Crossref] [Google Scholar]
  25. 25.
    Maragos CM. 2022.. Application of ambient ionization mass spectrometry to detect the mycotoxin roquefortine C in blue cheese. . Food Anal. Methods 15::75160
    [Crossref] [Google Scholar]
  26. 26.
    Sham T-T, Badu-Tawiah AK, McWilliam SJ, Maher S. 2022.. Assessment of creatinine concentration in whole blood spheroids using paper spray ionization–tandem mass spectrometry. . Sci. Rep. 12::14308
    [Crossref] [Google Scholar]
  27. 27.
    Kang M, Xue J, Zhang Y, Ouyang Z, Zhang W. 2022.. On-site quantitation of morphine in urine by fast derivatization and miniature mass spectrometry analysis. . Green Anal. Chem. 1::100013
    [Crossref] [Google Scholar]
  28. 28.
    Hu W, Hou J, Liu W, Gu X, Yang Y, et al. 2023.. Online pharmaceutical process analysis of Chinese medicine using a miniature mass spectrometer: extraction of active ingredients as an example. . J. Pharm. Anal. 13::53543
    [Crossref] [Google Scholar]
  29. 29.
    Wang W-C, Chung H-H, Dutkiewicz EP, Wong J-Y, Yang W-C, et al. 2022.. On-site diagnosis of poultry coccidiosis by a miniature mass spectrometer and machine learning. . ACS Agric. Sci. Technol. 2::1721
    [Crossref] [Google Scholar]
  30. 30.
    Brown HM, Pu F, Dey M, Miller J, Shah MV, et al. 2019.. Intraoperative detection of isocitrate dehydrogenase mutations in human gliomas using a miniature mass spectrometer. . Anal. Bioanal. Chem. 411::792933
    [Crossref] [Google Scholar]
  31. 31.
    Lanzarotta A, Kern S, Batson J, Falconer TM, Fulcher M, et al. 2021.. Evaluation of “toolkit” consisting of handheld and portable analytical devices for detecting active pharmaceutical ingredients in drug products collected during a simultaneous nation-wide mail blitz. . J. Pharm. Biomed. Anal. 203::114183
    [Crossref] [Google Scholar]
  32. 32.
    Losso K, Cardini J, Huber S, Kappacher C, Jakschitz T, et al. 2022.. Rapid differentiation and quality control of tobacco products using Direct Analysis in Real Time Mass Spectrometry and Liquid Chromatography Mass Spectrometry. . Talanta 238::123057
    [Crossref] [Google Scholar]
  33. 33.
    Xue J, Derks RJE, Webb B, Billings EM, Aisporna A, et al. 2021.. Single quadrupole multiple fragment ion monitoring quantitative mass spectrometry. . Anal. Chem. 93::1087989
    [Crossref] [Google Scholar]
  34. 34.
    Xue J, Domingo-Almenara X, Guijas C, Palermo A, Rinschen MM, et al. 2020.. Enhanced in-source fragmentation annotation enables novel data independent acquisition and autonomous METLIN molecular identification. . Anal. Chem. 92::605159
    [Crossref] [Google Scholar]
  35. 35.
    Xue J, Derks RJE, Hoang L, Giera M, Siuzdak G. 2021.. Proteomics with enhanced in-source fragmentation/annotation: applying XCMS-EISA informatics and Q-MRM high-sensitivity quantification. . J. Am. Soc. Mass Spectrom. 32::264454
    [Crossref] [Google Scholar]
  36. 36.
    Opačić B, Huntley AP, Clowers BH, Reilly PTA. 2018.. Digital mass filter analysis in stability zones A and B. . J. Mass Spectrom. 53::115568
    [Crossref] [Google Scholar]
  37. 37.
    Reilly PTA, Chakravorty S, Bailey CF, Obe FO, Huntley AP. 2021.. Will the digital mass filter be the next high-resolution high-mass analyzer?. J. Am. Soc. Mass Spectrom. 32::261520
    [Crossref] [Google Scholar]
  38. 38.
    Gao L, Sugiarto A, Harper JD, Cooks RG, Ouyang Z. 2008.. Design and characterization of a multisource hand-held tandem mass spectrometer. . Anal. Chem. 80::7198205
    [Crossref] [Google Scholar]
  39. 39.
    Blakeman KH, Wolfe DW, Cavanaugh CA, Ramsey JM. 2016.. High pressure mass spectrometry: the generation of mass spectra at operating pressures exceeding 1 torr in a microscale cylindrical ion trap. . Anal. Chem. 88::537884
    [Crossref] [Google Scholar]
  40. 40.
    Pandey S, Hu Y, Bushman LR, Castillo-Mancilla J, Anderson PL, Cooks RG. 2022.. Miniature mass spectrometer–based point-of-care assay for cabotegravir and rilpivirine in whole blood. . Anal. Bioanal. Chem. 414::338795
    [Crossref] [Google Scholar]
  41. 41.
    Liu X, Wang X, Bu J, Zhou X, Ouyang Z. 2019.. Tandem analysis by a dual-trap miniature mass spectrometer. . Anal. Chem. 91::139198
    [Crossref] [Google Scholar]
  42. 42.
    Liu X, Jiao B, Cao W, Ma X, Xia Y, et al. 2022.. Development of a miniature mass spectrometry system for point-of-care analysis of lipid isomers based on ozone-induced dissociation. . Anal. Chem. 94::1394450
    [Crossref] [Google Scholar]
  43. 43.
    Gao L, Cooks RG, Ouyang Z. 2008.. Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface. . Anal. Chem. 80::402632
    [Crossref] [Google Scholar]
  44. 44.
    Li M, Wang S, Xu C, Ruan H, Wang W, et al. 2021.. Parallel coupling of ion mobility spectrometry and ion trap mass spectrometry for the real-time alarm triggering and identification of hazardous chemical leakages. . Anal. Chem. 93::1185258
    [Crossref] [Google Scholar]
  45. 45.
    Zhou X, Wang Z, Fan J, Ouyang Z. 2023.. High-resolution separation of bioisomers using ion cloud profiling. . Nat. Commun. 14::1535
    [Crossref] [Google Scholar]
  46. 46.
    Yang Y-H, Lee K, Jang K-S, Kim Y-G, Park S-H, et al. 2009.. Low mass cutoff evasion with qz value optimization in ion trap. . Anal. Biochem. 387::13335
    [Crossref] [Google Scholar]
  47. 47.
    Zhang H, Jia H, Gao Z, Xiang Y, Jiang T, Xu W. 2023.. Parallel pseudo-MRM on the “brick” miniature mass spectrometer for high throughput multi-target screening. . Talanta 252::123866
    [Crossref] [Google Scholar]
  48. 48.
    Lv Y, Shang Y, Li L, Zhang Y, Ma Q. 2023.. Online hyphenation of in-capillary aptamer-functionalized solid-phase microextraction and extraction nanoelectrospray ionization for miniature mass spectrometry analysis. . Analyst 148::181523
    [Crossref] [Google Scholar]
  49. 49.
    Ruan H, Xu C, Wang W, Li H. 2022.. Hexapole-assisted continuous atmospheric pressure interface for a high-pressure photoionization miniature ion trap mass spectrometer. . Anal. Chem. 94::1728794
    [Crossref] [Google Scholar]
  50. 50.
    West H, Fitzgerald J, Hopkins K, Li E, Clark N, et al. 2021.. Early warning system for illicit drug use at large public events: trace residue analysis of discarded drug packaging samples. . J. Am. Soc. Mass Spectrom. 32::260414
    [Crossref] [Google Scholar]
  51. 51.
    Marsh BM, Rahman S, Benkowski VM, Tichy S, Cooks RG. 2021.. Space charge compensation in air by counterion flow in 3D printed electrode structure. . Int. J. Mass Spectrom. 468::116637
    [Crossref] [Google Scholar]
  52. 52.
    Iyer K, Marsh BM, Capek GO, Schrader RL, Tichy S, Cooks RG. 2019.. Ion manipulation in open air using 3D-printed electrodes. . J. Am. Soc. Mass Spectrom. 30::258493
    [Crossref] [Google Scholar]
  53. 53.
    Obe FO, Chakravorty S, Groetsema E, Collings BA, Hager JW, Reilly PTA. 2023.. Experimental validation of the digital tandem mass filter. . J. Am. Soc. Mass Spectrom. 34::15460
    [Crossref] [Google Scholar]
  54. 54.
    Brais CJ, Ibañez JO, Schwartz AJ, Ray SJ. 2021.. Recent advances in instrumental approaches to time-of-flight mass spectrometry. . Mass Spectrom. Rev. 40::64769
    [Crossref] [Google Scholar]
  55. 55.
    Liu B, Tang W, Li H, Liu R, Dong F, et al. 2022.. Point-of-care detection of sevoflurane anesthetics in exhaled breath using a miniature TOFMS for diagnosis of postoperative agitation symptoms in children. . Analyst 147::248493
    [Crossref] [Google Scholar]
  56. 56.
    Huang Y, Li J, Tang B, Zhu L, Hou K, Li H. 2015.. Development of a portable single photon ionization-photoelectron ionization time-of-flight mass spectrometer. . Int. J. Anal. Chem. 2015::581696
    [Google Scholar]
  57. 57.
    Chang K-K, Cai Y-H, Hsiao C-H, Hsu C-C, Wang Y-S. 2022.. High-performance miniature linear time-of-flight mass spectrometry as an advantageous tool in a high mass-to-charge range. . Analyst 147::411623
    [Crossref] [Google Scholar]
  58. 58.
    Lopez-Hilfiker FD, Pospisilova V, Huang W, Kalberer M, Mohr C, et al. 2019.. An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. . Atmos. Meas. Tech. 12::486786
    [Crossref] [Google Scholar]
  59. 59.
    Junninen H, Ehn M, Petäjä T, Luosujärvi L, Kotiaho T, et al. 2010.. A high-resolution mass spectrometer to measure atmospheric ion composition. . Atmos. Meas. Tech. 3::103953
    [Crossref] [Google Scholar]
  60. 60.
    Meng D, Yongjun C, Wenjun S, Meiru G, Lian C, et al. 2017.. Newly developed compact magnetic sector mass spectrometer. . Meas. Sci. Technol. 28::125901
    [Crossref] [Google Scholar]
  61. 61.
    Yang Z, Li D, Ren Z, Geng J, Sun J, et al. 2023.. Development of a newly compact double-focusing mass spectrometer. . Vacuum 210::111815
    [Crossref] [Google Scholar]
  62. 62.
    Amsden JJ, Herr PJ, Landry DMW, Kim W, Vyas R, et al. 2018.. Proof of concept coded aperture miniature mass spectrometer using a cycloidal sector mass analyzer, a carbon nanotube (CNT) field emission electron ionization source, and an array detector. . J. Am. Soc. Mass Spectrom. 29::36072
    [Crossref] [Google Scholar]
  63. 63.
    Bell RJ, Davey NG, Martinsen M, Collin-Hansen C, Krogh ET, Gill CG. 2015.. A field-portable membrane introduction mass spectrometer for real-time quantitation and spatial mapping of atmospheric and aqueous contaminants. . J. Am. Soc. Mass Spectrom. 26::21223
    [Crossref] [Google Scholar]
  64. 64.
    Virgen CA, Fox JD, Santariello P, Winfield JL, Wright KC, Verbeck GF. 2021.. Portable membrane inlet mass spectrometric detection and analysis of chemical warfare agent simulants at the U.S. Army Dugway Proving Ground S/K challenge event. . Int. J. Mass Spectrom. 468::116635
    [Crossref] [Google Scholar]
  65. 65.
    Mach PM, Winfield JL, Aguilar RA, Wright KC, Verbeck GF. 2017.. A portable mass spectrometer study targeting anthropogenic contaminants in Sub-Antarctic Puerto Williams, Chile. . Int. J. Mass Spectrom. 422::14853
    [Crossref] [Google Scholar]
  66. 66.
    Mach PM, McBride EM, Sasiene ZJ, Brigance KR, Kennard SK, et al. 2015.. Vehicle-mounted portable mass spectrometry system for the covert detection via spatial analysis of clandestine methamphetamine laboratories. . Anal. Chem. 87::115018
    [Crossref] [Google Scholar]
  67. 67.
    Aleksić M, Simeon A, Vujić D, Giannoukos S, Brkić B. 2023.. Food and lifestyle impact on breath VOCs using portable mass spectrometer—pilot study across European countries. . J. Breath Res. 17::046004
    [Crossref] [Google Scholar]
  68. 68.
    Brkić B, France N, Giannoukos S, Taylor S. 2018.. An optimised quadrupole mass spectrometer with a dual filter analyser for in-field chemical sniffing of volatile organic compounds. . Analyst 143::372228
    [Crossref] [Google Scholar]
  69. 69.
    Duan C, Li J, Zhang Y, Ding K, Geng X, Guan Y. 2022.. Portable instruments for on-site analysis of environmental samples. . Trends Anal. Chem. 154::116653
    [Crossref] [Google Scholar]
  70. 70.
    Snyder DT, Pulliam CJ, Ouyang Z, Cooks RG. 2016.. Miniature and fieldable mass spectrometers: recent advances. . Anal. Chem. 88::229
    [Crossref] [Google Scholar]
  71. 71.
    Wang J, Pursell ME, DeVor A, Awoyemi O, Valentine SJ, Li P. 2022.. Portable mass spectrometry system: instrumentation, applications, and path to ‘omics analysis. . Proteomics 22::2200112
    [Crossref] [Google Scholar]
  72. 72.
    Rankin-Turner S, Heaney L. 2022.. Deployable mass spectrometry for rapid on-site bioanalysis. . LCGC Suppl. 40::1418
    [Google Scholar]
  73. 73.
    Owen RN, Kelly SL, Brenton AG. 2021.. Towards a universal ion source: glow flow mass spectrometry. . Int. J. Mass Spectrom. 466::116603
    [Crossref] [Google Scholar]
  74. 74.
    Schäfer K-C, Dénes J, Albrecht K, Szaniszló T, Balog J, et al. 2009.. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. . Angew. Chem. Int. Ed. 48::824042
    [Crossref] [Google Scholar]
  75. 75.
    Cameron SJS, Perdones-Montero A, Van Meulebroek L, Burke A, Alexander-Hardiman K, et al. 2021.. Sample preparation free mass spectrometry using laser-assisted rapid evaporative ionization mass spectrometry: applications to microbiology, metabolic biofluid phenotyping, and food authenticity. . J. Am. Soc. Mass Spectrom. 32::1393401
    [Crossref] [Google Scholar]
  76. 76.
    St. John ER, Balog J, McKenzie JS, Rossi M, Covington A, et al. 2017.. Rapid evaporative ionisation mass spectrometry of electrosurgical vapours for the identification of breast pathology: towards an intelligent knife for breast cancer surgery. . Breast Cancer Res. 19::59
    [Crossref] [Google Scholar]
  77. 77.
    Alexander J, Gildea L, Balog J, Speller A, McKenzie J, et al. 2017.. A novel methodology for in vivo endoscopic phenotyping of colorectal cancer based on real-time analysis of the mucosal lipidome: a prospective observational study of the iKnife. . Surg. Endoscopy 31::136170
    [Crossref] [Google Scholar]
  78. 78.
    Chen Y-H, Liu C-Y, Devereaux ZJ, Wang C-Y, Trimpin S, Lu IC. 2022.. Applications of vacuum MAI on a portable mass spectrometer. . Int. J. Mass Spectrom. 474::116798
    [Crossref] [Google Scholar]
  79. 79.
    McBride EM, Mach PM, Dhummakupt ES, Dowling S, Carmany DO, et al. 2019.. Paper spray ionization: applications and perspectives. . Trends Anal. Chem. 118::72230
    [Crossref] [Google Scholar]
  80. 80.
    Rydberg M, Dowling S, Manicke NE. 2022.. Automated and high-throughput urine drug screening using paper spray mass spectrometry. . J. Anal. Toxicol. 47::14753
    [Crossref] [Google Scholar]
  81. 81.
    Zhou Y, Sham T-T, Boisdon C, Smith B, Blair J, et al. 2023.. Emergency diagnosis made easy: matrix removal and analyte enrichment from raw saliva using paper-arrow mass spectrometry. . Analyst 148::536679
    [Crossref] [Google Scholar]
  82. 82.
    Phelps DL, Balog J, Gildea LF, Bodai Z, Savage A, et al. 2018.. The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). . Br. J. Cancer 118::134958
    [Crossref] [Google Scholar]
  83. 83.
    Forbes TP, Verkouteren JR. 2019.. Forensic analysis and differentiation of black powder and black powder substitute chemical signatures by infrared thermal desorption–DART-MS. . Anal. Chem. 91::108997
    [Crossref] [Google Scholar]
  84. 84.
    Devereaux ZJ, Reynolds CA, Fischer JL, Foley CD, DeLeeuw JL, et al. 2016.. Matrix-assisted ionization on a portable mass spectrometer: analysis directly from biological and synthetic materials. . Anal. Chem. 88::1083136
    [Crossref] [Google Scholar]
  85. 85.
    Trimpin S, Lutomski CA, El-Baba TJ, Woodall DW, Foley CD, et al. 2015.. Magic matrices for ionization in mass spectrometry. . Int. J. Mass Spectrom. 377::53245
    [Crossref] [Google Scholar]
  86. 86.
    McEwen CN, Inutan ED, Moreno-Pedraza A, Lu IC, Hoang K, et al. 2021.. Sublimation driven ionization for use in mass spectrometry: mechanistic implications. . J. Am. Soc. Mass Spectrom. 32::11423
    [Crossref] [Google Scholar]
  87. 87.
    Guo X, Shang Y, Lv Y, Bai H, Ma Q. 2021.. Suspect screening of fentanyl analogs using matrix-assisted ionization and a miniature mass spectrometer with a custom expandable mass spectral library. . Anal. Chem. 93::1015259
    [Crossref] [Google Scholar]
  88. 88.
    Prunty S, Carmany D, Dhummakupt ES, Manicke NE. 2023.. Combining presumptive color tests, pressure-sensitive adhesive-based collection, and paper spray-mass spectrometry for illicit drug detection. . Analyst 148::327484
    [Crossref] [Google Scholar]
  89. 89.
    Prunty S, Carmany D, Dhummakupt ES, Manicke NE. 2023.. Pressure sensitive adhesives and paper spray-mass spectrometry for the collection and analysis of fentanyl-related compounds from shipping materials. . J. Forensic Sci. 68::161525
    [Crossref] [Google Scholar]
  90. 90.
    Nguyen CB, Wichert WRA, Carmany DO, McBride EM, Mach PM, et al. 2021.. Pressure-sensitive adhesive combined with paper spray mass spectrometry for low-cost collection and analysis of drug residues. . Anal. Chem. 93::1346774
    [Crossref] [Google Scholar]
  91. 91.
    Marić M, Marano J, Cody RB, Bridge C. 2018.. DART-MS: a new analytical technique for forensic paint analysis. . Anal. Chem. 90::687784
    [Crossref] [Google Scholar]
  92. 92.
    Sisco E, Forbes TP, Staymates ME, Gillen G. 2016.. Rapid analysis of trace drugs and metabolites using a thermal desorption DART-MS configuration. . Anal. Methods 8::649499
    [Crossref] [Google Scholar]
  93. 93.
    Ashton GP, Harding LP, Parkes GMB, Pownall SE. 2021.. Application of hot-stage microscopy direct analysis in real time mass spectrometry (HDM) to the analysis of polymers. . Rapid Commun. Mass Spectrom. 35::e8522
    [Crossref] [Google Scholar]
  94. 94.
    Ashton GP, Harding LP, Parkes GMB. 2017.. An integrated hot-stage microscope–direct analysis in real time–mass spectrometry system for studying the thermal behavior of materials. . Anal. Chem. 89::1346671
    [Crossref] [Google Scholar]
  95. 95.
    Watt L, Sisco E. 2021.. Detection of trace drugs of abuse in baby formula using solid-phase microextraction direct analysis in real-time mass spectrometry (SPME-DART-MS). . J. Forensic Sci. 66::17278
    [Crossref] [Google Scholar]
  96. 96.
    Newsome GA, Kavich G, Alvarez-Martin A. 2020.. Interface for reproducible, multishot direct analysis of solid-phase microextraction samples. . Anal. Chem. 92::418286
    [Crossref] [Google Scholar]
  97. 97.
    Domínguez-Rodríguez G, Plaza M, Marina ML. 2021.. High-performance thin-layer chromatography and direct analysis in real time-high resolution mass spectrometry of non-extractable polyphenols from tropical fruit peels. . Food Res. Int. 147::110455
    [Crossref] [Google Scholar]
  98. 98.
    Eichner F, Spangenberg B. 2019.. Optimized determination of caffeine, equol, and artemisinin by high-performance thin-layer chromatography–direct analysis in real time–time of flight–mass spectrometry. . J. Planar Chromatogr. 32::197203
    [Crossref] [Google Scholar]
  99. 99.
    Cotte-Rodríguez I, Mulligan CC, Cooks RG. 2007.. Non-proximate detection of small and large molecules by desorption electrospray ionization and desorption atmospheric pressure chemical ionization mass spectrometry: instrumentation and applications in forensics, chemistry, and biology. . Anal. Chem. 79::706977
    [Crossref] [Google Scholar]
  100. 100.
    Morato NM, Cooks RG. 2023.. Desorption electrospray ionization mass spectrometry: 20 years. . Acc. Chem. Res. 56::252636
    [Crossref] [Google Scholar]
  101. 101.
    Yang M, Unsihuay D, Hu H, Nguele Meke F, Qu Z, et al. 2023.. Nano-DESI mass spectrometry imaging of proteoforms in biological tissues with high spatial resolution. . Anal. Chem. 95::521422
    [Crossref] [Google Scholar]
  102. 102.
    Kelis Cardoso VG, Sabin GP, Hantao LW. 2022.. Rapid evaporative ionization mass spectrometry (REIMS) combined with chemometrics for real-time beer analysis. . Anal. Methods 14::154046
    [Crossref] [Google Scholar]
  103. 103.
    Golf O, Strittmatter N, Karancsi T, Pringle SD, Speller AVM, et al. 2015.. Rapid evaporative ionization mass spectrometry imaging platform for direct mapping from bulk tissue and bacterial growth media. . Anal. Chem. 87::252734
    [Crossref] [Google Scholar]
  104. 104.
    Trimpin S, Inutan ED. 2013.. Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry. . J. Am. Soc. Mass Spectrom. 24::72232
    [Crossref] [Google Scholar]
  105. 105.
    Trimpin S, Pophristic M, Adeniji-Adele A, Tomsho JW, McEwen CN. 2018.. Vacuum matrix-assisted ionization source offering simplicity, sensitivity, and exceptional robustness in mass spectrometry. . Anal. Chem. 90::1118892
    [Crossref] [Google Scholar]
  106. 106.
    Barlow RS, Fitzgerald AG, Hughes JM, McMillan KE, Moore SC, et al. 2021.. Rapid evaporative ionization mass spectrometry: a review on its application to the red meat industry with an Australian context. . Metabolites 11:(3):171
    [Crossref] [Google Scholar]
  107. 107.
    Chernetsova ES, Morlock GE. 2011.. Ambient desorption ionization mass spectrometry (DART, DESI) and its bioanalytical applications. . Bioanal. Rev. 3::19
    [Crossref] [Google Scholar]
  108. 108.
    Gross JH. 2016.. High-mass capabilities of positive-ion and negative-ion direct analysis in real time mass spectrometry. . Eur. J. Mass Spectrom. 22::4348
    [Crossref] [Google Scholar]
  109. 109.
    Luo W, van Beek TA, Chen B, Zuilhof H, Salentijn GIJ. 2023.. Bifunctional Ti4+-modified paper for selective extraction or removal of phospholipids and paper spray mass spectrometry for bioanalysis in urine and plasma. . Anal. Chim. Acta 1278::341673
    [Crossref] [Google Scholar]
  110. 110.
    Pereira I, Monaghan J, Abruzzi LR, Gill CG. 2023.. PAMAM-functionalized paper as a new substrate for the paper spray mass spectrometry measurement of proteins. . Anal. Chem. 95::713441
    [Crossref] [Google Scholar]
  111. 111.
    Wiley JS, Shelley JT, Cooks RG. 2013.. Handheld low-temperature plasma probe for portable “point-and-shoot” ambient ionization mass spectrometry. . Anal. Chem. 85::654552
    [Crossref] [Google Scholar]
  112. 112.
    Jjunju FPM, Maher S, Li A, Syed SU, Smith B, et al. 2015.. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives. . Anal. Chem. 87::1004755
    [Crossref] [Google Scholar]
  113. 113.
    Jialing Z, Marta S, Rachel JD, Kyana YG, Mary EK, et al. 2020.. Direct molecular analysis of in vivo and freshly excised tissues in human surgeries with the MasSpec Pen technology. . medRxiv 2020.12.14.20248101. https://doi.org/10.1101/2020.12.14.20248101
  114. 114.
    Sugimura N, Watabe Y, Shibue T. 2019.. Triboionization: a novel ionization method by peeling of cohesive substances for mass spectrometry. . J. Am. Soc. Mass Spectrom. 30::150311
    [Crossref] [Google Scholar]
  115. 115.
    Meisenbichler C, Kluibenschedl F, Müller T. 2020.. A 3-in-1 hand-held ambient mass spectrometry interface for identification and 2D localization of chemicals on surfaces. . Anal. Chem. 92::1431418
    [Crossref] [Google Scholar]
  116. 116.
    Li Y, Chen J, Meng L, He L, Liu H, et al. 2021.. Pocket-size “MasSpec pointer” for ambient ionization mass spectrometry. . Anal. Chem. 93::1332633
    [Crossref] [Google Scholar]
  117. 117.
    Lotz F, Baar P, Spengler B, Schulz S. 2021.. Development of a handheld liquid extraction pen for on-site mass spectrometric analysis of daily goods. . Analyst 146::300415
    [Crossref] [Google Scholar]
  118. 118.
    Li Y, Meng L, Li Z, Wang Y, Wang X, et al. 2021.. Hand-powered ionization methods for the mass spectrometric detection of small molecules. . Int. J. Mass Spectrom. 470::116716
    [Crossref] [Google Scholar]
  119. 119.
    Liu S, Xu Q, Li Y, Xu W, Zhai Y. 2022.. Coupling handheld liquid microjunction-surface sampling probe (hLMJ-SSP) to the miniature mass spectrometer for automated and in-situ surface analysis. . Talanta 242::123090
    [Crossref] [Google Scholar]
  120. 120.
    Li Y, Jia K, Pan Y, Han J, Chen J, et al. 2023.. Pocket-size wireless nanoelectrospray ionization mass spectrometry for metabolic analysis of salty biofluids and single cells. . Anal. Chem. 95::461218
    [Crossref] [Google Scholar]
  121. 121.
    Fatou B, Saudemont P, Leblanc E, Vinatier D, Mesdag V, et al. 2016.. In vivo real-time mass spectrometry for guided surgery application. . Sci. Rep. 6::25919
    [Crossref] [Google Scholar]
  122. 122.
    Kwiatkowski M, Wurlitzer M, Krutilin A, Kiani P, Nimer R, et al. 2016.. Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization. . J. Proteom. 134::193202
    [Crossref] [Google Scholar]
  123. 123.
    Woolman M, Kuzan-Fischer CM, Ferry I, Kiyota T, Luu B, et al. 2019.. Picosecond infrared laser desorption mass spectrometry identifies medulloblastoma subgroups on intrasurgical timescales. . Cancer Res. 79::242634
    [Crossref] [Google Scholar]
  124. 124.
    Woolman M, Ferry I, Kuzan-Fischer Claudia M, Wu M, Zou J, et al. 2017.. Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption probe. . Chem. Sci. 8::650819
    [Crossref] [Google Scholar]
  125. 125.
    Woolman M, Qiu J, Kuzan-Fischer CM, Ferry I, Dara D, et al. 2020.. In situ tissue pathology from spatially encoded mass spectrometry classifiers visualized in real time through augmented reality. . Chem. Sci. 11::872335
    [Crossref] [Google Scholar]
  126. 126.
    Zhang J, Rector J, Lin JQ, Young JH, Sans M, et al. 2017.. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. . Sci. Transl. Med. 9::eaan3968
    [Crossref] [Google Scholar]
  127. 127.
    Feider CL, Gatmaitan AN, Hooper T, Chakraborty A, Gowda P, et al. 2021.. Integrating the MasSpec pen with sub-atmospheric pressure chemical ionization for rapid chemical analysis and forensic applications. . Anal. Chem. 93::754956
    [Crossref] [Google Scholar]
  128. 128.
    Keating MF, Zhang J, Feider CL, Retailleau S, Reid R, et al. 2020.. Integrating the MasSpec Pen to the da Vinci surgical system for in vivo tissue analysis during a robotic assisted porcine surgery. . Anal. Chem. 92::1153542
    [Crossref] [Google Scholar]
  129. 129.
    Povilaitis SC, Chakraborty A, Kirkpatrick LM, Downey RD, Hauger SB, Eberlin LS. 2022.. Identifying clinically relevant bacteria directly from culture and clinical samples with a handheld mass spectrometry probe. . Clin. Chem. 68::145970
    [Crossref] [Google Scholar]
  130. 130.
    Harper JD, Charipar NA, Mulligan CC, Zhang X, Cooks RG, Ouyang Z. 2008.. Low-temperature plasma probe for ambient desorption ionization. . Anal. Chem. 80::9097104
    [Crossref] [Google Scholar]
  131. 131.
    Kasperkiewicz A, Gómez-Ríos GA, Hein D, Pawliszyn J. 2019.. Breaching the 10 second barrier of total analysis time for complex matrices via automated coated blade spray. . Anal. Chem. 91::1303946
    [Crossref] [Google Scholar]
  132. 132.
    Zhou W, Nazdrajić E, Pawliszyn J. 2022.. Rapid screening and quantitation of drugs of abuse by both positive and negative modes via coated blade spray–mass spectrometry. . J. Am. Soc. Mass Spectrom. 33::118793
    [Crossref] [Google Scholar]
  133. 133.
    Pu F, Chiang S, Zhang W, Ouyang Z. 2019.. Direct sampling mass spectrometry for clinical analysis. . Analyst 144::103451
    [Crossref] [Google Scholar]
  134. 134.
    Salvagno GL, Danese E, Lippi G. 2020.. Mass spectrometry and total laboratory automation: opportunities and drawbacks. . Clin. Chem. Lab. Med. 58::9941001
    [Crossref] [Google Scholar]
  135. 135.
    Stelmack AR, Fatigante WL, Mukta S, Clowser PC, Holtz JM, Mulligan CC. 2022.. Assessing the environmental ruggedness of paper spray ionization (PSI) coupled to a portable mass spectrometer operated under field conditions. . Int. J. Mass Spectrom. 472::116776
    [Crossref] [Google Scholar]
  136. 136.
    Jiao B, Ye H, Liu X, Bu J, Wu J, et al. 2021.. Handheld mass spectrometer with intelligent adaptability for on-site and point-of-care analysis. . Anal. Chem. 93::1560716
    [Crossref] [Google Scholar]
  137. 137.
    Li L, Chen T-C, Ren Y, Hendricks PI, Cooks RG, Ouyang Z. 2014.. Mini 12, miniature mass spectrometer for clinical and other applications—introduction and characterization. . Anal. Chem. 86::290916
    [Crossref] [Google Scholar]
  138. 138.
    Manicke NE, Bills BJ, Zhang C. 2016.. Analysis of biofluids by paper spray MS: advances and challenges. . Bioanalysis 8::589606
    [Crossref] [Google Scholar]
  139. 139.
    Zhang C, Glaros T, Manicke NE. 2017.. Targeted protein detection using an all-in-one mass spectrometry cartridge. . J. Am. Chem. Soc. 139::1099699
    [Crossref] [Google Scholar]
  140. 140.
    Frey BS, Heiss DR, Badu-Tawiah AK. 2022.. Embossed paper platform for whole blood collection, room temperature storage, and direct analysis by pinhole paper spray mass spectrometry. . Anal. Chem. 94::441725
    [Crossref] [Google Scholar]
  141. 141.
    Grajewski M, Hermann M, Oleschuk RD, Verpoorte E, Salentijn GI. 2021.. Leveraging 3D printing to enhance mass spectrometry: a review. . Anal. Chim. Acta 1166::338332
    [Crossref] [Google Scholar]
  142. 142.
    Guillén-Alonso H, Rosas-Román I, Winkler R. 2021.. The emerging role of 3D-printing in ion mobility spectrometry and mass spectrometry. . Anal. Methods 13::85261
    [Crossref] [Google Scholar]
  143. 143.
    Stallwood A, Duller G, Butler D. 2018.. The use of AM technologies for HV and UHV components and vessels. Presented at MEDSI2018, June 26 , Paris:
    [Google Scholar]
  144. 144.
    Liu B, Liu S, Devaraj V, Yin Y, Zhang Y, et al. 2023.. Metal 3D nanoprinting with coupled fields. . Nat. Commun. 14::4920
    [Crossref] [Google Scholar]
  145. 145.
    Diederich B, Müllenbroich C, Vladimirov N, Bowman R, Stirling J, et al. 2022.. CAD we share? Publishing reproducible microscope hardware. . Nat. Methods 19::102630
    [Crossref] [Google Scholar]
  146. 146.
    Reinecke T, Clowers BH. 2018.. Implementation of a flexible, open-source platform for ion mobility spectrometry. . HardwareX 4::e00030
    [Crossref] [Google Scholar]
  147. 147.
    Garcia L, Saba C, Manocchio G, Anderson GA, Davis E, Clowers BH. 2017.. An open source ion gate pulser for ion mobility spectrometry. . Int. J. Ion Mobility Spectrom. 20::8793
    [Crossref] [Google Scholar]
  148. 148.
    Cabrera ER, Laganowsky A, Clowers BH. 2023.. FTflow: an open-source Python GUI for FT-IM-MS experiments. . J. Am. Soc. Mass Spectrom. 34::79093
    [Crossref] [Google Scholar]
  149. 149.
    Ogrinc N, Kruszewski A, Chaillou P, Saudemont P, Lagadec C, et al. 2021.. Robot-assisted SpiderMass for in vivo real-time topography mass spectrometry imaging. . Anal. Chem. 93::1438391
    [Crossref] [Google Scholar]
  150. 150.
    Nauta SP, Huysmans P, Tuijthof GJM, Eijkel GB, Poeze M, et al. 2022.. Automated 3D sampling and imaging of uneven sample surfaces with LA-REIMS. . J. Am. Soc. Mass Spectrom. 33::11122
    [Crossref] [Google Scholar]
  151. 151.
    Li A, Paine MRL, Zambrzycki S, Stryffeler RB, Wu J, et al. 2018.. Robotic surface analysis mass spectrometry (RoSA-MS) of three-dimensional objects. . Anal. Chem. 90::398186
    [Crossref] [Google Scholar]
  152. 152.
    Brennwald MS, Schmidt M, Oser J, Kipfer R. 2016.. A portable and autonomous mass spectrometric system for on-site environmental gas analysis. . Environ. Sci. Technol. 50::1345563
    [Crossref] [Google Scholar]
  153. 153.
    Camilli R, Hemond HF. 2004.. NEREUS/Kemonaut, a mobile autonomous underwater mass spectrometer. . Trends Anal. Chem. 23::30713
    [Crossref] [Google Scholar]
  154. 154.
    Dragoneas A, Molleker S, Appel O, Hünig A, Böttger T, et al. 2022.. The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere. . Atmos. Meas. Tech. 15::571942
    [Crossref] [Google Scholar]
  155. 155.
    Gapeev A, Berton A, Fabris D. 2009.. Current-controlled nanospray ionization mass spectrometry. . J. Am. Soc. Mass Spectrom. 20::133441
    [Crossref] [Google Scholar]
  156. 156.
    Han Z, Hishida S, Omata N, Matsuda T, Komori R, Chen LC. 2023.. Feedback control of electrospray with and without an external liquid pump using the spray current and the apex angle of a Taylor cone for ESI-MS. . Anal. Chem. 95::1074451
    [Crossref] [Google Scholar]
  157. 157.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  158. 158.
    O'Leary AE, Oberacher H, Hall SE, Mulligan CC. 2015.. Combining a portable, tandem mass spectrometer with automated library searching—an important step towards streamlined, on-site identification of forensic evidence. . Anal. Methods 7::333139
    [Crossref] [Google Scholar]
  159. 159.
    Jiang Y, Huang D, Zhang H, Jiang T, Xu W. 2023.. Smart miniature mass spectrometer enabled by machine learning. . Anal. Chem. 95::597684
    [Crossref] [Google Scholar]
  160. 160.
    Wang S, Zhu H, Zhou H, Cheng J, Yang H. 2020.. MSpectraAI: a powerful platform for deciphering proteome profiling of multi-tumor mass spectrometry data by using deep neural networks. . BMC Bioinform. 21::439
    [Crossref] [Google Scholar]
  161. 161.
    Jenis J, Ondriga J, Hrcek S, Brumercik F, Cuchor M, Sadovsky E. 2023.. Engineering applications of artificial intelligence in mechanical design and optimization. . Machines 11::577
    [Crossref] [Google Scholar]
  162. 162.
    Sacks R, Wang Z, Ouyang B, Utkucu D, Chen S. 2022.. Toward artificially intelligent cloud-based building information modelling for collaborative multidisciplinary design. . Adv. Eng. Inf. 53::101711
    [Crossref] [Google Scholar]
  163. 163.
    Mina R, Jabbour C, Sakr GE. 2022.. A review of machine learning techniques in analog integrated circuit design automation. . Electronics 11::435
    [Crossref] [Google Scholar]
  164. 164.
    Wang W, Xu F, Wu F, Wu H, Ding C-F, Ding L. 2022.. Genetic algorithm parallel optimization of a new high mass resolution planar electrostatic ion trap mass analyzer. . Analyst 147::576474
    [Crossref] [Google Scholar]
  165. 165.
    Karpov AV, Sysoev AA, Poteshin SS, Chernyshev DM, Sysoev AA. 2015.. Genetic algorithm for voltage optimization of gridless ion mirror. . Phys. Proc. 72::23640
    [Crossref] [Google Scholar]
  166. 166.
    Syms RRA, Wright S. 2016.. MEMS mass spectrometers: the next wave of miniaturization. . J. Micromech. Microeng. 26::023001
    [Crossref] [Google Scholar]
  167. 167.
    Blatt R, Wineland D. 2008.. Entangled states of trapped atomic ions. . Nature 453::100815
    [Crossref] [Google Scholar]
  168. 168.
    Brown KR, Chiaverini J, Sage JM, Häffner H. 2021.. Materials challenges for trapped-ion quantum computers. . Nat. Rev. Mater. 6::892905
    [Crossref] [Google Scholar]
  169. 169.
    Guise ND, Fallek SD, Hayden H, Pai CS, Volin C, et al. 2014.. In-vacuum active electronics for microfabricated ion traps. . Rev. Sci. Instrum. 85::063101
    [Crossref] [Google Scholar]
  170. 170.
    Cao W, Bu H, Vinet M, Cao M, Takagi S, et al. 2023.. The future transistors. . Nature 620::50115
    [Crossref] [Google Scholar]
  171. 171.
    Han J-W, Sub Oh J, Meyyappan M. 2012.. Vacuum nanoelectronics: Back to the future?—gate insulated nanoscale vacuum channel transistor. . Appl. Phys. Lett. 100::213505
    [Crossref] [Google Scholar]
  172. 172.
    Srisonphan S, Jung YS, Kim HK. 2012.. Metal–oxide–semiconductor field-effect transistor with a vacuum channel. . Nat. Nanotechnol. 7::5048
    [Crossref] [Google Scholar]
  173. 173.
    Grzebyk T. 2017.. MEMS vacuum pumps. . J. Microelectromech. Syst. 26::70517
    [Crossref] [Google Scholar]
  174. 174.
    Burr DS, Fatigante WL, Lartey JA, Jang W, Stelmack AR, et al. 2020.. Integrating SERS and PSI-MS with dual purpose plasmonic paper substrates for on-site illicit drug confirmation. . Anal. Chem. 92::667683
    [Crossref] [Google Scholar]
  175. 175.
    Fedick PW, Morato NM, Pu F, Cooks RG. 2020.. Raman spectroscopy coupled with ambient ionization mass spectrometry: a forensic laboratory investigation into rapid and simple dual instrumental analysis techniques. . Int. J. Mass Spectrom. 452::116326
    [Crossref] [Google Scholar]
  176. 176.
    Kimani MM, Kern S, Lanzarotta A, Thatcher M, Lorenz LM, et al. 2023.. Rapid screening of 2-benzylbenzimidazole nitazene analogs in suspect counterfeit tablets using Raman, SERS, DART-TD-MS, and FT-IR. . Drug Test. Anal. 15::53950
    [Crossref] [Google Scholar]
  177. 177.
    Bruno AM, Cleary SR, O'Leary AE, Gizzi MC, Mulligan CC. 2017.. Balancing the utility and legality of implementing portable mass spectrometers coupled with ambient ionization in routine law enforcement activities. . Anal. Methods 9::501522
    [Crossref] [Google Scholar]
  178. 178.
    Gizzi MC, Bruno AM, Mulligan CC, Curtis RC. 2019.. The fourth amendment and the potential use of field-portable mass spectrometry systems in law enforcement. . J. Crime Justice 42::31630
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061522-040824
Loading
/content/journals/10.1146/annurev-anchem-061522-040824
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error