1932

Abstract

In this review, we discuss the cutting-edge developments in mass spectrometry proteomics and metabolomics that have brought improvements for the identification of new disease-based biomarkers. A special focus is placed on psychiatric disorders, for example, schizophrenia, because they are considered to be not a single disease entity but rather a spectrum of disorders with many overlapping symptoms. This review includes descriptions of various types of commonly used mass spectrometry platforms for biomarker research, as well as complementary techniques to maximize data coverage, reduce sample heterogeneity, and work around potentially confounding factors. Finally, we summarize the different statistical methods that can be used for improving data quality to aid in reliability and interpretation of proteomics findings, as well as to enhance their translatability into clinical use and generalizability to new data sets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061522-041154
2024-07-17
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061522-041154.html?itemId=/content/journals/10.1146/annurev-anchem-061522-041154&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Baldwin MA, McLafferty FW. 1973.. Liquid chromatography-mass spectrometry interface-I: the direct introduction of liquid solutions into a chemical ionization mass spectrometer. . Org. Mass Spectrom. 7:(9):111112
    [Crossref] [Google Scholar]
  2. 2.
    Tal'roze V, Gorodetskii I, Zolotoy N, Karpov G, Skurat V, Maslennikova V. 1978.. Capillary system for continuous introducing of volatile liquids into analytical MS and its application. . Adv. Mass Spectrom. 7::85864
    [Google Scholar]
  3. 3.
    Tal'roze V, Karpov G, Gordetskii I, Skurat V. 1968.. Capillary system for the introduction of liquid mixtures into an analytical mass spectrometer. . Russ. J. Phys. Chem. 42:(12):165864
    [Google Scholar]
  4. 4.
    Arpino P, Baldwin MA, McLafferty FW. 1974.. Liquid chromatography-mass spectrometry. II—continuous monitoring. . Biomed. Mass Spectrom. 1:(1):8082
    [Crossref] [Google Scholar]
  5. 5.
    Brunner A-D, Thielert M, Vasilopoulou C, Ammar C, Coscia F, et al. 2022.. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. . Mol. Syst. Biol. 18:(3):e10798
    [Crossref] [Google Scholar]
  6. 6.
    Swiss Inst. Bioinf., Eur. Bioinf. Inst., Protein Inf. Resour. 2024.. Controlled vocabulary of posttranslational modifications (PTM). PTM List, UniProt, updated Jan. 24. https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/docs/ptmlist.txt
    [Google Scholar]
  7. 7.
    Lathrop JT, Jeffery DA, Shea YR, Scholl PF, Chan MM. 2016.. US Food and Drug Administration perspectives on clinical mass spectrometry. . Clin Chem. 62:(1):4147
    [Crossref] [Google Scholar]
  8. 8.
    Steiner J, Guest PC, Martins-de-Souza D. 2017.. Application of proteomic techniques for improved stratification and treatment of schizophrenia patients. . In Proteomic Methods in Neuropsychiatric Research, ed. PC Guest , pp. 319. Cham, Switz.:: Springer Int.
    [Google Scholar]
  9. 9.
    Yang Y, Zhang S, Howe K, Wilson DB, Moser F, et al. 2007.. A comparison of nLC-ESI-MS/MS and nLC-MALDI-MS/MS for GeLC-based protein identification and iTRAQ-based shotgun quantitative proteomics. . J. Biomol. Tech. 18:(4):22637
    [Google Scholar]
  10. 10.
    Challen B, Morris M, Cramer R. 2023.. Ultra-high-throughput and low-volume analysis of intact proteins with LAP-MALDI MS. . J. Am. Soc. Mass Spectrom. 34:(6):99194
    [Crossref] [Google Scholar]
  11. 11.
    Zhu X, Xu T, Peng C, Wu S. 2022.. Advances in MALDI mass spectrometry imaging single cell and tissues. . Front. Chem. 9::782432
    [Crossref] [Google Scholar]
  12. 12.
    Bonaparte E, Pesenti C, Fontana L, Falcone R, Paganini L, et al. 2018.. Molecular profiling of lung cancer specimens and liquid biopsies using MALDI-TOF mass spectrometry. . Diagnostic Pathol. 13:(1):4
    [Crossref] [Google Scholar]
  13. 13.
    Cramer R. 2020.. High-speed analysis of large sample sets: How can this key aspect of the omics be achieved?. Mol. Cell. Proteom. 19:(11):176066
    [Crossref] [Google Scholar]
  14. 14.
    Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD. 2003.. SELDI-TOF MS for diagnostic proteomics. . Anal. Chem. 75:(7):148A55A
    [Crossref] [Google Scholar]
  15. 15.
    Sun Q, Gao C, Ma W, He Y, Wu J, et al. 2020.. High-throughput screening of bisphenols using magnetic covalent organic frameworks as a SELDI-TOF-MS probe. . Microchim. Acta 187:(7):370
    [Crossref] [Google Scholar]
  16. 16.
    Liigand P, Heering A, Kaupmees K, Leito I, Girod M, et al. 2017.. The evolution of electrospray generated droplets is not affected by ionization mode. . J. Am. Soc. Mass Spectrom. 28:(10):212431
    [Crossref] [Google Scholar]
  17. 17.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 1989.. Electrospray ionization for mass spectrometry of large biomolecules. . Science 246:(4926):6471
    [Crossref] [Google Scholar]
  18. 18.
    Dass C. 2007.. Fundamentals of Contemporary Mass Spectrometry. Hoboken, NJ:: Wiley-Intersci. , 1st ed..
    [Google Scholar]
  19. 19.
    van Bentum M, Selbach M. 2021.. An introduction to advanced targeted acquisition methods. . Mol. Cell. Proteom. 20::100165
    [Crossref] [Google Scholar]
  20. 20.
    Hughes CJ, Gethings LA. 2019.. Characteristics of proteomics experiments performed on the SYNAPT XS QTof mass spectrometer. Appl. Brief, Waters Corp., Milford, MA:. https://www.waters.com/nextgen/en/library/application-notes/2019/characteristics-of-proteomics-experiments-performed-on-the-synapt-xs-q-tof-mass-spectrometer.html
    [Google Scholar]
  21. 21.
    Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, et al. 2012.. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. . Mol. Cell. Proteom. 11:(6):O111.016717
    [Crossref] [Google Scholar]
  22. 22.
    Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, et al. 2006.. UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation. . Rapid Commun. Mass Spectrom. 20:(13):198994
    [Crossref] [Google Scholar]
  23. 23.
    Silva JC, Gorenstein MV, Li G-Z, Vissers JPC, Geromanos SJ. 2006.. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. . Mol. Cell. Proteom. 5:(1):14456
    [Crossref] [Google Scholar]
  24. 24.
    Zhang H, Liu Q, Zimmerman LJ, Ham A-JL, Slebos RJC, et al. 2011.. Methods for peptide and protein quantitation by liquid chromatography-multiple reaction monitoring mass spectrometry. . Mol. Cell. Proteom. 10:(6):M110.006593
    [Crossref] [Google Scholar]
  25. 25.
    Smith BJ, Martins-de-Souza D, Fioramonte M. 2019.. A guide to mass spectrometry-based quantitative proteomics. . In Pre-Clinical Models: Techniques and Protocols, ed. PC Guest , pp. 339. New York:: Springer Sci. Bus.
    [Google Scholar]
  26. 26.
    Vukajlović JM, Panić-Janković T. 2021.. Mass spectrometry in clinical laboratories. . In Mass Spectrometry in Life Sciences and Clinical Laboratory, ed. G Mitulović , pp. 7397. London:: IntechOpen
    [Google Scholar]
  27. 27.
    Iwasaki M, Sugiyama N, Tanaka N, Ishihama Y. 2012.. Human proteome analysis by using reversed phase monolithic silica capillary columns with enhanced sensitivity. . J. Chromatography A 1228::29297
    [Crossref] [Google Scholar]
  28. 28.
    Wiśniewski JR, Zougman A, Nagaraj N, Mann M. 2009.. Universal sample preparation method for proteome analysis. . Nat. Methods 6:(5):35962
    [Crossref] [Google Scholar]
  29. 29.
    Orsburn BC. 2021.. Evaluation of the sensitivity of proteomics methods using the absolute copy number of proteins in a single cell as a metric. . Proteomes 9:(3):34
    [Crossref] [Google Scholar]
  30. 30.
    Bilbao A, Ross DH, Lee J-Y, Donor MT, Williams SM, et al. 2023.. MZA: a data conversion tool to facilitate software development and artificial intelligence research in multidimensional mass spectrometry. . J. Proteome Res. 22:(2):50813
    [Crossref] [Google Scholar]
  31. 31.
    Alexandrov T. 2020.. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. . Annu. Rev. Biomed. Data Sci. 3::6187
    [Crossref] [Google Scholar]
  32. 32.
    Frejno M, Zolg DP, Schmidt T, Gessulat S, Graber M, et al. 2021.. CHIMERYS: an AI-driven leap forward in peptide identification. Presented at 69th ASMS Conference on Mass Spectrometry and Allied Topics, Oct. 31–Nov. 4 , Philadelphia:. https://assets.thermofisher.com/TFS-Assets/CMD/posters/PO66098-lsms-CHIMERYS_ProteomeDiscoverer-ASMS-PO66098.pdf
    [Google Scholar]
  33. 33.
    Perakakis N, Yazdani A, Karniadakis GE, Mantzoros C. 2018.. Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. . Metabolism 87::A19
    [Crossref] [Google Scholar]
  34. 34.
    Ovchinnikova K, Kovalev V, Stuart L, Alexandrov T. 2020.. OffsampleAI: artificial intelligence approach to recognize off-sample mass spectrometry images. . BMC Bioinform. 21:(1):129
    [Crossref] [Google Scholar]
  35. 35.
    Gomes B, Ashley EA. 2023.. Artificial intelligence in molecular medicine. . New Engl. J. Med. 388:(26):245665
    [Crossref] [Google Scholar]
  36. 36.
    Mann M, Kumar C, Zeng W-F, Strauss MT. 2021.. Artificial intelligence for proteomics and biomarker discovery. . Cell Syst. 12:(8):75970
    [Crossref] [Google Scholar]
  37. 37.
    Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, et al. 2019.. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. . Nat. Methods 16:(6):50918
    [Crossref] [Google Scholar]
  38. 38.
    Armstrong G, Rahman G, Martino C, McDonald D, Gonzalez A, et al. 2022.. Applications and comparison of dimensionality reduction methods for microbiome data. . Front. Bioinform. 2::821861
    [Crossref] [Google Scholar]
  39. 39.
    Yang Y, Sun H, Zhang Y, Zhang T, Gong J, et al. 2021.. Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data. . Cell Rep. 36:(4):109442
    [Crossref] [Google Scholar]
  40. 40.
    Muzio G, O'Bray L, Borgwardt K. 2021.. Biological network analysis with deep learning. . Brief. Bioinform. 22:(2):151530
    [Crossref] [Google Scholar]
  41. 41.
    Callahan TJ, Tripodi IJ, Pielke-Lombardo H, Hunter LE. 2020.. Knowledge-based biomedical data science. . Annu. Rev. Biomed. Data Sci. 3::2341
    [Crossref] [Google Scholar]
  42. 42.
    Bangert P, Balasubramaniam NK, Parker CE, Borchers CH. 2024.. Pattern recognition for mass-spectrometry-based proteomics. . In Bioinformatics and Medical Informatics—Annual Volume 2024, ed. S Wilczynski . Rijeka:: IntechOpen. In press
    [Google Scholar]
  43. 43.
    Neely BA, Dorfer V, Martens L, Bludau I, Bouwmeester R, et al. 2023.. Toward an integrated machine learning model of a proteomics experiment. . J. Proteome Res. 22:(3):68196
    [Crossref] [Google Scholar]
  44. 44.
    Villalobos-Alva J, Ochoa-Toledo L, Villalobos-Alva MJ, Aliseda A, Pérez-Escamirosa F, et al. 2022.. Protein science meets artificial intelligence: a systematic review and a biochemical meta-analysis of an inter-field. . Front. Bioengin. Biotechnol. 10::788300
    [Crossref] [Google Scholar]
  45. 45.
    Dai Y, Millikin RJ, Rolfs Z, Shortreed MR, Smith LM. 2022.. A hybrid spectral library and protein sequence database search strategy for bottom-up and top-down proteomic data analysis. . J. Proteome Res. 21:(11):260918
    [Crossref] [Google Scholar]
  46. 46.
    Shortreed MR, Wenger CD, Frey BL, Sheynkman GM, Scalf M, et al. 2015.. Global identification of protein post-translational modifications in a single-pass database search. . J. Proteome Res. 14:(11):471420
    [Crossref] [Google Scholar]
  47. 47.
    Han X, He L, Xin L, Shan B, Ma B. 2011.. PeaksPTM: mass spectrometry-based identification of peptides with unspecified modifications. . J. Proteome Res. 10:(7):293036
    [Crossref] [Google Scholar]
  48. 48.
    Borges RM, Colby SM, Das S, Edison AS, Fiehn O, et al. 2021.. Quantum chemistry calculations for metabolomics. . Chem. Rev. 121:(10):563370
    [Crossref] [Google Scholar]
  49. 49.
    Opialla T, Kempa S, Pietzke M. 2020.. Towards a more reliable identification of isomeric metabolites using pattern guided retention validation. . Metabolites 10:(11):457
    [Crossref] [Google Scholar]
  50. 50.
    Ben Faleh A, Warnke S, Van Wieringen T, Abikhodr AH, Rizzo TR. 2023.. New approach for the identification of isobaric and isomeric metabolites. . Anal. Chem. 95:(18):711826
    [Crossref] [Google Scholar]
  51. 51.
    Liu Y, Song Q, Liu W, Li P, Li J, et al. 2018.. Authentic compound-free strategy for simultaneous determination of primary coumarins in Peucedani Radix using offline high performance liquid chromatography-nuclear magnetic resonance spectroscopy-tandem mass spectrometry. . Acta Pharm. Sin. B 8:(4):64554
    [Crossref] [Google Scholar]
  52. 52.
    Song Y, Song Q, Liu W, Li J, Tu P. 2023.. High-confidence structural identification of metabolites relying on tandem mass spectrometry through isomeric identification: a tutorial. . Trends Anal. Chem. 160::116982
    [Crossref] [Google Scholar]
  53. 53.
    Wu Q, Wang J-Y, Han D-Q, Yao Z-P. 2020.. Recent advances in differentiation of isomers by ion mobility mass spectrometry. . Trends Anal. Chem. 124::115801
    [Crossref] [Google Scholar]
  54. 54.
    She Y-M, Tam RY, Li X, Rosu-Myles M, Sauvé S. 2020.. Resolving isomeric structures of native glycans by nanoflow porous graphitized carbon chromatography-mass spectrometry. . Anal. Chem. 92:(20):1403846
    [Crossref] [Google Scholar]
  55. 55.
    Guan P, Liu W, Cao Y, Tang H, Huo H, et al. 2021.. Full collision energy ramp-MS2 spectrum in structural analysis relying on MS/MS. . Anal. Chem. 93:(46):1538189
    [Crossref] [Google Scholar]
  56. 56.
    Rutkowska M, Płotka-Wasylka J, Morrison C, Wieczorek PP, Namieśnik J, Marć M. 2018.. Application of molecularly imprinted polymers in analytical chiral separations and analysis. . Trends Anal. Chem. 102::91102
    [Crossref] [Google Scholar]
  57. 57.
    Urlacher SS, Kim EY, Luan T, Young LJ, Adjetey B. 2022.. Minimally invasive biomarkers in human and non-human primate evolutionary biology: tools for understanding variation and adaptation. . Am. J. Hum. Biol. 34:(11):e23811
    [Crossref] [Google Scholar]
  58. 58.
    Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC. 2005.. Differences among techniques for high-abundant protein depletion. . Proteomics 5:(13):330413
    [Crossref] [Google Scholar]
  59. 59.
    Silva-Costa LC, Garcia-Rosa S, Smith BJ, Baldasso PA, Steiner J, Martins-de-Souza D. 2019.. Blood plasma high abundant protein depletion unintentionally carries over 100 proteins. . Sep. Sci. Plus. 2:(12):44956
    [Crossref] [Google Scholar]
  60. 60.
    Koutroukides TA, Guest PC, Leweke FM, Bailey DMD, Rahmoune H, et al. 2011.. Characterization of the human serum depletome by label-free shotgun proteomics. . J. Sep. Sci. 34:(13):162126
    [Crossref] [Google Scholar]
  61. 61.
    Reubsaet L, Halvorsen TG. 2016.. Determination of very low-abundance diagnostic proteins in serum using immuno-capture LC-MS-MS. . LC GC Eur. 29:(7):35261
    [Google Scholar]
  62. 62.
    Lee HY, Kim EG, Jung HR, Jung JW, Kim HB, et al. 2019.. Refinements of LC-MS/MS spectral counting statistics improve quantification of low abundance proteins. . Sci. Rep. 9::13653
    [Crossref] [Google Scholar]
  63. 63.
    Lee PY, Osman J, Low TY, Jamal R. 2019.. Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. . Bioanalysis 11:(19):17991812
    [Crossref] [Google Scholar]
  64. 64.
    Noushad S, Ahmed S, Ansari B, Mustafa U-H, Saleem Y, Hazrat H. 2021.. Physiological biomarkers of chronic stress: a systematic review. . Int. J. Health Sci. 15:(5):4659
    [Google Scholar]
  65. 65.
    Huber H, Ashton NJ, Schieren A, Montoliu-Gaya L, Molfetta GD, et al. 2023.. Levels of Alzheimer's disease blood biomarkers are altered after food intake—a pilot intervention study in healthy adults. . Alzheimers Dement. 19:(12):553140
    [Crossref] [Google Scholar]
  66. 66.
    Marinac CR, Sears DD, Natarajan L, Gallo LC, Breen CI, Patterson RE. 2015.. Frequency and circadian timing of eating may influence biomarkers of inflammation and insulin resistance associated with breast cancer risk. . PLOS ONE 10:(8):e0136240
    [Crossref] [Google Scholar]
  67. 67.
    Smith BJ, Silva-Costa LC, Martins-de-Souza D. 2021.. Human disease biomarker panels through systems biology. . Biophys. Rev. 13:(6):117990
    [Crossref] [Google Scholar]
  68. 68.
    García-Gutiérrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A, Manzanares J. 2020.. Biomarkers in psychiatry: concept, definition, types and relevance to the clinical reality. . Front. Psychiatry 11::432
    [Crossref] [Google Scholar]
  69. 69.
    Yoshida T, Kates M, Fujita K, Bivalacqua TJ, McConkey DJ. 2019.. Predictive biomarkers for drug response in bladder cancer. . Int. J. Urol. 26:(11):104453
    [Crossref] [Google Scholar]
  70. 70.
    Januškevičienė I, Petrikaitė V. 2019.. Heterogeneity of breast cancer: the importance of interaction between different tumor cell populations. . Life Sci. 239::117009
    [Crossref] [Google Scholar]
  71. 71.
    Fernandes BS, Dai Y, Jia P, Zhao Z. 2022.. Charting the proteome landscape in major psychiatric disorders: From biomarkers to biological pathways towards drug discovery. . Eur. Neuropsychopharmacol. 61::4359
    [Crossref] [Google Scholar]
  72. 72.
    Rodrigues JE, Martinho A, Santos V, Santa C, Madeira N, et al. 2022.. Systematic review and meta-analysis on MS-based proteomics applied to human peripheral fluids to assess potential biomarkers of bipolar disorder. . Int. J. Mol. Sci. 23:(10):5460
    [Crossref] [Google Scholar]
  73. 73.
    Khoury R, Ghossoub E. 2019.. Diagnostic biomarkers of Alzheimer's disease: a state-of-the-art review. . Biomark. Neuropsychiatry 1::100005
    [Crossref] [Google Scholar]
  74. 74.
    Wisch JK, Butt OH, Gordon BA, Schindler SE, Fagan AM, et al. 2023.. Proteomic clusters underlie heterogeneity in preclinical Alzheimer's disease progression. . Brain 146:(7):294456
    [Crossref] [Google Scholar]
  75. 75.
    Mayoral LP-C, Andrade GM, Mayoral EP-C, Huerta TH, Canseco SP, et al. 2020.. Obesity subtypes, related biomarkers & heterogeneity. Indian. J. Med. Res. 151:(1):1121
    [Google Scholar]
  76. 76.
    Misra S, Montaner J, Ramiro L, Arora R, Talwar P, et al. 2020.. Blood biomarkers for the diagnosis and differentiation of stroke: a systematic review and meta-analysis. . Int. J. Stroke 15:(7):70421
    [Crossref] [Google Scholar]
  77. 77.
    Ledford H. 2019.. Cancer geneticists tackle troubling ethnic bias in studies. . Nature 568:(7751):15455
    [Crossref] [Google Scholar]
  78. 78.
    Morales J, Welter D, Bowler EH, Cerezo M, Harris LW, et al. 2018.. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. . Genome Biol. 19:(1):21
    [Crossref] [Google Scholar]
  79. 79.
    Chaudhry A, Rizig M. 2021.. Comparing fluid biomarkers of Alzheimer's disease between African American or Black African and white groups: a systematic review and meta-analysis. . J. Neurol. Sci. 421::117270
    [Crossref] [Google Scholar]
  80. 80.
    Curtis D. 2018.. Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia. . Psychiatr. Genet. 28:(5):8589
    [Crossref] [Google Scholar]
  81. 81.
    Kraus VB. 2018.. Biomarkers as drug development tools: discovery, validation, qualification and use. . Nat. Rev. Rheumatol. 14:(6):35462
    [Crossref] [Google Scholar]
  82. 82.
    Rischke S, Hahnefeld L, Burla B, Behrens F, Gurke R, Garrett TJ. 2023.. Small molecule biomarker discovery: proposed workflow for LC-MS-based clinical research projects. . J. Mass Spectrom. Adv. Clin. Lab. 28::4755
    [Crossref] [Google Scholar]
  83. 83.
    Zhou X, Zhang W, Ouyang Z. 2022.. Recent advances in on-site mass spectrometry analysis for clinical applications. . Trends Anal. Chem. 149::116548
    [Crossref] [Google Scholar]
  84. 84.
    Martins-de-Souza D, Dias-Neto E, Schmitt A, Falkai P, Gormanns P, et al. 2010.. Proteome analysis of schizophrenia brain tissue. . World J. Biol. Psychiatry 11:(2):11020
    [Crossref] [Google Scholar]
  85. 85.
    Clark D, Dedova I, Cordwell S, Matsumoto I. 2006.. A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. . Mol. Psychiatry 11:(5):45970, 423
    [Crossref] [Google Scholar]
  86. 86.
    Gottschalk MG, Wesseling H, Guest PC, Bahn S. 2014.. Proteomic enrichment analysis of psychotic and affective disorders reveals common signatures in presynaptic glutamatergic signaling and energy metabolism. . Int. J. Neuropsychopharmacol. 18:(2):111
    [Google Scholar]
  87. 87.
    Martins-de-Souza D. 2011.. Proteomics as a tool for understanding schizophrenia. . Clin. Psychopharmacol. Neurosci. 9:(3):95101
    [Crossref] [Google Scholar]
  88. 88.
    Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Martins-de-Souza D. 2016.. Differential proteome and phosphoproteome may impact cell signaling in the corpus callosum of schizophrenia patients. . Schizophr. Res. 177:(1–3):7077
    [Crossref] [Google Scholar]
  89. 89.
    Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, et al. 2010.. Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. . J. Psychiatr. Res. 44:(16):117689
    [Crossref] [Google Scholar]
  90. 90.
    Zhou Y, Zhang J. 2023.. Neuronal activity and remyelination: new insights into the molecular mechanisms and therapeutic advancements. . Front. Cell Dev. Biol. 11::1221890
    [Crossref] [Google Scholar]
  91. 91.
    Guest PC. 2016.. Biomarkers and Mental Illness: It's Not All in the Mind. New York:: Copernicus. , 1st ed..
    [Google Scholar]
  92. 92.
    Levin Y, Wang L, Schwarz E, Koethe D, Leweke FM, Bahn S. 2010.. Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. . Mol. Psychiatry 15:(11):10881100
    [Crossref] [Google Scholar]
  93. 93.
    Yuan N, Chen Y, Xia Y, Dai J, Liu C. 2019.. Inflammation-related biomarkers in major psychiatric disorders: a cross-disorder assessment of reproducibility and specificity in 43 meta-analyses. . Transl. Psychiatry 9::233
    [Crossref] [Google Scholar]
  94. 94.
    Antunes ASLM, de Almeida V, Crunfli F, Carregari VC, Martins-de-Souza D. 2021. Proteomics for target identification in psychiatric and neurodegenerative disorders. . In Reviews on New Drug Targets in Age-Related Disorders: Part II, ed. PC Guest , pp. 25164. Cham, Switz.:: Springer Int.
    [Google Scholar]
  95. 95.
    Chan MK, Krebs M-O, Cox D, Guest PC, Yolken RH, et al. 2015.. Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset. . Transl. Psychiatry 5:(7):e601
    [Crossref] [Google Scholar]
  96. 96.
    Perkins DO, Jeffries CD, Addington J, Bearden CE, Cadenhead KS, et al. 2015.. Towards a psychosis risk blood diagnostic for persons experiencing high-risk symptoms: preliminary results from the NAPLS project. . Schizophr. Bull. 41:(2):41928
    [Crossref] [Google Scholar]
  97. 97.
    Mongan D, Föcking M, Healy C, Susai SR, Heurich M, et al. 2021.. Development of proteomic prediction models for transition to psychotic disorder in the clinical high-risk state and psychotic experiences in adolescence. . JAMA Psychiatry 78:(1):7790
    [Crossref] [Google Scholar]
  98. 98.
    Rodrigues JE, Martinho A, Santa C, Madeira N, Coroa M, et al. 2022.. Systematic review and meta-analysis of mass spectrometry proteomics applied to human peripheral fluids to assess potential biomarkers of schizophrenia. . Int. J. Mol. Sci. 23:(9):4917
    [Crossref] [Google Scholar]
  99. 99.
    Bernhardt AM, Tiedt S, Teupser D, Dichgans M, Meyer B, et al. 2023.. A unified classification approach rating clinical utility of protein biomarkers across neurologic diseases. . EBioMedicine 89::104456
    [Crossref] [Google Scholar]
  100. 100.
    Tian X, Liu X, Wang Y, Liu Y, Ma J, et al. 2022.. Urinary metabolomic study in a healthy children population and metabolic biomarker discovery of attention-deficit/hyperactivity disorder (ADHD). . Front. Psychiatry 13::819498
    [Crossref] [Google Scholar]
  101. 101.
    Manes NP, Nita-Lazar A. 2018.. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. . J. Proteom. 189::7590
    [Crossref] [Google Scholar]
  102. 102.
    Meyer JG, Schilling B. 2017.. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. . Expert Rev. Proteom. 14:(5):41929
    [Crossref] [Google Scholar]
  103. 103.
    Martins-de-Souza D, Guest PC, Vanattou-Saifoudine N, Harris LW, Bahn S. 2011.. Proteomic technologies for biomarker studies in psychiatry: advances and needs. . Int. Rev. Neurobiol. 101::6594
    [Crossref] [Google Scholar]
  104. 104.
    Stephen L. 2017.. Multiplex immunoassay profiling. . Methods Mol. Biol. 1546::16976
    [Crossref] [Google Scholar]
  105. 105.
    Pawell RS, Inglis DW, Barber TJ, Taylor RA. 2013.. Manufacturing and wetting low-cost microfluidic cell separation devices. . Biomicrofluidics 7:(5):56501
    [Crossref] [Google Scholar]
  106. 106.
    Yager P, Edwards T, Fu E, Helton K, Nelson K, et al. 2006.. Microfluidic diagnostic technologies for global public health. . Nature 442:(7101):41218
    [Crossref] [Google Scholar]
  107. 107.
    Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, et al. 2012.. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. . Lab Chip 12:(3):46473
    [Crossref] [Google Scholar]
  108. 108.
    Peter H, Wienke J, Guest PC, Bistolas N, Bier FF. 2017.. Lab-on-a-chip proteomic assays for psychiatric disorders. . Adv. Exp. Med. Biol. 974::33949
    [Crossref] [Google Scholar]
  109. 109.
    Reale M, Patruno A, De Lutiis MA, Pesce M, Felaco M, et al. 2011.. Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls. . BMC Neurosci. 12::13
    [Crossref] [Google Scholar]
  110. 110.
    Girgis RR, Kumar SS, Brown AS. 2014.. The cytokine model of schizophrenia: emerging therapeutic strategies. . Biol. Psychiatry 75:(4):29299
    [Crossref] [Google Scholar]
  111. 111.
    Gibney SM, Drexhage HA. 2013.. Evidence for a dysregulated immune system in the etiology of psychiatric disorders. . J. Neuroimmune Pharmacol. 8:(4):900920
    [Crossref] [Google Scholar]
  112. 112.
    Harris LW, Pietsch S, Cheng TMK, Schwarz E, Guest PC, Bahn S. 2012.. Comparison of peripheral and central schizophrenia biomarker profiles. . PLOS ONE 7:(10):e46368
    [Crossref] [Google Scholar]
  113. 113.
    Subramanian I, Verma S, Kumar S, Jere A, Anamika K. 2020.. Multi-omics data integration, interpretation, and its application. . Bioinform. Biol. Insights 14::1177932219899051
    [Crossref] [Google Scholar]
  114. 114.
    Guest PC, Guest FL, Martins-de-Souza D. 2016.. Making sense of blood-based proteomics and metabolomics in psychiatric research. . Int. J. Neuropsychopharmacol. 19:(6):pyv138
    [Google Scholar]
  115. 115.
    Liu MY, Xydakis AM, Hoogeveen RC, Jones PH, Smith EO, et al. 2005.. Multiplexed analysis of biomarkers related to obesity and the metabolic syndrome in human plasma, using the Luminex-100 system. . Clin Chem. 51:(7):11029
    [Crossref] [Google Scholar]
  116. 116.
    Codorean E, Nichita C, Albulescu L, Răducan E, Popescu ID, et al. 2010.. Correlation of XMAP and ELISA cytokine profiles; development and validation for immunotoxicological studies in vitro. . Roum. Arch. Microbiol. Immunol. 69:(1):1319
    [Google Scholar]
  117. 117.
    Maxeiner H-G, Marion Schneider E, Kurfiss S-T, Brettschneider J, Tumani H, Bechter K. 2014.. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. . Cytokine 69:(1):6267
    [Crossref] [Google Scholar]
  118. 118.
    Hestad KA, Engedal K, Whist JE, Aukrust P, Farup PG, et al. 2016.. Patients with depression display cytokine levels in serum and cerebrospinal fluid similar to patients with diffuse neurological symptoms without a defined diagnosis. . Neuropsychiatr. Dis. Treat. 12::81722
    [Crossref] [Google Scholar]
  119. 119.
    Kuzior H, Fiebich BL, Yousif NM, Saliba SW, Ziegler C, et al. 2020.. Increased IL-8 concentrations in the cerebrospinal fluid of patients with unipolar depression. . Compr. Psychiatry 102::152196
    [Crossref] [Google Scholar]
  120. 120.
    Runge K, Fiebich BL, Kuzior H, Saliba SW, Yousif NM, et al. 2021.. An observational study investigating cytokine levels in the cerebrospinal fluid of patients with schizophrenia spectrum disorders. . Schizophr. Res. 231::20513
    [Crossref] [Google Scholar]
  121. 121.
    Hidese S, Hattori K, Sasayama D, Tsumagari T, Miyakawa T, et al. 2020.. Cerebrospinal fluid inflammatory cytokine levels in patients with major psychiatric disorders: a multiplex immunoassay study. . Front. Pharmacol. 11::594394
    [Crossref] [Google Scholar]
  122. 122.
    Singh D, Guest PC, Dobrowolny H, Fischbach T, Meyer-Lotz G, et al. 2023.. Cytokine alterations in CSF and serum samples of patients with a first episode of schizophrenia: results and methodological considerations. . Eur. Arch. Psychiatry Clin. Neurosci. 273:(6):138793
    [Crossref] [Google Scholar]
  123. 123.
    Potůčková L, Franko F, Bambousková M, Dráber P. 2011.. Rapid and sensitive detection of cytokines using functionalized gold nanoparticle-based immuno-PCR, comparison with immuno-PCR and ELISA. . J. Immunol. Methods 371:(1–2):3847
    [Crossref] [Google Scholar]
  124. 124.
    Lee S, Cho N-P, Kim JD, Jung H, Kang SH. 2009.. An ultra-sensitive nanoarray chip based on single-molecule sandwich immunoassay and TIRFM for protein detection in biologic fluids. . Analyst 134:(5):93338
    [Crossref] [Google Scholar]
  125. 125.
    Raschka S, Mirjalili V. 2019.. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2. Birmingham, UK/Mumbai:: Packt Publishing. , 3rd ed..
    [Google Scholar]
  126. 126.
    Yao J-C, Wang T, Hou G-H, Ou D, Li W, et al. 2021.. AI detection of mild COVID-19 pneumonia from chest CT scans. . Eur. Radiol. 31:(9):71927201
    [Crossref] [Google Scholar]
  127. 127.
    Guest PC, Popovic D, Steiner J. 2022.. Challenges of multiplex assays for COVID-19 research: a machine learning perspective. . Methods Mol. Biol. 2511::3750
    [Crossref] [Google Scholar]
  128. 128.
    Henning D, Lüno M, Jiang C, Meyer-Lotz G, Hoeschen C, Frodl T. 2023.. Gut-brain axis volatile organic compounds derived from breath distinguish between schizophrenia and major depressive disorder. . J. Psychiatry Neurosci. 48:(2):E11725
    [Crossref] [Google Scholar]
  129. 129.
    Wang L-J, Huang Y-C, Lin P-Y, Lee Y, Hung C-F, et al. 2022.. BST-1 as a serum protein biomarker involved in neutrophil infiltration in schizophrenia. . World J. Biol. Psychiatry 23:(7):53747
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061522-041154
Loading
/content/journals/10.1146/annurev-anchem-061522-041154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error