1932

Abstract

Spatial comprehensive three-dimensional chromatography (3D-LC) offers an innovative approach to achieve unprecedented resolving power in terms of peak capacity and sample throughput. This advanced technique separates components within a 3D separation space, where orthogonal retention mechanisms are incorporated. The parallel development of the second- and third-dimension stages effectively overcomes the inherent limitation of conventional multidimensional approaches, where sampled fractions are analyzed sequentially. This review focuses on the design aspects of the microchip for spatial 3D-LC and the selection of orthogonal separation modes to enable the analysis of intact proteins. The design considerations for the flow distributor and channel layout are discussed, along with various approaches to confine the flow during the subsequent development stages. Additionally, the integration of stationary phases into the microchip is addressed, and interfacing to mass spectrometry detection is discussed. According to Pareto optimality, the integration of isoelectric focusing, size-exclusion chromatography, and reversed-phase chromatography in a spatial 3D-LC approach is predicted to achieve an exceptional peak capacity of over 30,000 within a 1-h analysis, setting a new benchmark in chromatographic performance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061522-044510
2024-07-17
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061522-044510.html?itemId=/content/journals/10.1146/annurev-anchem-061522-044510&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Goodwin S, McPherson JD, McCombie WR. 2016.. Coming of age: ten years of next-generation sequencing technologies. . Nat. Rev. Genet. 17:(6):33351
    [Crossref] [Google Scholar]
  2. 2.
    Legrain P, Aebersold R, Archakov A, Bairoch A, Bala K, et al. 2011.. The Human Proteome Project: current state and future direction. . Mol. Cell. Proteom. 10:(7):M111.009993
    [Crossref] [Google Scholar]
  3. 3.
    Harper JW, Bennet E. 2016.. Proteome complexity and the forces that drive proteome imbalance. . Nature 537::32838
    [Crossref] [Google Scholar]
  4. 4.
    Meier F, Brunner AD, Frank M, Ha A, Blundau I, et al. 2020.. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. . Nat. Methods 17::122936
    [Crossref] [Google Scholar]
  5. 5.
    Stejskal K, Op de Beeck J, Matziger M, Dürnberger G, Boychenko A, et al. 2022.. Deep proteome profiling with reduced carryover using superficially porous microfabricated nanoLC columns. . Anal. Chem. 94:(46):1593038
    [Crossref] [Google Scholar]
  6. 6.
    Neue UD. 2005.. Theory of peak capacity in gradient elution. . J. Chromatogr. A 1079:(1–2):15361
    [Crossref] [Google Scholar]
  7. 7.
    Shen YF, Smith RD, Unger KK, Kumar D, Lubda D. 2005.. Ultrahigh-throughput proteomics using fast RPLC separations with ESI-MS/MS. . Anal. Chem. 77:(20):6692701
    [Crossref] [Google Scholar]
  8. 8.
    Eeltink S, Wouters B, Desmet G, Ursem M, Blinco D, et al. 2011.. High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns. . J. Chromatogr. A 1218::550411
    [Crossref] [Google Scholar]
  9. 9.
    Köcher T, Swart R, Mechtler K. 2011.. Ultra-high-pressure RPLC hyphenated to an LTQ-Orbitrap Velos reveals a linear relation between peak capacity and number of identified peptides. . Anal. Chem. 83:(7):2699704
    [Crossref] [Google Scholar]
  10. 10.
    Davis JM, Giddings JC. 1983.. Statistical theory of component overlap in multicomponent chromatograms. . Anal. Chem. 55:(3):41824
    [Crossref] [Google Scholar]
  11. 11.
    Sandra K, Moshir M, D'hondt F, Tuytten R, Verleysen K, et al. 2009.. Highly efficient peptide separations in proteomics: Part 2: Bi- and multidimensional liquid-based separation techniques. . J. Chromatogr. B 877:(11–12):101936
    [Crossref] [Google Scholar]
  12. 12.
    Stoll D, Lhotka HR, Harmes DC, Madigan B, Hsiao JJ, Staples GO. 2019.. High resolution two-dimensional liquid chromatography coupled with mass spectrometry for robust and sensitive characterization of therapeutic antibodies at the peptide level. . J. Chromatogr. B 1134–1135::121832
    [Crossref] [Google Scholar]
  13. 13.
    Oh-Ishi M, Maeda T. 2002.. Separation techniques for high-molecular-mass proteins. . J. Chromatogr. B 771:(1–2):4966
    [Crossref] [Google Scholar]
  14. 14.
    Beaver LA, Guiochon GA. 1984.. System and apparatus for multi-dimensional real-time chromatography. US Patent 4,469,601A
    [Google Scholar]
  15. 15.
    Wouters B, Davydova E, Wouters S, Vivo-Truyols G, Schoenmakers PJ, Eeltink S. 2015.. Towards ultra-high peak capacities and peak-production rates using spatial three-dimensional liquid chromatography. . Lab Chip 15::441522
    [Crossref] [Google Scholar]
  16. 16.
    Themelis T, Amini A, De Vos J, Eeltink S. 2021.. Towards spatial comprehensive three-dimensional liquid chromatography: a tutorial review. . Anal. Chim. Acta 1148::238157
    [Crossref] [Google Scholar]
  17. 17.
    Eeltink S. 2013.. The quest for ultra-high peak capacities: spatial 3D-LC. Paper presented at HPLC2013—39th International Symposium on High Performance Liquid Phase Separations and Related Techniques 2013. , June 16–20, Amsterdam
  18. 18.
    Trevisiol S, Ayoub D, Lesur A, Ancheva L, Gallien S, Domon B. 2016.. The use of proteases complementary to trypsin to probe isoforms and modifications. . Proteomics 16:(5):71528
    [Crossref] [Google Scholar]
  19. 19.
    Cupp-Sutton KA, Wang Z, Yu D, Wu S. 2016.. RPLC-RPLC-MS/MS for proteoform identification. . Methods Mol. Biol. 2500::3142
    [Crossref] [Google Scholar]
  20. 20.
    Stepanova S, Kasicka V. 2016.. Recent applications of capillary electromigration methods to separation and analysis of proteins. . Anal. Chim. Acta. 933::2342
    [Crossref] [Google Scholar]
  21. 21.
    Tyteca E, De Vos J, Vankova N, Cesla P, Desmet G, Eeltink S. 2016.. Applicability of linear and non-linear retention-time models for reversed-phase liquid chromatography separations of small molecules, peptides, and intact proteins. . J. Sep. Sci. 39:(7):124957
    [Crossref] [Google Scholar]
  22. 22.
    Themelis T, De Vos J, Eeltink S. 2022.. Design guidelines and kinetic performance limits for spatial comprehensive three-dimensional chromatography for the analysis of intact proteins. . Anal. Chem. 94:(40):1373744
    [Crossref] [Google Scholar]
  23. 23.
    Themelis T. 2022.. Design of high-resolution chromatographic approaches: from optimization of unidimensional liquid chromatography to engineering of microfluidic devices for spatial multi-dimensional separations. PhD Thesis, Dep. Chem. Eng. , Vrije Univ. Brussels, Belg.: https://cris.vub.be/ws/portalfiles/portal/95779289/Themelis_Thomas_thesis.pdf
    [Google Scholar]
  24. 24.
    Vonk RJ, Gargano AFG, Davydova E, Dekker HL, Eeltink S, et al. 2015.. Comprehensive two-dimensional liquid chromatography with stationary-phase-assisted modulation coupled to high-resolution mass spectrometry applied to proteome analysis of Saccharomyces cerevisiae. . Anal. Chem. 87:(10):538794
    [Crossref] [Google Scholar]
  25. 25.
    He B, Regnier F. 1998.. Microfabricated liquid chromatography columns based on collocated monolith support structures. . J. Pharm. Biomed. Anal. 17:(6–7):92532
    [Crossref] [Google Scholar]
  26. 26.
    Vangelooven J, Desmet G. 2010.. Computer aided design optimization of microfluidic flow distributors. . J. Chromatogr. A 1217:(43):672432
    [Crossref] [Google Scholar]
  27. 27.
    Wouters B, De Vos J, Desmet G, Terryn H, Schoenmakers PJ, Eeltink S. 2015.. Design of a microfluidic device for comprehensive spatial two-dimensional liquid chromatography. . J. Sep. Sci. 38::112329
    [Crossref] [Google Scholar]
  28. 28.
    Davydova E, Deridder S, Eeltink S, Desmet G, Schoenmakers PJ. 2015.. Optimization and evaluation of radially interconnected versus bifurcating flow distributors using computational fluid dynamics modelling. . J. Chromatogr. A 1380::8895
    [Crossref] [Google Scholar]
  29. 29.
    Davydova E, Wouters S, Deridder S, Desmet G, Eeltink S, Schoenmakers PJ. 2016.. Design and evaluation of microfluidic devices for two-dimensional spatial separations. . J. Chromatogr. A 1434::12737
    [Crossref] [Google Scholar]
  30. 30.
    Themelis T, De Vos J, Dores-Sousa JL, van Assche T, Eeltink S. 2020.. Engineering solutions for flow control in microfluidic devices for spatial multi-dimensional liquid chromatography. . Sens. Actuators B Chem. 320::128388
    [Crossref] [Google Scholar]
  31. 31.
    Adamopoulou T, Nawada S, Deridder S, Wouters B, Desmet G, Schoenmakers PJ. 2019.. Experimental and numerical study of band-broadening effects associated with analyte transfer in microfluidic devices for spatial two-dimensional liquid chromatography created by additive manufacturing. . J. Chromatogr. A 1598::7784
    [Crossref] [Google Scholar]
  32. 32.
    Abdulhussain N, Fix R, Nawada S, Adamopoulou T, Schoenmakers PJ. 2022.. Flow dynamics and analyte transfer in a microfluidic device for spatial two-dimensional separations. . Chromatographia 85::104149
    [Crossref] [Google Scholar]
  33. 33.
    Adamopoulou T, Deridder S, Bos TS, Nawada S, Desmet G, Schoenmakers PJ. 2020.. Optimizing design and employing permeability differences to achieve flow confinement in devices for spatial multidimensional liquid chromatography. . J. Chromatogr. A 1612::460665
    [Crossref] [Google Scholar]
  34. 34.
    Nawada SH, Aalbers T, Schoenmakers PJ. 2019.. Freeze-thaw valves as a flow control mechanism in spatially complex 3D-printed fluidic devices. . Chem. Eng. Sci. 207::104048
    [Crossref] [Google Scholar]
  35. 35.
    Han Y, Levkin P, Abarientos I, Liu H, Svec F, Fréchet JMJ. 2010.. Monolithic superhydrophobic polymer layer with photopatterned virtual channel for the separation of peptides using two-dimensional thin layer chromatography-desorption electrospray ionization mass spectrometry. . Anal. Chem. 82:(6):252028
    [Crossref] [Google Scholar]
  36. 36.
    Perchepied S, Ritchie H, Desmet G, Eeltink S. 2022.. Insights in column packing processes of narrow bore and capillary-scale columns: methodologies, driving forces, and separation performance—a tutorial review. . Anal. Chim. Acta 1235::340563
    [Crossref] [Google Scholar]
  37. 37.
    Eeltink S, Wouters S, Dores-Sousa JL, Svec F. 2017.. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. . J. Chromatogr. A 1498::821
    [Crossref] [Google Scholar]
  38. 38.
    Dores-Sousa JL, Fernandez-Pumarega A, De Vos J, Lämmerhofer M, Desmet G, Eeltink S. 2019.. Guidelines for tuning the macropore structure of monolithic columns for high-performance liquid chromatography. . J. Sep. Sci. 42:(2):52233
    [Crossref] [Google Scholar]
  39. 39.
    Stachowiak TB, Mair DA, Holder T, Lee LJ, Svec F, Fréchet JMJ. 2007.. Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. . J. Sep. Sci. 30::108893
    [Crossref] [Google Scholar]
  40. 40.
    Eeltink S, Hilder EF, Geiser L, Svec F, Fréchet JMJ, et al. 2007.. Controlling the surface chemistry and chromatographic properties of methacrylate-ester-based monolithic capillary columns via photografting. . J. Sep. Sci. 30::40713
    [Crossref] [Google Scholar]
  41. 41.
    Vonk RJ, Vaast A, Eeltink S, Schoenmakers PJ. 2014.. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography. . J. Chromatogr. A 1359::16269
    [Crossref] [Google Scholar]
  42. 42.
    Balakrishan HK, Hari K, Lee SM, Dumee LF, Doeven EH, et al. 2023.. 3D printed integrated nanoporous membranes for electroextraction of DNA. . Nanoscale 15::1037182
    [Crossref] [Google Scholar]
  43. 43.
    Balakrishan HK, Hari K, Dumee LF, Merenda A, Aubry C, et al. 2023.. 3D printing functionally graded porous materials for simultaneous fabrication of dense and porous structures in membrane-integrated fluidic devices. . Small Struct. 4::2200314
    [Crossref] [Google Scholar]
  44. 44.
    Tsao CW, Tao S, Chen CF, Liu J, Devoe DL. 2010.. Interfacing microfluidics to LDI-MS by automatic robotic spotting. . Microfluidics Nanofluidics 8::77787
    [Crossref] [Google Scholar]
  45. 45.
    Tsao CW, Lei IC, Chen PY, Yang YL. 2018.. A piezo-ring-on-chip microfluidic device for simple and low-cost mass spectrometry interfacing. . Analyst 143::98188
    [Crossref] [Google Scholar]
  46. 46.
    Miliotis T, Kjellström S, Nilsson J, Laurell T, Edholm LE, Marko-Varga G. 2000.. Capillary liquid chromatography interfaced to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an on-line coupled piezoelectric flow-through microdispenser. . J. Mass Spectrom. 35::36977
    [Crossref] [Google Scholar]
  47. 47.
    Keller BO, Li L. 2006.. Three-layer matrix/sample preparation method for MALDI MS analysis of low nanomolar protein samples. . J. Am. Soc. Mass Spectrom. 17:(6):78085
    [Crossref] [Google Scholar]
  48. 48.
    Xu Y, Bruening ML, Watson JT. 2003.. Non-specific, on-probe cleanup methods for MALDI-MS samples. . Mass Spectrom. Rev. 22:(6):42940
    [Crossref] [Google Scholar]
  49. 49.
    Trim PJ, Djidja MC, Atkinson SJ, Oakes K, Cole LM, et al. 2010.. Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging. . Anal. Bioanal. Chem. 397::340919
    [Crossref] [Google Scholar]
  50. 50.
    Steven RT, Dexter A, Bunch J. 2016.. Investigating MALDI MSI parameters (Part 2)—on the use of a mechanically shuttered trigger system for improved laser energy stability. . Methods 104::11117
    [Crossref] [Google Scholar]
  51. 51.
    Chaurand P, Schriver KE, Caprioli RM. 2007.. Instrument design and characterization for high resolution MALDI-MS imaging of tissue sections. . J. Mass Spectrom. 42::47689
    [Crossref] [Google Scholar]
  52. 52.
    Bednařík A, Kuba P, Moskovets E, Tomalová I, Krásenský P, et al. 2014.. Rapid matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging with scanning desorption laser beam. . Anal. Chem. 86:(2):98286
    [Crossref] [Google Scholar]
  53. 53.
    Cramer R. 2020.. High-speed analysis of large sample sets—How can this key aspect of the omics be achieved?. Mol. Cell. Proteom. 19:(11):176066
    [Crossref] [Google Scholar]
  54. 54.
    Giddings JC, Dahlgren K. 1971.. Resolution and peak capacity in equilibrium-gradient methods of separation. . Sep. Sci. 6::34556
    [Google Scholar]
  55. 55.
    Zilberstein GV, Baskin EM, Bukshpan S. 2003.. Parallel processing in the isoelectric focusing chip. . Electrophoresis 24::373544
    [Crossref] [Google Scholar]
  56. 56.
    Gilar M, Neue UD. 2007.. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides. . J. Chromatogr. A 1169::13950
    [Crossref] [Google Scholar]
  57. 57.
    Davis JM, Stoll DR, Carr PW. 2008.. Equation for peak capacity estimation in two-dimensional liquid chromatography. . Anal. Chem. 80:(2):46173
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061522-044510
Loading
/content/journals/10.1146/annurev-anchem-061522-044510
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error