1932

Abstract

The ability to measure dynamic changes in neurochemicals with high spatiotemporal resolution is essential for understanding the diverse range of functions mediated by the brain. We review recent advances in genetically encoded sensors for detecting neurochemicals and discuss their in vivo applications. For example, notable progress has been made with respect to sensors for second messengers such as cyclic adenosine monophosphate, enabling in vivo real-time monitoring of these messengers at single-cell and even subcellular resolution. Moreover, the emergence of highly sensitive sensors for neurotransmitters and neuromodulators has greatly accelerated the study of these signaling molecules in a wide variety of behavioral models using an array of powerful imaging techniques. Finally, we discuss the future direction of neurochemical sensors, including their ability to measure neurochemical concentrations and the potential for multiplex imaging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061522-044819
2024-07-17
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061522-044819.html?itemId=/content/journals/10.1146/annurev-anchem-061522-044819&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Clapham DE. 2007.. Calcium signaling. . Cell 131::104758
    [Crossref] [Google Scholar]
  2. 2.
    Sudhof TC. 2004.. The synaptic vesicle cycle. . Annu. Rev. Neurosci. 27::50947
    [Crossref] [Google Scholar]
  3. 3.
    Grienberger C, Konnerth A. 2012.. Imaging calcium in neurons. . Neuron 73::86285
    [Crossref] [Google Scholar]
  4. 4.
    Smith SJ, Sümbül U, Graybuck LT, Collman F, Seshamani S, et al. 2019.. Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. . eLife 8::e47889
    [Crossref] [Google Scholar]
  5. 5.
    Burnstock G. 2014.. Purinergic signalling: from discovery to current developments. . Exp. Physiol. 99::1634
    [Crossref] [Google Scholar]
  6. 6.
    Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. 2012.. Endocannabinoid signaling and synaptic function. . Neuron 76::7081
    [Crossref] [Google Scholar]
  7. 7.
    Sassone-Corsi P. 2012.. The cyclic AMP pathway. . Cold Spring Harb. Perspect. Biol. 4::a011148
    [Crossref] [Google Scholar]
  8. 8.
    Calebiro D, Maiellaro I. 2014.. cAMP signaling microdomains and their observation by optical methods. . Front. Cell Neurosci. 8::350
    [Crossref] [Google Scholar]
  9. 9.
    Bowery NG, Smart TG. 2006.. GABA and glycine as neurotransmitters: a brief history. . Br. J. Pharmacol. 147:(Suppl. 1):S10919
    [Google Scholar]
  10. 10.
    Reiner A, Levitz J. 2018.. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. . Neuron 98::108098
    [Crossref] [Google Scholar]
  11. 11.
    Fejtl M, Carpenter DO. 1996.. Single-channel studies in molluscan neurons. . In Ion Channels, ed. T Narahashi , pp. 33376. Boston:: Springer
    [Google Scholar]
  12. 12.
    Greengard P. 2001.. The neurobiology of slow synaptic transmission. . Science 294::102430
    [Crossref] [Google Scholar]
  13. 13.
    Nadim F, Bucher D. 2014.. Neuromodulation of neurons and synapses. . Curr. Opin. Neurobiol. 29::4856
    [Crossref] [Google Scholar]
  14. 14.
    Marder E. 2012.. Neuromodulation of neuronal circuits: back to the future. . Neuron 76::111
    [Crossref] [Google Scholar]
  15. 15.
    Wu Z, Lin D, Li Y. 2022.. Pushing the frontiers: tools for monitoring neurotransmitters and neuromodulators. . Nat. Rev. Neurosci. 23::25774
    [Crossref] [Google Scholar]
  16. 16.
    Wang H, Jing M, Li Y. 2018.. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. . Curr. Opin. Neurobiol. 50::17178
    [Crossref] [Google Scholar]
  17. 17.
    Sabatini BL, Tian L. 2020.. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. . Neuron 108::1732
    [Crossref] [Google Scholar]
  18. 18.
    Dong C, Zheng Y, Long-Iyer K, Wright EC, Li Y, Tian L. 2022.. Fluorescence imaging of neural activity, neurochemical dynamics, and drug-specific receptor conformation with genetically encoded sensors. . Annu. Rev. Neurosci. 45::27394
    [Crossref] [Google Scholar]
  19. 19.
    Jean-Martin B, Raul RG. 2011.. The physiology, signaling, and pharmacology of dopamine receptors. . Pharmacol. Rev. 63::182217
    [Crossref] [Google Scholar]
  20. 20.
    Surmeier DJ, Ding J, Day M, Wang Z, Shen W. 2007.. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. . Trends Neurosci. 30::22835
    [Crossref] [Google Scholar]
  21. 21.
    Jakob KD, Kjartan FH, Rune WB, Jørn DH. 2010.. Influence of phasic and tonic dopamine release on receptor activation. . J. Neurosci. 30::1427383
    [Crossref] [Google Scholar]
  22. 22.
    Keeler JF, Pretsell DO, Robbins TW. 2014.. Functional implications of dopamine D1 versus D2 receptors: a ‘prepare and select’ model of the striatal direct versus indirect pathways. . Neuroscience 282::15675
    [Crossref] [Google Scholar]
  23. 23.
    Carhart-Harris RL, Nutt DJ. 2017.. Serotonin and brain function: a tale of two receptors. . J. Psychopharmacol. 31::1091120
    [Crossref] [Google Scholar]
  24. 24.
    Shimomura O, Johnson FH, Saiga Y. 1962.. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. , Aequorea. J. Cell Comp. Physiol. 59::22339
    [Crossref] [Google Scholar]
  25. 25.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. 1994.. Green fluorescent protein as a marker for gene expression. . Science 263::8025
    [Crossref] [Google Scholar]
  26. 26.
    Chudakov DM, Lukyanov S, Lukyanov KA. 2005.. Fluorescent proteins as a toolkit for in vivo imaging. . Trends Biotechnol. 23::60513
    [Crossref] [Google Scholar]
  27. 27.
    Datta R, Heaster TM, Sharick JT, Gillette AA, Skala MC. 2020.. Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. . J. Biomed. Opt. 25::071203
    [Crossref] [Google Scholar]
  28. 28.
    Becker W. 2012.. Fluorescence lifetime imaging—techniques and applications. . J. Microsc. 247::11936
    [Crossref] [Google Scholar]
  29. 29.
    Zheng K, Bard L, Reynolds JP, King C, Jensen TP, et al. 2015.. Time-resolved imaging reveals heterogeneous landscapes of nanomolar Ca2+ in neurons and astroglia. . Neuron 88::27788
    [Crossref] [Google Scholar]
  30. 30.
    Linders PTA, Ioannidis M, ter Beest M, van den Bogaart G. 2022.. Fluorescence lifetime imaging of pH along the secretory pathway. . ACS Chem. Biol. 17::24051
    [Crossref] [Google Scholar]
  31. 31.
    van der Linden FH, Mahlandt EK, Arts JJG, Beumer J, Puschhof J, et al. 2021.. A turquoise fluorescence lifetime–based biosensor for quantitative imaging of intracellular calcium. . Nat. Commun. 12::7159
    [Crossref] [Google Scholar]
  32. 32.
    Massengill CI, Day-Cooney J, Mao T, Zhong H. 2021.. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. . J. Neurosci. Methods 362::109298
    [Crossref] [Google Scholar]
  33. 33.
    Rennick JJ, Nowell CJ, Pouton CW, Johnston APR. 2022.. Resolving subcellular pH with a quantitative fluorescent lifetime biosensor. . Nat. Commun. 13::6023
    [Crossref] [Google Scholar]
  34. 34.
    Carlson HJ, Campbell RE. 2009.. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. . Curr. Opin. Biotechnol. 20::1927
    [Crossref] [Google Scholar]
  35. 35.
    Wang Q, Shui B, Kotlikoff MI, Sondermann H. 2008.. Structural basis for calcium sensing by GCaMP2. . Structure 16::181727
    [Crossref] [Google Scholar]
  36. 36.
    Akerboom J, Rivera JDV, Guilbe MMR, Malavé ECA, Hernandez HH, et al. 2009.. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. . J. Biol. Chem. 284::645564
    [Crossref] [Google Scholar]
  37. 37.
    Tsien RY. 1998.. The green fluorescent protein. . Annu. Rev. Biochem. 67::50944
    [Crossref] [Google Scholar]
  38. 38.
    Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, et al. 2013.. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. . Front. Mol. Neurosci. 6::2
    [Crossref] [Google Scholar]
  39. 39.
    Ding J, Luo AF, Hu L, Wang D, Shao F. 2014.. Structural basis of the ultrasensitive calcium indicator GCaMP6. . Sci. China Life Sci. 57::26974
    [Crossref] [Google Scholar]
  40. 40.
    Shivange AV, Borden PM, Muthusamy AK, Nichols AL, Bera K, et al. 2019.. Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. . J. Gen. Physiol. 151::73857
    [Crossref] [Google Scholar]
  41. 41.
    Subach OM, Sotskov VP, Plusnin VV, Gruzdeva AM, Barykina NV, et al. 2020.. Novel genetically encoded bright positive calcium indicator NCaMP7 based on the mNeonGreen fluorescent protein. . Int. J. Mol. Sci. 21::1644
    [Crossref] [Google Scholar]
  42. 42.
    Wang L, Wu C, Peng W, Zhou Z, Zeng J, et al. 2022.. A high-performance genetically encoded fluorescent indicator for in vivo cAMP imaging. . Nat. Commun. 13::5363
    [Crossref] [Google Scholar]
  43. 43.
    Ashley CC, Ridgway EB. 1968.. Simultaneous recording of membrane potential, calcium transient and tension in single muscle fibres. . Nature 219::116869
    [Crossref] [Google Scholar]
  44. 44.
    Hallett M, Carbone E. 1972.. Studies of calcium influx into squid giant axons with aequorin. . J. Cell. Physiol. 80::21926
    [Crossref] [Google Scholar]
  45. 45.
    Zhou X, Belavek KJ, Miller EW. 2021.. Origins of Ca2+ imaging with fluorescent indicators. . Biochemistry 60::354754
    [Crossref] [Google Scholar]
  46. 46.
    Grynkiewicz G, Poenie M, Tsien RY. 1985.. A new generation of Ca2+ indicators with greatly improved fluorescence properties. . J. Biol. Chem. 260::344050
    [Crossref] [Google Scholar]
  47. 47.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, et al. 1997.. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. . Nature 388::88287
    [Crossref] [Google Scholar]
  48. 48.
    Thestrup T, Litzlbauer J, Bartholomäus I, Mues M, Russo L, et al. 2014.. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. . Nat. Methods 11::17582
    [Crossref] [Google Scholar]
  49. 49.
    Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O. 2006.. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. . Biophys. J. 90::179096
    [Crossref] [Google Scholar]
  50. 50.
    Nagai T, Sawano A, Park ES, Miyawaki A. 2001.. Circularly permuted green fluorescent proteins engineered to sense Ca2+. . PNAS 98::3197202
    [Crossref] [Google Scholar]
  51. 51.
    Nakai J, Ohkura M, Imoto K. 2001.. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. . Nat. Biotechnol. 19::13741
    [Crossref] [Google Scholar]
  52. 52.
    Baird GS, Zacharias DA, Tsien RY. 1999.. Circular permutation and receptor insertion within green fluorescent proteins. . PNAS 96::1124146
    [Crossref] [Google Scholar]
  53. 53.
    Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, et al. 2013.. Ultrasensitive fluorescent proteins for imaging neuronal activity. . Nature 499::295300
    [Crossref] [Google Scholar]
  54. 54.
    Li J, Shang Z, Chen J-H, Gu W, Yao L, et al. 2023.. Engineering of NEMO as calcium indicators with large dynamics and high sensitivity. . Nat. Methods 20::91824
    [Crossref] [Google Scholar]
  55. 55.
    Zhang Y, Rózsa M, Liang Y, Bushey D, Wei Z, et al. 2023.. Fast and sensitive GCaMP calcium indicators for imaging neural populations. . Nature 615::88491
    [Crossref] [Google Scholar]
  56. 56.
    Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, et al. 2011.. An expanded palette of genetically encoded Ca2+ indicators. . Science 333::188891
    [Crossref] [Google Scholar]
  57. 57.
    Inoue M, Takeuchi A, Manita S, Horigane SI, Sakamoto M, et al. 2019.. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. . Cell 177::134660.e24
    [Crossref] [Google Scholar]
  58. 58.
    Dana H, Mohar B, Sun Y, Narayan S, Gordus A, et al. 2016.. Sensitive red protein calcium indicators for imaging neural activity. . eLife 5::e12727
    [Crossref] [Google Scholar]
  59. 59.
    Qian Y, Piatkevich KD, Mc Larney B, Abdelfattah AS, Mehta S, et al. 2019.. A genetically encoded near-infrared fluorescent calcium ion indicator. . Nat. Methods 16::17174
    [Crossref] [Google Scholar]
  60. 60.
    Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, et al. 2021.. A near-infrared genetically encoded calcium indicator for in vivo imaging. . Nat. Biotechnol. 39::36877
    [Crossref] [Google Scholar]
  61. 61.
    Deo C, Abdelfattah AS, Bhargava HK, Berro AJ, Falco N, et al. 2021.. The HaloTag as a general scaffold for far-red tunable chemigenetic indicators. . Nat. Chem. Biol. 17::71823
    [Crossref] [Google Scholar]
  62. 62.
    Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY. 1991.. Fluorescence ratio imaging of cyclic AMP in single cells. . Nature 349::69497
    [Crossref] [Google Scholar]
  63. 63.
    Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, et al. 2000.. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. . Nat. Cell Biol. 2::2529
    [Crossref] [Google Scholar]
  64. 64.
    Zaccolo M, Pozzan T. 2002.. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. . Science 295::171115
    [Crossref] [Google Scholar]
  65. 65.
    Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, et al. 2004.. Fluorescence resonance energy transfer–based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. . Circ. Res. 95::6775
    [Crossref] [Google Scholar]
  66. 66.
    Lissandron V, Terrin A, Collini M, D'Alfonso L, Chirico G, et al. 2005.. Improvement of a FRET-based indicator for cAMP by linker design and stabilization of donor–acceptor interaction. . J. Mol. Biol. 354::54655
    [Crossref] [Google Scholar]
  67. 67.
    Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, et al. 2004.. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. . EMBO Rep. 5::117680
    [Crossref] [Google Scholar]
  68. 68.
    Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ. 2004.. Novel single chain cAMP sensors for receptor-induced signal propagation. . J. Biol. Chem. 279::3721518
    [Crossref] [Google Scholar]
  69. 69.
    DiPilato LM, Cheng X, Zhang J. 2004.. Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. . PNAS 101::1651318
    [Crossref] [Google Scholar]
  70. 70.
    Mukherjee S, Jansen V, Jikeli JF, Hamzeh H, Alvarez L, et al. 2016.. A novel biosensor to study cAMP dynamics in cilia and flagella. . eLife 5::e14052
    [Crossref] [Google Scholar]
  71. 71.
    Massengill CI, Bayless-Edwards L, Ceballos CC, Cebul ER, Cahill J, et al. 2022.. Sensitive genetically encoded sensors for population and subcellular imaging of cAMP in vivo. . Nat. Methods 19::146171
    [Crossref] [Google Scholar]
  72. 72.
    Liu W, Liu C, Ren PG, Chu J, Wang L. 2022.. An improved genetically encoded fluorescent cAMP indicator for sensitive cAMP imaging and fast drug screening. . Front. Pharmacol. 13::902290
    [Crossref] [Google Scholar]
  73. 73.
    Kitaguchi T, Oya M, Wada Y, Tsuboi T, Miyawaki A. 2013.. Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells. . Biochem. J. 450::36573
    [Crossref] [Google Scholar]
  74. 74.
    Ohta Y, Furuta T, Nagai T, Horikawa K. 2018.. Red fluorescent cAMP indicator with increased affinity and expanded dynamic range. . Sci. Rep. 8::1866
    [Crossref] [Google Scholar]
  75. 75.
    Castro LRV, Guiot E, Polito M, Paupardin-Tritsch D, Vincent P. 2014.. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors. . Biotechnol. J. 9::192202
    [Crossref] [Google Scholar]
  76. 76.
    Gorshkov K, Zhang J. 2014.. Visualization of cyclic nucleotide dynamics in neurons. . Front. Cell Neurosci. 8::395
    [Crossref] [Google Scholar]
  77. 77.
    Wong DT, Perry KW, Bymaster FP. 2005.. The discovery of fluoxetine hydrochloride (Prozac). . Nat. Rev. Drug Discov. 4::76474
    [Crossref] [Google Scholar]
  78. 78.
    Dwyer MA, Hellinga HW. 2004.. Periplasmic binding proteins: a versatile superfamily for protein engineering. . Curr. Opin. Struct. Biol. 14::495504
    [Crossref] [Google Scholar]
  79. 79.
    Okumoto S, Looger LL, Micheva KD, Reimer RJ, Smith SJ, Frommer WB. 2005.. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. . PNAS 102::874045
    [Crossref] [Google Scholar]
  80. 80.
    Tsien RY. 2005.. Building and breeding molecules to spy on cells and tumors. . FEBS Lett. 579::92732
    [Crossref] [Google Scholar]
  81. 81.
    Hires SA, Zhu Y, Tsien RY. 2008.. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. . PNAS 105::441116
    [Crossref] [Google Scholar]
  82. 82.
    Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, et al. 2013.. An optimized fluorescent probe for visualizing glutamate neurotransmission. . Nat. Methods 10::16270
    [Crossref] [Google Scholar]
  83. 83.
    Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A, et al. 2018.. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. . Nat. Methods 15::93639
    [Crossref] [Google Scholar]
  84. 84.
    Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, et al. 2023.. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. . Nat. Methods 20::92534
    [Crossref] [Google Scholar]
  85. 85.
    Philip MB, Peng Z, Amol VS, Jonathan SM, Joseph C, et al. 2020.. A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies. . bioRxiv 2020.02.07.939504. https://doi.org/10.1101/2020.02.07.93950
  86. 86.
    Unger EK, Keller JP, Altermatt M, Liang R, Matsui A, et al. 2020.. Directed evolution of a selective and sensitive serotonin sensor via machine learning. . Cell 183::19862002.e26
    [Crossref] [Google Scholar]
  87. 87.
    Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T, et al. 2019.. A genetically encoded fluorescent sensor for in vivo imaging of GABA. . Nat. Methods 16::76370
    [Crossref] [Google Scholar]
  88. 88.
    Weis WI, Kobilka BK. 2018.. The molecular basis of G protein–coupled receptor activation. . Annu. Rev. Biochem. 87::897919
    [Crossref] [Google Scholar]
  89. 89.
    Sun F, Zeng J, Jing M, Zhou J, Feng J, et al. 2018.. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. . Cell 174::48196.e19
    [Crossref] [Google Scholar]
  90. 90.
    Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, et al. 2018.. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. . Science 360::eaat4422
    [Crossref] [Google Scholar]
  91. 91.
    Wan J, Peng W, Li X, Qian T, Song K, et al. 2021.. A genetically encoded sensor for measuring serotonin dynamics. . Nat. Neurosci. 24::74652
    [Crossref] [Google Scholar]
  92. 92.
    Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J, et al. 2019.. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. . Neuron 102::74561.e8
    [Crossref] [Google Scholar]
  93. 93.
    Dong H, Li M, Yan Y, Qian T, Lin Y, et al. 2023.. Genetically encoded sensors for measuring histamine release both in vitro and in vivo. . Neuron 111::156476.e6
    [Crossref] [Google Scholar]
  94. 94.
    Dong C, Ly C, Dunlap LE, Vargas MV, Sun J, et al. 2021.. Psychedelic-inspired drug discovery using an engineered biosensor. . Cell 184::277992.e18
    [Crossref] [Google Scholar]
  95. 95.
    Wu Z, He K, Chen Y, Li H, Pan S, et al. 2022.. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. . Neuron 110::77082.e5
    [Crossref] [Google Scholar]
  96. 96.
    Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. 2020.. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. . Science 369::eabb0556
    [Crossref] [Google Scholar]
  97. 97.
    Dong A, He K, Dudok B, Farrell JS, Guan W, et al. 2022.. A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. . Nat. Biotechnol. 40::78798
    [Crossref] [Google Scholar]
  98. 98.
    Ino D, Tanaka Y, Hibino H, Nishiyama M. 2022.. A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. . Nat. Methods 19::128694
    [Crossref] [Google Scholar]
  99. 99.
    Qian T, Wang H, Wang P, Geng L, Mei L, et al. 2023.. A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. . Nat. Biotechnol. 41::94457
    [Crossref] [Google Scholar]
  100. 100.
    Cui G, Jun SB, Jin X, Pham MD, Vogel SS, et al. 2013.. Concurrent activation of striatal direct and indirect pathways during action initiation. . Nature 494::23842
    [Crossref] [Google Scholar]
  101. 101.
    Yang G, Pan F, Parkhurst CN, Grutzendler J, Gan W-B. 2010.. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. . Nat. Protoc. 5::2018
    [Crossref] [Google Scholar]
  102. 102.
    Zhao Y-J, Yu T-T, Zhang C, Li Z, Luo Q-M, et al. 2018.. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. . Light Sci. Appl. 7::17153
    [Crossref] [Google Scholar]
  103. 103.
    Murray TA, Levene MJ. 2012.. Singlet gradient index lens for deep in vivo multiphoton microscopy. . J. Biomed. Opt. 17::021106
    [Crossref] [Google Scholar]
  104. 104.
    Zong W, Wu R, Li M, Hu Y, Li Y, et al. 2017.. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. . Nat. Methods 14::71319
    [Crossref] [Google Scholar]
  105. 105.
    Zong W, Wu R, Chen S, Wu J, Wang H, et al. 2021.. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. . Nat. Methods 18::4649
    [Crossref] [Google Scholar]
  106. 106.
    Dai B, Sun F, Tong X, Ding Y, Kuang A, et al. 2022.. Responses and functions of dopamine in nucleus accumbens core during social behaviors. . Cell Rep. 40::111246
    [Crossref] [Google Scholar]
  107. 107.
    Zhang SX, Lutas A, Yang S, Diaz A, Fluhr H, et al. 2021.. Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. . Nature 597::24549
    [Crossref] [Google Scholar]
  108. 108.
    Scammell TE, Arrigoni E, Lipton JO. 2017.. Neural circuitry of wakefulness and sleep. . Neuron 93::74765
    [Crossref] [Google Scholar]
  109. 109.
    Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. 2012.. Control of sleep and wakefulness. . Physiol. Rev. 92::1087187
    [Crossref] [Google Scholar]
  110. 110.
    Kjaerby C, Andersen M, Hauglund N, Untiet V, Dall C, et al. 2022.. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. . Nat. Neurosci. 25::105970
    [Crossref] [Google Scholar]
  111. 111.
    Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T. 2022.. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. . Science 375::9941000
    [Crossref] [Google Scholar]
  112. 112.
    Jing M, Li Y, Zeng J, Huang P, Skirzewski M, et al. 2020.. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. . Nat. Methods 17::113946
    [Crossref] [Google Scholar]
  113. 113.
    Peng W, Liu X, Ma G, Wu Z, Wang Z, et al. 2023.. Adenosine-independent regulation of the sleep–wake cycle by astrocyte activity. . Cell Discov. 9::16
    [Crossref] [Google Scholar]
  114. 114.
    Duffet L, Kosar S, Panniello M, Viberti B, Bracey E, et al. 2022.. A genetically encoded sensor for in vivo imaging of orexin neuropeptides. . Nat. Methods 19::23141
    [Crossref] [Google Scholar]
  115. 115.
    Patriarchi T, Cho JR, Merten K, Howe MW, Marley A, et al. 2018.. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. . Science 360::aat4422
    [Crossref] [Google Scholar]
  116. 116.
    Hamid AA, Frank MJ, Moore CI. 2021.. Wave-like dopamine dynamics as a mechanism for spatiotemporal credit assignment. . Cell 184::273349.e16
    [Crossref] [Google Scholar]
  117. 117.
    Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. 2022.. Wide-field calcium imaging of neuronal network dynamics in vivo. . Biology 11::1601
    [Crossref] [Google Scholar]
  118. 118.
    Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CCH. 2007.. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. . Neuron 56::90723
    [Crossref] [Google Scholar]
  119. 119.
    Petersen CCH. 2007.. The functional organization of the barrel cortex. . Neuron 56::33955
    [Crossref] [Google Scholar]
  120. 120.
    Lohani S, Moberly AH, Benisty H, Landa B, Jing M, et al. 2022.. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. . Nat. Neurosci. 25::170613
    [Crossref] [Google Scholar]
  121. 121.
    Deng F, Wan J, Li G, Dong H, Xia X, . 2024.. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo. . Nat. Methods. https://doi.org/10.1038/s41592-024-02188-8
    [Google Scholar]
  122. 122.
    Zeng J, Li X, Zhang R, Lv M, Wang Y, et al. 2023.. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. . Neuron 111::111835.e5
    [Crossref] [Google Scholar]
  123. 123.
    Stahl A, Noyes NC, Boto T, Botero V, Broyles CN, et al. 2022.. Associative learning drives longitudinally graded presynaptic plasticity of neurotransmitter release along axonal compartments. . eLife 11::e76712
    [Crossref] [Google Scholar]
  124. 124.
    Wu J, Abdelfattah AS, Miraucourt LS, Kutsarova E, Ruangkittisakul A, et al. 2014.. A long Stokes shift red fluorescent Ca2+ indicator protein for two-photon and ratiometric imaging. . Nat. Commun. 5::5262
    [Crossref] [Google Scholar]
  125. 125.
    Mehta S, Zhang Y, Roth RH, Zhang J-F, Mo A, et al. 2018.. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. . Nat. Cell Biol. 20::121525
    [Crossref] [Google Scholar]
  126. 126.
    Zhao Y, Bushey D, Zhao Y, Schreiter ER, Harrison DJ, et al. 2018.. Inverse-response Ca2+ indicators for optogenetic visualization of neuronal inhibition. . Sci. Rep. 8::11758
    [Crossref] [Google Scholar]
  127. 127.
    Barykina NV, Sotskov VP, Gruzdeva AM, Wu YK, Portugues R, et al. 2020.. FGCaMP7, an improved version of fungi-based ratiometric calcium indicator for in vivo visualization of neuronal activity. . Int. J. Mol. Sci. 21::3012
    [Crossref] [Google Scholar]
  128. 128.
    Cho J-H, Swanson CJ, Chen J, Li A, Lippert LG, et al. 2017.. The GCaMP-R family of genetically encoded ratiometric calcium indicators. . ACS Chem. Biol. 12::106674
    [Crossref] [Google Scholar]
  129. 129.
    Ast C, Foret J, Oltrogge LM, De Michele R, Kleist TJ, et al. 2017.. Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins. . Nat. Commun. 8::431
    [Crossref] [Google Scholar]
  130. 130.
    Sandrers R, Draaijer A, Gerritsen HC, Houpt PM, Levine YK. 1995.. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. . Anal. Biochem. 227::3028
    [Crossref] [Google Scholar]
  131. 131.
    Lin MZ, McKeown MR, Ng H-L, Aguilera TA, Shaner NC, et al. 2009.. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. . Chem. Biol. 16::116979
    [Crossref] [Google Scholar]
  132. 132.
    Morozova KS, Piatkevich KD, Gould TJ, Zhang J, Bewersdorf J, Verkhusha VV. 2010.. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. . Biophys. J. 99::L1315
    [Crossref] [Google Scholar]
  133. 133.
    Shcherbakova DM, Verkhusha VV. 2013.. Near-infrared fluorescent proteins for multicolor in vivo imaging. . Nat. Methods 10::75154
    [Crossref] [Google Scholar]
  134. 134.
    Chu J, Haynes RD, Corbel SY, Li P, González-González E, et al. 2014.. Non-invasive intravital imaging of cellular differentiation with a bright red–excitable fluorescent protein. . Nat. Methods 11::57278
    [Crossref] [Google Scholar]
  135. 135.
    Shcherbakova DM, Cox Cammer N, Huisman TM, Verkhusha VV, Hodgson L. 2018.. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. . Nat. Chem. Biol. 14::591600
    [Crossref] [Google Scholar]
  136. 136.
    Wannier TM, Gillespie SK, Hutchins N, McIsaac RS, Wu S-Y, et al. 2018.. Monomerization of far-red fluorescent proteins. . PNAS 115::E11294301
    [Google Scholar]
  137. 137.
    Qian Y, Cosio DMO, Piatkevich KD, Aufmkolk S, Su W-C, et al. 2020.. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. . PLOS Biol. 18::e3000965
    [Crossref] [Google Scholar]
  138. 138.
    Keller SG, Kamiya M, Urano Y. 2020.. Recent progress in small spirocyclic, xanthene-based fluorescent probes. . Molecules 25::5964
    [Crossref] [Google Scholar]
  139. 139.
    Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, et al. 2015.. A general method to improve fluorophores for live-cell and single-molecule microscopy. . Nat. Methods 12::24450
    [Crossref] [Google Scholar]
  140. 140.
    Grimm JB, Tkachuk AN, Xie L, Choi H, Mohar B, et al. 2020.. A general method to optimize and functionalize red-shifted rhodamine dyes. . Nat. Methods 17::81521
    [Crossref] [Google Scholar]
  141. 141.
    Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, et al. 2008.. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. . ACS Chem. Biol. 3::37382
    [Crossref] [Google Scholar]
  142. 142.
    Gautier A, Juillerat A, Heinis C, Corrêa IR, Kindermann M, et al. 2008.. An engineered protein tag for multiprotein labeling in living cells. . Chem. Biol. 15::12836
    [Crossref] [Google Scholar]
  143. 143.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. 2002.. A general method for the covalent labeling of fusion proteins with small molecules in vivo. . Nat. Biotechnol. 21::8689
    [Crossref] [Google Scholar]
  144. 144.
    Gallagher SS, Sable JE, Sheetz MP, Cornish VW. 2009.. An in vivo covalent TMP-tag based on proximity-induced reactivity. . ACS Chem. Biol. 4::54756
    [Crossref] [Google Scholar]
  145. 145.
    Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H, et al. 2019.. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. . Science 365::699704
    [Crossref] [Google Scholar]
  146. 146.
    Wang L, Hiblot J, Popp C, Xue L, Johnsson K. 2020.. Environmentally sensitive color-shifting fluorophores for bioimaging. . Angew. Chem. Int. Ed. 59::2188084
    [Crossref] [Google Scholar]
  147. 147.
    Horton NG, Wang K, Kobat D, Clark CG, Wise FW, et al. 2013.. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. . Nat. Photon. 7::2059
    [Crossref] [Google Scholar]
  148. 148.
    Sinefeld D, Xia F, Wang M, Wang T, Wu C, et al. 2022.. Three-photon adaptive optics for mouse brain imaging. . Front. Neurosci. 16::880859
    [Crossref] [Google Scholar]
  149. 149.
    Zhao C, Chen S, Zhang L, Zhang D, Wu R, et al. 2023.. Miniature three-photon microscopy maximized for scattered fluorescence collection. . Nat. Methods 20::61722
    [Crossref] [Google Scholar]
  150. 150.
    Nikolaev VO, Bünemann M, Hein L, Hannawacker A, Lohse MJ. 2004.. Novel single chain cAMP sensors for receptor-induced signal propagation. . J. Biol. Chem. 279::3721518
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061522-044819
Loading
/content/journals/10.1146/annurev-anchem-061522-044819
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error