1932

Abstract

A frontier of analytical sciences is centered on the continuous measurement of molecules in or near cells, tissues, or organs, within the biological context in situ, where the molecular-level information is indicative of health status, therapeutic efficacy, and fundamental biochemical function of the host. Following the completion of the Human Genome Project, current research aims to link genes to functions of an organism and investigate how the environment modulates functional properties of organisms. New analytical methods have been developed to detect chemical changes with high spatial and temporal resolution, including minimally invasive surface-enhanced Raman scattering (SERS) nanofibers using the principles of endoscopy (SERS nanoendoscopy) or optical physiology (SERS optophysiology). Given the large spectral data sets generated from these experiments, SERS nanoendoscopy and optophysiology benefit from advances in data science and machine learning to extract chemical information from complex vibrational spectra measured by SERS. This review highlights new opportunities for intracellular, extracellular, and in vivo chemical measurements arising from the combination of SERS nanosensing and machine learning.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-012448
2024-07-17
2025-04-23
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-012448.html?itemId=/content/journals/10.1146/annurev-anchem-061622-012448&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bujak R, Struck-Lewicka W, Markuszewski MJ, Kaliszan R. 2015.. Metabolomics for laboratory diagnostics. . J. Pharm. Biomed. Anal. 113::10820
    [Crossref] [Google Scholar]
  2. 2.
    Wishart DS. 2019.. Metabolomics for investigating physiological and pathophysiological processes. . Physiol. Rev. 99::181975
    [Crossref] [Google Scholar]
  3. 3.
    Vignoli A, Ghini V, Meoni G, Licari C, Takis PG, et al. 2019.. High-throughput metabolomics by 1D NMR. . Angew. Chem. Int. Ed. 58::96894
    [Crossref] [Google Scholar]
  4. 4.
    Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, et al. 2020.. Present and future of surface-enhanced Raman scattering. . ACS Nano 14::28117
    [Crossref] [Google Scholar]
  5. 5.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, et al. 1997.. Single molecule detection using surface-enhanced Raman scattering (SERS). . Phys. Rev. Lett. 78::166770
    [Crossref] [Google Scholar]
  6. 6.
    Nie SM, Emery SR. 1997.. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. . Science 275::11026
    [Crossref] [Google Scholar]
  7. 7.
    Schmidt MM, Farley EA, Engevik MA, Adelsman TN, Tuckmantel Bido A, et al. 2023.. High-speed spectral characterization of single-molecule SERS fluctuations. . ACS Nano 17::667586
    [Crossref] [Google Scholar]
  8. 8.
    Wang X, Huang S-C, Hu S, Yan S, Ren B. 2020.. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. . Nat. Rev. Phys. 2::25371
    [Crossref] [Google Scholar]
  9. 9.
    Lu Y, Lin L, Ye J. 2022.. Human metabolite detection by surface-enhanced Raman spectroscopy. . Mater. Today Bio 13::100205
    [Crossref] [Google Scholar]
  10. 10.
    Payne TD, Moody AS, Wood AL, Pimiento PA, Elliott JC, Sharma B. 2020.. Raman spectroscopy and neuroscience: from fundamental understanding to disease diagnostics and imaging. . Analyst 145::346180
    [Crossref] [Google Scholar]
  11. 11.
    Spedalieri C, Kneipp J. 2022.. Surface enhanced Raman scattering for probing cellular biochemistry. . Nanoscale 14::531428
    [Crossref] [Google Scholar]
  12. 12.
    Zhong Q, Huang X, Zhang R, Zhang K, Liu B. 2022.. Optical sensing strategies for probing single-cell secretion. . ACS Sens. 7::177990
    [Crossref] [Google Scholar]
  13. 13.
    Neves MM, Martín-Yerga D. 2018.. Advanced nanoscale approaches to single-(bio)entity sensing and imaging. . Biosensors 8::10055
    [Crossref] [Google Scholar]
  14. 14.
    Dowd A, Pissuwan D, Cortie MB. 2014.. Optical readout of the intracellular environment using nanoparticle transducers. . Trends Biotechnol. 32::57177
    [Crossref] [Google Scholar]
  15. 15.
    Yuan H, Register JK, Wang H-N, Fales AM, Liu Y, Vo-Dinh T. 2013.. Plasmonic nanoprobes for intracellular sensing and imaging. . Anal. Bioanal. Chem. 405::616580
    [Crossref] [Google Scholar]
  16. 16.
    Shen Y, Yue J, Xu W, Xu S. 2021.. Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. . Theranostics 11::487293
    [Crossref] [Google Scholar]
  17. 17.
    Wallace GQ, Masson J-F. 2020.. From single cells to complex tissues in applications of surface-enhanced Raman scattering. . Analyst 145::716285
    [Crossref] [Google Scholar]
  18. 18.
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. 1996.. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. . Nature 382::6079
    [Crossref] [Google Scholar]
  19. 19.
    Cutler JI, Auyeung E, Mirkin CA. 2012.. Spherical nucleic acids. . J. Am. Chem. Soc. 134::137691
    [Crossref] [Google Scholar]
  20. 20.
    Chen W, Xu S, Wang X, Wei G, Hong Q, et al. 2021.. Single cell detection using intracellularly-grown-Au-nanoparticle based surface-enhanced Raman scattering spectroscopy for nasopharyngeal cell line classification. . Anal. Methods 13::314753
    [Crossref] [Google Scholar]
  21. 21.
    Carnevale KJF, Riskowski RA, Strouse GF. 2018.. A gold nanoparticle bio-optical transponder to dynamically monitor intracellular pH. . ACS Nano 12::595668
    [Crossref] [Google Scholar]
  22. 22.
    Wang Y-N, Song D, Zhang W-S, Xu Z-R. 2021.. Enhanced chemodynamic therapy at weak acidic pH based on g-C3N4-supported hemin/Au nanoplatform and cell apoptosis monitoring during treatment. . Colloids Surf. B 197::111437
    [Crossref] [Google Scholar]
  23. 23.
    Jaworska A, Jamieson LE, Malek K, Campbell CJ, Choo J, et al. 2015.. SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-α. . Analyst 140::232129
    [Crossref] [Google Scholar]
  24. 24.
    Peng C, Jin L, Wang F, Yang H, He H. 2023.. Laser transparent multiplexed SERS microneedles for in situ and real-time detection of inflammation. . Biosens. Bioelectron. 225::115079
    [Crossref] [Google Scholar]
  25. 25.
    Iarossi M, Hubarevich A, Iachetta G, Dipalo M, Huang J-A, et al. 2022.. Probing ND7/23 neuronal cells before and after differentiation with SERS using sharp-tipped Au nanopyramid arrays. . Sens. Actuators B Chem. 361::13172435
    [Crossref] [Google Scholar]
  26. 26.
    Galeotti F, Pisco M, Cusano A. 2018.. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation “lab-on-fiber” optrodes. . Nanoscale 10::22673700
    [Crossref] [Google Scholar]
  27. 27.
    Yan R, Park J-H, Choi Y, Heo C-J, Yang S-M, et al. 2012.. Nanowire-based single-cell endoscopy. . Nat. Nanotechnol. 7::19196
    [Crossref] [Google Scholar]
  28. 28.
    Gessner R, Rösch P, Kiefer W, Popp J. 2002.. Raman spectroscopy investigation of biological materials by use of etched and silver coated glass fiber tips. . Biopolymers 67::32730
    [Crossref] [Google Scholar]
  29. 29.
    Volkan M, Stokes DL, Vo-Dinh T. 2000.. Surface-enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes. . Appl. Spectrosc. 54::184248
    [Crossref] [Google Scholar]
  30. 30.
    Vitol EA, Orynbayeva Z, Bouchard MJ, Azizkhan-Clifford J, Friedman G, Gogotsi Y. 2009.. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. . ACS Nano 3::352936
    [Crossref] [Google Scholar]
  31. 31.
    Vitol EA, Orynbayeva Z, Friedman G, Gogotsi Y. 2012.. Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS). . J. Raman Spectrosc. 43::81727
    [Crossref] [Google Scholar]
  32. 32.
    Li Y, Xin H, Zhang Y, Lei H, Zhang T, et al. 2018.. Living nanospear for near-field optical probing. . ACS Nano 12::1070311
    [Crossref] [Google Scholar]
  33. 33.
    Zheng XT, Yang HB, Li CM. 2010.. Optical detection of single cell lactate release for cancer metabolic analysis. . Anal. Chem. 82::508287
    [Crossref] [Google Scholar]
  34. 34.
    Liang F, Wan Y, Schaak D, Ward J, Shen X, et al. 2017.. Nanoplasmonic fiber tip probe detects significant reduction of intracellular Alzheimer's disease-related oligomers by curcumin. . Sci. Rep. 7::5722
    [Crossref] [Google Scholar]
  35. 35.
    Liang F, Zhang Y, Hong W, Dong Y, Xie Z, Quan Q. 2016.. Direct tracking of amyloid and tau dynamics in neuroblastoma cells using nanoplasmonic fiber tip probes. . Nano Lett. 16::398994
    [Crossref] [Google Scholar]
  36. 36.
    Cullum BM, Griffin GD, Miller GH, Vo-Dinh T. 2000.. Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. . Anal. Biochem. 277::2532
    [Crossref] [Google Scholar]
  37. 37.
    Plou J, García I, Charconnet M, Astobiza I, García-Astrain C, et al. 2020.. Multiplex SERS detection of metabolic alterations in tumor extracellular media. . Adv. Funct. Mater. 30::1910335
    [Crossref] [Google Scholar]
  38. 38.
    Shalabaeva V, Lovato L, La Rocca R, Messina GC, Dipalo M, et al. 2017.. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy. . PLOS ONE 12::e0175581
    [Crossref] [Google Scholar]
  39. 39.
    Li L, Lu Y, Qian Z, Yang Z, Yang K, et al. 2021.. Ultra-sensitive surface enhanced Raman spectroscopy sensor for in-situ monitoring of dopamine release using zipper-like ortho-nanodimers. . Biosens. Bioelectron. 180::113100
    [Crossref] [Google Scholar]
  40. 40.
    De Marchi S, Bodelón G, Vázquez-Iglesias L, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. 2019.. Surface-enhanced Raman scattering (SERS) imaging of bioactive metabolites in mixed bacterial populations. . Appl. Mater. Today 14::20715
    [Crossref] [Google Scholar]
  41. 41.
    Skinner WH, Chung M, Mitchell S, Akidil A, Fabre K, et al. 2021.. A SERS-active electrospun polymer mesh for spatially localized pH measurements of the cellular microenvironment. . Anal. Chem. 93::1384451
    [Crossref] [Google Scholar]
  42. 42.
    Sun F, Zhang P, Bai T, David Galvan D, Hung H-C, et al. 2015.. Functionalized plasmonic nanostructure arrays for direct and accurate mapping extracellular pH of living cells in complex media using SERS. . Biosens. Bioelectron. 73::2027
    [Crossref] [Google Scholar]
  43. 43.
    Xu M, Ma X, Wei T, Lu Z-X, Ren B. 2018.. In situ imaging of live-cell extracellular pH during cell apoptosis with surface-enhanced Raman spectroscopy. . Anal. Chem. 90::1392228
    [Crossref] [Google Scholar]
  44. 44.
    Garg A, Nam W, Wang W, Vikesland P, Zhou W. 2023.. In situ spatiotemporal SERS measurements and multivariate analysis of virally infected bacterial biofilms using nanolaminated plasmonic crystals. . ACS Sens. 8::113242
    [Crossref] [Google Scholar]
  45. 45.
    Zhang Y, Gallego I, Plou J, Pedraz JL, Liz-Marzán LM, et al. 2021.. SERS monitoring of local pH in encapsulated therapeutic cells. . Nanoscale 13::1435462
    [Crossref] [Google Scholar]
  46. 46.
    Skinner WH, Robinson N, Hardisty GR, Fleming H, Geddis A, et al. 2023.. SERS microsensors for pH measurements in the lumen and ECM of stem cell derived human airway organoids. . Chem. Commun. 59::324952
    [Crossref] [Google Scholar]
  47. 47.
    Zhou H, Xu L, Ren Z, Zhu J, Lee C. 2023.. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. . Nanoscale Adv. 5::53870
    [Crossref] [Google Scholar]
  48. 48.
    Lussier F, Thibault V, Charron B, Wallace GQ, Masson J-F. 2020.. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. . Trends Anal. Chem. 124::115796
    [Crossref] [Google Scholar]
  49. 49.
    Masson J-F, Biggins JS, Ringe E. 2023.. Machine learning for nanoplasmonics. . Nat. Nanotechnol. 18::11123
    [Crossref] [Google Scholar]
  50. 50.
    Plou J, Valera PS, García I, Vila-Liarte D, Renero-Lecuna C, et al. 2023.. Machine learning-assisted high-throughput SERS classification of cell secretomes. . Small 19::2207658
    [Crossref] [Google Scholar]
  51. 51.
    Lussier F, Missirlis D, Spatz JP, Masson J-F. 2019.. Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients near cells. . ACS Nano 13::140311
    [Google Scholar]
  52. 52.
    Pan X-T, Yang X-Y, Mao T-Q, Liu K, Chen Z-Z, et al. 2022.. Super-long SERS active single silver nanowires for molecular imaging in 2D and 3D cell culture models. . Biosensors 12::87585
    [Crossref] [Google Scholar]
  53. 53.
    Fortuni B, Ricci M, Vitale R, Inose T, Zhang Q, et al. 2023.. SERS endoscopy for monitoring intracellular drug dynamics. . ACS Sens. 8::234047
    [Crossref] [Google Scholar]
  54. 54.
    Zheng D, Pisano F, Collard L, Balena A, Pisanello M, et al. 2023.. Toward plasmonic neural probes: SERS detection of neurotransmitters through gold-nanoislands-decorated tapered optical fibers with sub-10 nm gaps. . Adv. Mater. 35::220090211
    [Crossref] [Google Scholar]
  55. 55.
    Moody AS, Sharma B. 2018.. Multi-metal, multi-wavelength surface-enhanced Raman spectroscopy detection of neurotransmitters. . ACS Chem. Neurosci. 9::138087
    [Crossref] [Google Scholar]
  56. 56.
    Zhu H, Lussier F, Ducrot C, Bourque M-J, Spatz JP, et al. 2019.. Block copolymer brush layer-templated gold nanoparticles on nanofibers for surface-enhanced Raman scattering optophysiology. . ACS Appl. Mater. Interfaces 11::437384
    [Crossref] [Google Scholar]
  57. 57.
    Hanif S, Liu H-L, Ahmed SA, Yang J-M, Zhou Y, et al. 2017.. Nanopipette-based SERS aptasensor for subcellular localization of cancer biomarker in single cells. . Anal. Chem. 89::991117
    [Crossref] [Google Scholar]
  58. 58.
    Liu J, Yin D, Wang S, Chen H-Y, Liu Z. 2016.. Probing low-copy-number proteins in a single living cell. . Angew. Chem. Int. Ed. 55::1321518
    [Crossref] [Google Scholar]
  59. 59.
    Masson J-F, Breault-Turcot J, Faid R, Poirier-Richard H-P, Yockell-Lelièvre H, et al. 2014.. Plasmonic nanopipette biosensor. . Anal. Chem. 86::89989005
    [Crossref] [Google Scholar]
  60. 60.
    Guo J, Rubfiaro AS, Lai Y, Moscoso J, Chen F, et al. 2020.. Dynamic single-cell intracellular pH sensing using a SERS-active nanopipette. . Analyst 145::485259
    [Crossref] [Google Scholar]
  61. 61.
    Zhang Q, Inose T, Ricci M, Li J, Tian Y, et al. 2021.. Gold-photodeposited silver nanowire endoscopy for cytosolic and nuclear pH sensing. . ACS Appl. Nano Mater. 4::988694
    [Crossref] [Google Scholar]
  62. 62.
    Zhao X, Luo X, Bazuin CG, Masson J-F. 2020.. In situ growth of AuNPs on glass nanofibers for SERS sensors. . ACS Appl. Mater. Interfaces 12::5534961
    [Crossref] [Google Scholar]
  63. 63.
    Chen Y, Mei R, Wang Y, Liu W-H, Chen L-X. 2023.. Detection of single cell intracellular environment by surface enhanced Raman scattering nanotip. . Chin. J. Anal. Chem. 51::35663
    [Google Scholar]
  64. 64.
    Nguyen TD, Song MS, Ly NH, Lee SY, Joo S-W. 2019.. Nanostars on nanopipette tips: a Raman probe for quantifying oxygen levels in hypoxic single cells and tumours. . Angew. Chem. Int. Ed. 58::271014
    [Crossref] [Google Scholar]
  65. 65.
    Hanif S, Liu H, Chen M, Muhammad P, Zhou Y, et al. 2017.. Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells. . Anal. Chem. 89::252230
    [Crossref] [Google Scholar]
  66. 66.
    Zhao X, Campbell S, El-Khoury PZ, Jia Y, Wallace GQ, et al. 2021.. Surface-enhanced Raman scattering optophysiology nanofibers for the detection of heavy metals in single breast cancer cells. . ACS Sens. 6::164962
    [Crossref] [Google Scholar]
  67. 67.
    Scaffidi JP, Gregas MK, Seewaldt V, Vo-Dinh T. 2009.. SERS-based plasmonic nanobiosensing in single living cells. . Anal. Bioanal. Chem. 393::113541
    [Crossref] [Google Scholar]
  68. 68.
    Chen J, Wang J, Geng Y, Yue J, Shi W, et al. 2021.. Single-cell oxidative stress events revealed by a renewable SERS nanotip. . ACS Sens. 6::166370
    [Crossref] [Google Scholar]
  69. 69.
    Huang Z, Lei X, Liu Y, Wang Z, Wang X, et al. 2015.. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. . ACS Appl. Mater. Interfaces 7::1724754
    [Crossref] [Google Scholar]
  70. 70.
    Wallace GQ, Delignat-Lavaud B, Zhao X, Trudeau L-É, Masson J-F. 2020.. A blueprint for performing SERS measurements in tissue with plasmonic nanofibers. . J. Chem. Phys. 153::124702
    [Crossref] [Google Scholar]
  71. 71.
    Zhu H, Masson JF, Bazuin CG. 2020.. Templating gold nanoparticles on nanofibers coated with a block copolymer brush for nanosensor applications. . ACS Appl. Nano Mater. 3::51629
    [Crossref] [Google Scholar]
  72. 72.
    Ricci M, Fortuni B, Vitale R, Zhang Q, Fujita Y, et al. 2021.. Gold-etched silver nanowire endoscopy: toward a widely accessible platform for surface-enhanced Raman scattering-based analysis in living cells. . Anal. Chem. 93::503745
    [Crossref] [Google Scholar]
  73. 73.
    Pisano F, Kashif MF, Balena A, Pisanello M, De Angelis F, et al. 2022.. Plasmonics on a neural implant: engineering light–matter interactions on the nonplanar surface of tapered optical fibers. . Adv. Optical Mater. 10::2101649
    [Crossref] [Google Scholar]
  74. 74.
    Tan YB, Zou JM, Gu N. 2015.. Preparation of stabilizer-free silver nanoparticle-coated micropipettes as surface-enhanced Raman scattering substrate for single cell detection. . Nanoscale Res. Lett. 10::417
    [Crossref] [Google Scholar]
  75. 75.
    Chen Z, Dai Z, Chen N, Liu S, Pang F, et al. 2014.. Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection. . IEEE Photon. Technol. Lett. 26::77780
    [Crossref] [Google Scholar]
  76. 76.
    Zhu H, Masson JF, Bazuin CG. 2019.. Monolayer arrays of nanoparticles on block copolymer brush films. . Langmuir 35::511424
    [Crossref] [Google Scholar]
  77. 77.
    Niu JJ, Schrlau MG, Friedman G, Gogotsi Y. 2011.. Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy. . Small 7::54045
    [Crossref] [Google Scholar]
  78. 78.
    Lu G, De Keersmaecker H, Su L, Kenens B, Rocha S, et al. 2014.. Live-cell SERS endoscopy using plasmonic nanowire waveguides. . Adv. Mater. 26::512428
    [Crossref] [Google Scholar]
  79. 79.
    Yuan H, Liu J, Lu Y, Wang Z, Wei G, et al. 2017.. Nano endoscopy with plasmon-enhanced fluorescence for sensitive sensing inside ultrasmall volume samples. . Anal. Chem. 89::104548
    [Crossref] [Google Scholar]
  80. 80.
    Li P, Zhou B, Cao X, Tang X, Yang L, et al. 2017.. Functionalized acupuncture needle as surface-enhanced resonance Raman spectroscopy sensor for rapid and sensitive detection of dopamine in serum and cerebrospinal fluid. . Chem. Eur. J. 23::1427885
    [Crossref] [Google Scholar]
  81. 81.
    Brasiliense V, Park JE, Chen Z, Van Duyne RP, Schatz GC. 2021.. Nanopipette-based electrochemical SERS platforms: using electrodeposition to produce versatile and adaptable plasmonic substrates. . J. Raman Spectrosc. 52::33947
    [Crossref] [Google Scholar]
  82. 82.
    Liu H-L, Cao J, Hanif S, Yuan C, Pang J, et al. 2017.. Size-controllable gold nanopores with high SERS activity. . Anal. Chem. 89::1040713
    [Crossref] [Google Scholar]
  83. 83.
    Stetciura IY, Yashchenok A, Masic A, Lyubin EV, Inozemtseva OA, et al. 2015.. Composite SERS-based satellites navigated by optical tweezers for single cell analysis. . Analyst 140::498186
    [Crossref] [Google Scholar]
  84. 84.
    Tan WH, Shi ZY, Kopelman R. 1992.. Development of submicron chemical fiber optic sensors. . Anal. Chem. 64::298590
    [Crossref] [Google Scholar]
  85. 85.
    Shibata T, Furukawa H, Ito Y, Nagahama M, Hayashi T, et al. 2020.. Photocatalytic nanofabrication and intracellular Raman imaging of living cells with functionalized AFM probes. . Micromachines 11::495507
    [Crossref] [Google Scholar]
  86. 86.
    Zhou YS, Sun LH, Watanabe S, Ando T. 2022.. Recent advances in the glass pipet: from fundament to applications. . Anal. Chem. 94::32435
    [Crossref] [Google Scholar]
  87. 87.
    Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, et al. 2016.. Metabolomics enables precision medicine: “a white paper, community perspective. .” Metabolomics 12::149
    [Crossref] [Google Scholar]
  88. 88.
    Nguyen TD, Song MS, Ly NH, Lee SY, Joo SW. 2019.. Nanostars on nanopipette tips: a Raman probe for quantifying oxygen levels in hypoxic single cells and tumours. . Angew. Chem. Int. Ed. 58::271014
    [Crossref] [Google Scholar]
  89. 89.
    Shipkova M, Jamoussi H. 2022.. Therapeutic drug monitoring of antibiotic drugs: the role of the clinical laboratory. . Ther. Drug Monit. 44::3249
    [Crossref] [Google Scholar]
  90. 90.
    Zhao LP, Zhang X, Wang XX, Guan XW, Zhang WF, Ma JL. 2021.. Recent advances in selective photothermal therapy of tumor. . J. Nanobiotechnol. 19::33549
    [Crossref] [Google Scholar]
  91. 91.
    Austin LA, Mackey MA, Dreaden EC, El-Sayed MA. 2014.. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. . Arch. Toxicol. 88::1391417
    [Crossref] [Google Scholar]
  92. 92.
    Ngo DN, Ho V, Kim G, Song MS, Kim MR, et al. 2022.. Raman thermometry nanopipettes in cancer photothermal therapy. . Anal. Chem. 94::646372
    [Crossref] [Google Scholar]
  93. 93.
    Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A. 2014.. The chemistry, physiology and pathology of pH in cancer. . Philos. Trans. R. Soc. B 369::20130099
    [Crossref] [Google Scholar]
  94. 94.
    Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, et al. 2012.. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. . Nature 487::10913
    [Crossref] [Google Scholar]
  95. 95.
    Anderson M, Moshnikova A, Engelman DM, Reshetnyak YK, Andreev OA. 2016.. Probe for the measurement of cell surface pH in vivo and ex vivo. . PNAS 113::817781
    [Crossref] [Google Scholar]
  96. 96.
    Corbet C, Feron O. 2017.. Tumour acidosis: from the passenger to the driver's seat. . Nat. Rev. Cancer 17::57793
    [Crossref] [Google Scholar]
  97. 97.
    Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. 2019.. Targeting tumor microenvironment for cancer therapy. . Int. J. Mol. Sci. 20::84070
    [Crossref] [Google Scholar]
  98. 98.
    Chandra S, Ravula S, Errabelli P, Spencer H, Singh M. 2023.. No good deed: acidosis in chronic kidney and liver disease. . J. Renal Nutr. 33::499502
    [Crossref] [Google Scholar]
  99. 99.
    Lussier F, Brulé T, Bourque M-J, Ducrot C, Trudeau L-É, Masson J-F. 2017.. Dynamic SERS nanosensor for neurotransmitter sensing near neurons. . Faraday Discuss. 205::387407
    [Crossref] [Google Scholar]
  100. 100.
    Fang L, Pan X-T, Liu K, Jiang D, Ye D, et al. 2023.. Surface-roughened SERS-active single silver nanowire for simultaneous detection of intracellular and extracellular pHs. . ACS Appl. Mater. Interfaces 15::2067785
    [Crossref] [Google Scholar]
  101. 101.
    Wang J, Geng Y, Shen Y, Shi W, Xu W, Xu S. 2019.. SERS-active fiber tip for intracellular and extracellular pH sensing in living single cells. . Sens. Actuators B Chem. 290::52734
    [Crossref] [Google Scholar]
  102. 102.
    Zhao X, Campbell S, Wallace GQ, Claing A, Bazuin CG, Masson J-F. 2020.. Branched Au nanoparticles on nanofibers for surface-enhanced Raman scattering sensing of intracellular pH and extracellular pH gradients. . ACS Sens. 5::215567
    [Crossref] [Google Scholar]
  103. 103.
    Lussier F, Brulé T, Vishwakarma M, Das T, Spatz JP, Masson J-F. 2016.. Dynamic-SERS optophysiology: a nanosensor for monitoring cell secretion events. . Nano Lett. 16::386671
    [Crossref] [Google Scholar]
  104. 104.
    Mei R, Wang Y, Zhao X, Shi S, Wang X, et al. 2023.. Skin interstitial fluid-based SERS tags labeled microneedles for tracking of peritonitis progression and treatment effect. . ACS Sens. 8::37280
    [Crossref] [Google Scholar]
  105. 105.
    Sun J, Song Y, Wang M, Zhao P, Gao F, et al. 2022.. Quantitative and noninvasive detection of SAH-related miRNA in cerebrospinal fluids in vivo using SERS sensors based on acupuncture-based technology. . ACS Appl. Mater. Interfaces 14::37088100
    [Crossref] [Google Scholar]
  106. 106.
    Dong J, Tao Q, Guo M, Yan T, Qian W. 2012.. Glucose-responsive multifunctional acupuncture needle: a universal SERS detection strategy of small biomolecules in vivo. . Anal. Methods 4::387983
    [Crossref] [Google Scholar]
  107. 107.
    Dong J, Chen Q, Rong C, Li D, Rao Y. 2011.. Minimally invasive surface-enhanced Raman scattering detection with depth profiles based on a surface-enhanced Raman scattering-active acupuncture needle. . Anal. Chem. 83::619195
    [Crossref] [Google Scholar]
  108. 108.
    Han S, Sun J, Wang J, Qian W, Dong J. 2018.. A built-in surface-enhanced Raman scattering-active microneedle for sampling in vivo and surface-enhanced Raman scattering detection ex vivo of NO. . J. Raman Spectrosc. 49::174755
    [Crossref] [Google Scholar]
  109. 109.
    Liu J, Liu Z, Wang W, Tian Y. 2021.. Real-time tracking and sensing of Cu+ and Cu2+ with a single SERS probe in the live brain: toward understanding why copper ions were increased upon ischemia. . Angew. Chem. Int. Ed. 60::2135159
    [Crossref] [Google Scholar]
  110. 110.
    Pan C, Zhang S, Xiong X, Li Z, Ai B, et al. 2022.. Dynamically monitoring pH in living organisms based on a SERS-active optical fiber. . Adv. Mater. Interfaces 9::2200328
    [Crossref] [Google Scholar]
  111. 111.
    Matousek P, Clark IP, Draper ERC, Morris MD, Goodship AE, et al. 2005.. Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. . Appl. Spectrosc. 59::393400
    [Crossref] [Google Scholar]
  112. 112.
    Stone N, Faulds K, Graham D, Matousek P. 2010.. Prospects of deep Raman spectroscopy for noninvasive detection of conjugated surface enhanced resonance Raman scattering nanoparticles buried within 25 mm of mammalian tissue. . Anal. Chem. 82::396973
    [Crossref] [Google Scholar]
  113. 113.
    Moody AS, Baghernejad PC, Webb KR, Sharma B. 2017.. Surface enhanced spatially offset Raman spectroscopy detection of neurochemicals through the skull. . Anal. Chem. 89::568993
    [Crossref] [Google Scholar]
  114. 114.
    Sharma B, Ma K, Glucksberg MR, Van Duyne RP. 2013.. Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. . J. Am. Chem. Soc. 135::1729093
    [Crossref] [Google Scholar]
  115. 115.
    Deriu C, Thakur S, Tammaro O, Fabris L. 2023.. Challenges and opportunities for SERS in the infrared: materials and methods. . Nanoscale Adv. 5::213266
    [Crossref] [Google Scholar]
  116. 116.
    Chisanga M, Muhamadali H, Ellis DI, Goodacre R. 2018.. Surface-enhanced Raman scattering (SERS) in microbiology: illumination and enhancement of the microbial world. . Appl. Spectrosc. 72::9871000
    [Crossref] [Google Scholar]
  117. 117.
    Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, et al. 2015.. A tutorial review: Metabolomics and partial least squares-discriminant analysis—a marriage of convenience or a shotgun wedding. . Anal. Chim. Acta 879::1023
    [Crossref] [Google Scholar]
  118. 118.
    Bro R, Smilde AK. 2014.. Principal component analysis. . Anal. Methods 6::281231
    [Crossref] [Google Scholar]
  119. 119.
    Goodacre R. 2003.. Explanatory analysis of spectroscopic data using machine learning of simple, interpretable rules. . Vib. Spectrosc. 32::3345
    [Crossref] [Google Scholar]
  120. 120.
    Shin H, Oh S, Hong S, Kang M, Kang D, et al. 2020.. Early-stage lung cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. . ACS Nano 14::543544
    [Crossref] [Google Scholar]
  121. 121.
    Nam W, Chen H, Ren X, Agah M, Kim I, Zhou W. 2022.. Nanolaminate plasmonic substrates for high-throughput living cell SERS measurements and artificial neural network classification of cellular drug responses. . ACS Appl. Nano Mater. 5::1035868
    [Crossref] [Google Scholar]
  122. 122.
    Mendez KM, Reinke SN, Broadhurst DI. 2019.. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. . Metabolomics 15::150
    [Crossref] [Google Scholar]
  123. 123.
    Broadhurst DI, Kell DB. 2006.. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. . Metabolomics 2::17196
    [Crossref] [Google Scholar]
  124. 124.
    Harrington PDB. 2006.. Statistical validation of classification and calibration models using bootstrapped Latin partitions. . Trends Anal. Chem. 25::111224
    [Crossref] [Google Scholar]
  125. 125.
    Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, et al. 2007.. Proposed minimum reporting standards for data analysis in metabolomics. . Metabolomics 3::23141
    [Crossref] [Google Scholar]
  126. 126.
    Morais CLM, Lima KMG, Singh M, Martin FL. 2020.. Tutorial: multivariate classification for vibrational spectroscopy in biological samples. . Nat. Protoc. 15::214362
    [Crossref] [Google Scholar]
  127. 127.
    Han RC, Ketkaew R, Luber S. 2022.. A concise review on recent developments of machine learning for the prediction of vibrational spectra. . J. Phys. Chem. A 126::80112
    [Crossref] [Google Scholar]
  128. 128.
    Zhang YQ, Ye XJ, Xu GX, Jin XL, Luan MM, et al. 2016.. Identification and distinction of non-small-cell lung cancer cells by intracellular SERS nanoprobes. . RSC Adv. 6::54017
    [Crossref] [Google Scholar]
  129. 129.
    Zhang Q, Inose T, Ricci M, Li JT, Tian Y, et al. 2021.. Gold-photodeposited silver nanowire endoscopy for cytosolic and nuclear pH sensing. . ACS Appl. Nano Mater. 4::988694
    [Crossref] [Google Scholar]
  130. 130.
    Chisanga M, Linton D, Muhamadali H, Ellis DI, Kimber RL, et al. 2020.. Rapid differentiation of Campylobacter jejuni cell wall mutants using Raman spectroscopy, SERS and mass spectrometry combined with chemometrics. . Analyst 145::123649
    [Crossref] [Google Scholar]
  131. 131.
    Chisanga M, Muhamadali H, Kimber R, Goodacre R. 2017.. Quantitative detection of isotopically enriched E. coli cells by SERS. . Faraday Discuss. 205::33143
    [Crossref] [Google Scholar]
  132. 132.
    Zhang P, Wang LM, Fang YP, Zheng DW, Lin TF, Wang HQ. 2019.. Label-free exosomal detection and classification in rapid discriminating different cancer types based on specific Raman phenotypes and multivariate statistical analysis. . Molecules 24::294761
    [Crossref] [Google Scholar]
  133. 133.
    Patel IS, Premasiri WR, Moir DT, Ziegler LD. 2008.. Barcoding bacterial cells: a SERS-based methodology for pathogen identification. . J. Raman Spectrosc. 39::166072
    [Crossref] [Google Scholar]
  134. 134.
    AlMasoud N, Muhamadali H, Chisanga M, AlRabiah H, Lima CA, Goodacre R. 2021.. Discrimination of bacteria using whole organism fingerprinting: the utility of modern physicochemical techniques for bacterial typing. . Analyst 146::77088
    [Crossref] [Google Scholar]
  135. 135.
    Zivanovic V, Seifert S, Drescher D, Schrade P, Werner S, et al. 2019.. Optical nanosensing of lipid accumulation due to enzyme inhibition in live cells. . ACS Nano 13::936375
    [Crossref] [Google Scholar]
  136. 136.
    Diao XK, Li XL, Hou SP, Li HJ, Qi GH, Jin YD. 2023.. Machine learning-based label-free SERS profiling of exosomes for accurate fuzzy diagnosis of cancer and dynamic monitoring of drug therapeutic processes. . Anal. Chem. 95::755259
    [Crossref] [Google Scholar]
  137. 137.
    Leong SX, Leong YX, Tan EX, Sim HYF, Koh CSL, et al. 2022.. Noninvasive and point-of-care surface-enhanced Raman scattering (SERS)-based breathalyzer for mass screening of coronavirus disease 2019 (COVID-19) under 5 min. . ACS Nano 16::262939
    [Crossref] [Google Scholar]
  138. 138.
    Chisanga M, Williams H, Boudreau D, Pelletier JN, Trottier S, Masson JF. 2023.. Label-free SERS for rapid differentiation of SARS-CoV-2-induced serum metabolic profiles in non-hospitalized adults. . Anal. Chem. 95::363846
    [Crossref] [Google Scholar]
  139. 139.
    Chisanga M, Stuible M, Gervais C, L'Abbé D, Cass B, et al. 2022.. SERS-based assay for multiplexed detection of cross-reactivity and persistence of antibodies against the spike of the native, P.1 and B.1.617.2 SARS-CoV-2 in non-hospitalised adults. . Sens. Diagn. 1::85166
    [Crossref] [Google Scholar]
  140. 140.
    Kazemzadeh M, Martinez-Calderon M, Xu WL, Chamley LW, Hisey CL, Broderick NGR. 2022.. Cascaded deep convolutional neural networks as improved methods of preprocessing Raman spectroscopy data. . Anal. Chem. 94::1290718
    [Crossref] [Google Scholar]
  141. 141.
    Premachandran S, Haldavnekar R, Das S, Venkatakrishnan K, Tan B. 2022.. Deep surveillance of brain cancer using self- functionalized 3D nanoprobes for noninvasive liquid biopsy. . ACS Nano 16::1794864
    [Crossref] [Google Scholar]
  142. 142.
    Ryzhikova E, Ralbovsky NM, Halamkova L, Celmins D, Malone P, et al. 2019.. Multivariate statistical analysis of surface enhanced Raman spectra of human serum for Alzheimer's disease diagnosis. . Appl. Sci.-Basel 9::325671
    [Crossref] [Google Scholar]
  143. 143.
    Erzina M, Trelin A, Guselnikova O, Dvorankova B, Strnadova K, et al. 2020.. Precise cancer detection via the combination of functionalized SERS surfaces and convolutional neural network with independent inputs. . Sens. Actuators B Chem. 308::127660
    [Crossref] [Google Scholar]
  144. 144.
    Lin XL, Lin D, Chen Y, Lin JC, Weng SY, et al. 2021.. High throughput blood analysis based on deep learning algorithm and self-positioning super-hydrophobic SERS platform for non-invasive multi-disease screening. . Adv. Funct. Mater. 31::210338291
    [Crossref] [Google Scholar]
  145. 145.
    Xie YCZ, Su XM, Wen Y, Zheng C, Li M. 2022.. Artificial intelligent label-free SERS profiling of serum exosomes for breast cancer diagnosis and postoperative assessment. . Nano Lett. 9::791018
    [Crossref] [Google Scholar]
  146. 146.
    Ciloglu FU, Caliskan A, Saridag AM, Kilic IH, Tokmakci M, et al. 2021.. Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniques. . Sci. Rep. 11::18444
    [Crossref] [Google Scholar]
  147. 147.
    Thrift WJ, Ronaghi S, Samad M, Wei H, Nguyen DG, et al. 2020.. Deep learning analysis of vibrational spectra of bacterial lysate for rapid antimicrobial susceptibility testing. . ACS Nano 14::1533648
    [Crossref] [Google Scholar]
  148. 148.
    Thomsen BL, Christensen JB, Rodenko O, Usenov I, Grønnemose RB, et al. 2022.. Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning. . Sci. Rep. 12::16436
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-012448
Loading
/content/journals/10.1146/annurev-anchem-061622-012448
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error