1932

Abstract

Nucleic acid testing is the cornerstone of modern molecular diagnostics. This review describes the current status and future directions of molecular diagnostics, focusing on four major techniques: polymerase chain reaction (PCR), next-generation sequencing (NGS), isothermal amplification methods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods. We explore the advantages and limitations of each technique, describe how each overlaps with or complements other techniques, and examine current clinical offerings. This review provides a broad perspective into the landscape of molecular diagnostics and highlights potential future directions in this rapidly evolving field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-015112
2024-07-17
2024-10-08
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-015112.html?itemId=/content/journals/10.1146/annurev-anchem-061622-015112&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kleppe K, Ohtsuka E, Kleppe R, Molineux I, Khorana HG. 1971.. Studies on polynucleotides: XCVI. Repair replication of short synthetic DNA's as catalyzed by DNA polymerases. . J. Mol. Biol. 56::34161
    [Crossref] [Google Scholar]
  2. 2.
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. 1986.. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. . Cold Spring Harbor Symp. Quant. Biol. 51::26373
    [Crossref] [Google Scholar]
  3. 3.
    Zhu H, Zhang H, Xu Y, Laššáková S, Korabečná M, Neužil P. 2020.. PCR past, present and future. . Biotechniques 69::31725
    [Crossref] [Google Scholar]
  4. 4.
    Singh J, Birbian N, Sinha S, Goswami A. 2014.. A critical review on PCR, its types and applications. . Int. J. Adv. Res. Biol. Sci. 1::6580
    [Google Scholar]
  5. 5.
    Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, et al. 1988.. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. . Science 239::48791
    [Crossref] [Google Scholar]
  6. 6.
    Borst A, Box ATA, Fluit AC. 2004.. False-positive results and contamination in nucleic acid amplification assays: suggestions for a prevent and destroy strategy. . Eur. J. Clin. Microbiol. Infect. Dis. 23::28999
    [Crossref] [Google Scholar]
  7. 7.
    Sidstedt M, Rådström P, Hedman J. 2020.. PCR inhibition in qPCR, dPCR and MPS—mechanisms and solutions. . Anal. Bioanal. Chem. 412::200923
    [Crossref] [Google Scholar]
  8. 8.
    Palacín-Aliana I, García-Romero N, Asensi-Puig A, Carrión-Navarro J, González-Rumayor V, Ayuso-Sacido Á. 2021.. Clinical utility of liquid biopsy-based actionable mutations detected via ddPCR. . Biomedicines 9::906
    [Crossref] [Google Scholar]
  9. 9.
    Luu MH, Press RD. 2013.. BCR–ABL PCR testing in chronic myelogenous leukemia: molecular diagnosis for targeted cancer therapy and monitoring. . Expert Rev. Mol. Diagn. 13::74962
    [Crossref] [Google Scholar]
  10. 10.
    Gustafson D, Tyryshkin K, Renwick N. 2016.. microRNA-guided diagnostics in clinical samples. . Best Pract. Res. Clin. Endocrinol. Metab. 30::56375
    [Crossref] [Google Scholar]
  11. 11.
    van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, et al. 2003.. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98–3936. . Leukemia 17::2257317
    [Crossref] [Google Scholar]
  12. 12.
    Eckbo EJ, Locher K, Caza M, Li L, Lavergne V, Charles M. 2021.. Evaluation of the BioFire® COVID-19 test and Respiratory Panel 2.1 for rapid identification of SARS-CoV-2 in nasopharyngeal swab samples. . Diagn. Microbiol. Infect. Dis. 99::115260
    [Crossref] [Google Scholar]
  13. 13.
    Rhoads DD, Pournaras S, Leber A, Balada-Llasat J-M, Harrington A, et al. 2023.. Multicenter evaluation of the BIOFIRE Blood Culture Identification 2 Panel for detection of bacteria, yeasts, and antimicrobial resistance genes in positive blood culture samples. . J. Clin. Microbiol. 61::e01891-22
    [Crossref] [Google Scholar]
  14. 14.
    Cordes AK, Rehrauer WM, Accola MA, Wölk B, Hilfrich B, Heim A. 2021.. Fully automated detection and differentiation of pandemic and endemic coronaviruses (NL63, 229E, HKU1, OC43 and SARS-CoV-2) on the hologic panther fusion. . J. Med. Virol. 93::443845
    [Crossref] [Google Scholar]
  15. 15.
    Rocchetti TT, Martins KB, Martins PYF, Oliveira RA, Mondelli AL, et al. 2018.. Detection of the mecA gene and identification of Staphylococcus directly from blood culture bottles by multiplex polymerase chain reaction. Braz. . J. Infect. Dis. 22::99105
    [Google Scholar]
  16. 16.
    Ubukata K, Nonoguchi R, Matsuhashi M, Konno M. 1989.. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. . J. Bacteriol. 171::288285
    [Crossref] [Google Scholar]
  17. 17.
    Klüter H, Fehlau K, Panzer S, Kirchner H, Bein G. 1996.. Rapid typing for human platelet antigen systems -1, -2, -3 and -5 by PCR amplification with sequence-specific primers. . Vox Sanguinis 71::12125
    [Google Scholar]
  18. 18.
    Sheldon S, Poulton K. 2006.. HLA typing and its influence on organ transplantation. . In Transplantation Immunology: Methods and Protocols, ed. P Hornick, M Rose , pp. 15774. Totowa, NJ:: Humana Press
    [Google Scholar]
  19. 19.
    Wu R. 1970.. Nucleotide sequence analysis of DNA: I. Partial sequence of the cohesive ends of bacteriophage λ and 186 DNA. . J. Mol. Biol. 51::50121
    [Crossref] [Google Scholar]
  20. 20.
    Maxam AM, Gilbert W. 1977.. A new method for sequencing DNA. . PNAS 74::56064
    [Crossref] [Google Scholar]
  21. 21.
    Sanger F, Nicklen S, Coulson AR. 1977.. DNA sequencing with chain-terminating inhibitors. . PNAS 74::546367
    [Crossref] [Google Scholar]
  22. 22.
    Smith LM, Fung S, Hunkapiller MW, Hunkapiller TJ, Hood LE. 1985.. The synthesis of oligonucleotides containing an aliphatic amino group at the 5′ terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. . Nucleic Acids Res. 13::2399412
    [Crossref] [Google Scholar]
  23. 23.
    Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, et al. 1986.. Fluorescence detection in automated DNA sequence analysis. . Nature 321::67479
    [Crossref] [Google Scholar]
  24. 24.
    Heller MJ. 2002.. DNA microarray technology: devices, systems, and applications. . Annu. Rev. Biomed. Eng. 4::12953
    [Crossref] [Google Scholar]
  25. 25.
    Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. 1991.. Light-directed, spatially addressable parallel chemical synthesis. . Science 251::76773
    [Crossref] [Google Scholar]
  26. 26.
    Schena M, Shalon D, Davis RW, Brown PO. 1995.. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. . Science 270::46770
    [Crossref] [Google Scholar]
  27. 27.
    Steemers FJ, Ferguson JA, Walt DR. 2000.. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. . Nat. Biotechnol. 18::9194
    [Crossref] [Google Scholar]
  28. 28.
    Walt DR. 2000.. Bead-based fiber-optic arrays. . Science 287::45152
    [Crossref] [Google Scholar]
  29. 29.
    Slatko BE, Gardner AF, Ausubel FM. 2018.. Overview of next-generation sequencing technologies. . Curr. Protocols Mol. Biol. 122::e59
    [Crossref] [Google Scholar]
  30. 30.
    Mardis ER. 2013.. Next-generation sequencing platforms. . Annu. Rev. Anal. Chem. 6::287303
    [Crossref] [Google Scholar]
  31. 31.
    Yohe S, Thyagarajan B. 2017.. Review of clinical next-generation sequencing. . Arch. Pathol. Lab. Med. 141::154457
    [Crossref] [Google Scholar]
  32. 32.
    Wetterstrand KA. 2021.. The cost of sequencing a human genome. Natl. Hum. Genome Res. Inst., US Natl. Inst. Health, Washington, DC:. https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
    [Google Scholar]
  33. 33.
    Behjati S, Tarpey PS. 2013.. What is next generation sequencing?. Arch. Dis. Child. Educ. Pract. Ed. 98::23638
    [Crossref] [Google Scholar]
  34. 34.
    Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, et al. 2018.. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines. . J. Mol. Diagnost. 20::427
    [Crossref] [Google Scholar]
  35. 35.
    Chen Y-C, Liu T, Yu C-H, Chiang T-Y, Hwang C-C. 2013.. Effects of GC bias in next-generation-sequencing data on de novo genome assembly. . PLOS ONE 8::e62856
    [Crossref] [Google Scholar]
  36. 36.
    Treangen TJ, Salzberg SL. 2012.. Repetitive DNA and next-generation sequencing: computational challenges and solutions. . Nat. Rev. Genet. 13::3646
    [Crossref] [Google Scholar]
  37. 37.
    Singh AK, Olsen MF, Lavik LAS, Vold T, Drabløs F, Sjursen W. 2021.. Detecting copy number variation in next generation sequencing data from diagnostic gene panels. . BMC Med. Genom. 14::214
    [Crossref] [Google Scholar]
  38. 38.
    Garcia EP, Minkovsky A, Jia Y, Ducar MD, Shivdasani P, et al. 2017.. Validation of OncoPanel: a targeted next-generation sequencing assay for the detection of somatic variants in cancer. . Arch. Pathol. Lab. Med. 141::75158
    [Crossref] [Google Scholar]
  39. 39.
    Kluk MJ, Lindsley RC, Aster JC, Lindeman NI, Szeto D, et al. 2016.. Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies. . J. Mol. Diagnost. 18::50715
    [Crossref] [Google Scholar]
  40. 40.
    Adams E, Sepich-Poore GD, Miller-Montgomery S, Knight R. 2022.. Using all our genomes: blood-based liquid biopsies for the early detection of cancer. . VIEW 3::20200118
    [Crossref] [Google Scholar]
  41. 41.
    Stebner A, Ensser A, Geißdörfer W, Bozhkov Y, Lang R. 2021.. Molecular diagnosis of polymicrobial brain abscesses with 16S-rDNA-based next-generation sequencing. . Clin. Microbiol. Infect. 27::7682
    [Crossref] [Google Scholar]
  42. 42.
    Li Z, Breitwieser FP, Lu J, Jun AS, Asnaghi L, et al. 2018.. Identifying corneal infections in formalin-fixed specimens using next generation sequencing. . Investig. Ophthalmol. Vis. Sci. 59::28088
    [Crossref] [Google Scholar]
  43. 43.
    Morales M. 2021.. The next big thing? Next-generation sequencing of microbial cell-free DNA using the Karius test. . Clin. Microbiol. Newsl. 43::6979
    [Crossref] [Google Scholar]
  44. 44.
    Mellis R, Chandler N, Chitty LS. 2018.. Next-generation sequencing and the impact on prenatal diagnosis. . Expert Rev. Mol. Diagn. 18::68999
    [Crossref] [Google Scholar]
  45. 45.
    Dhombres F, Morgan P, Chaudhari BP, Filges I, Sparks TN, et al. 2022.. Prenatal phenotyping: a community effort to enhance the Human Phenotype Ontology. . Am. J. Med. Genet. C Semin. Med. Genet. 190::23142
    [Crossref] [Google Scholar]
  46. 46.
    Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR. 2012.. Non-invasive prenatal measurement of the fetal genome. . Nature 487::32024
    [Crossref] [Google Scholar]
  47. 47.
    Kitzman JO, Snyder MW, Ventura M, Lewis AP, Qiu R, et al. 2012.. Noninvasive whole-genome sequencing of a human fetus. . Sci. Transl. Med. 4::137ra76
    [Crossref] [Google Scholar]
  48. 48.
    Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. 2016.. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. . Cell 164::5768
    [Crossref] [Google Scholar]
  49. 49.
    Moufarrej MN, Vorperian SK, Wong RJ, Campos AA, Quaintance CC, et al. 2022.. Early prediction of preeclampsia in pregnancy with cell-free RNA. . Nature 602::68994
    [Crossref] [Google Scholar]
  50. 50.
    Duvallet C, Wu F, McElroy KA, Imakaev M, Endo N, et al. 2022.. Nationwide trends in COVID-19 cases and SARS-CoV-2 RNA wastewater concentrations in the United States. . ACS ES&T Water 2::1899909
    [Crossref] [Google Scholar]
  51. 51.
    Price KS, Svenson A, King E, Ready K, Lazarin GA. 2018.. Inherited cancer in the age of next-generation sequencing. . Biol. Res. Nurs. 20::192204
    [Crossref] [Google Scholar]
  52. 52.
    Muzzey D, Evans EA, Lieber C. 2015.. Understanding the basics of NGS: from mechanism to variant calling. . Curr. Genet. Med. Rep. 3::15865
    [Crossref] [Google Scholar]
  53. 53.
    Craw P, Balachandran W. 2012.. Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. . Lab Chip 12::246986
    [Crossref] [Google Scholar]
  54. 54.
    Gill P, Ghaemi A. 2008.. Nucleic acid isothermal amplification technologies—a review. . Nucleosides Nucleotides Nucleic Acids 27::22443
    [Crossref] [Google Scholar]
  55. 55.
    Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, et al. 2014.. Isothermal amplified detection of DNA and RNA. . Mol. BioSyst. 10::970
    [Crossref] [Google Scholar]
  56. 56.
    Ali MM, Li F, Zhang Z, Zhang K, Kang D-K, et al. 2014.. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. . Chem. Soc. Rev. 43::332441
    [Crossref] [Google Scholar]
  57. 57.
    Demidov VV. 2002.. Rolling-circle amplification in DNA diagnostics: the power of simplicity. . Expert Rev. Mol. Diagnost. 2::54248
    [Crossref] [Google Scholar]
  58. 58.
    Xu L, Duan J, Chen J, Ding S, Cheng W. 2021.. Recent advances in rolling circle amplification-based biosensing strategies—a review. . Anal. Chim. Acta 1148::238187
    [Crossref] [Google Scholar]
  59. 59.
    Hellyer TJ, Nadeau JG. 2004.. Strand displacement amplification: a versatile tool for molecular diagnostics. . Expert Rev. Mol. Diagn. 4::25161
    [Crossref] [Google Scholar]
  60. 60.
    Andresen D, von Nickisch-Rosenegk M, Bier FF. 2009.. Helicase-dependent amplification: use in OnChip amplification and potential for point-of-care diagnostics. . Expert Rev. Mol. Diagnost. 9::64550
    [Crossref] [Google Scholar]
  61. 61.
    Jeong Y-J, Park K, Kim D-E. 2009.. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. . Cell. Mol. Life Sci. 66::332536
    [Crossref] [Google Scholar]
  62. 62.
    Compton J. 1991.. Nucleic acid sequence-based amplification. . Nature 350::9192
    [Crossref] [Google Scholar]
  63. 63.
    Piepenburg O, Williams CH, Stemple DL, Armes NA. 2006.. DNA detection using recombination proteins. . PLOS Biol. 4::e204
    [Crossref] [Google Scholar]
  64. 64.
    Crannell ZA, Rohrman B, Richards-Kortum R. 2014.. Equipment-free incubation of recombinase polymerase amplification reactions using body heat. . PLOS ONE 9::e112146
    [Crossref] [Google Scholar]
  65. 65.
    Lobato IM, O'Sullivan CK. 2018.. Recombinase polymerase amplification: basics, applications and recent advances. . Trends Anal. Chem. 98::1935
    [Crossref] [Google Scholar]
  66. 66.
    James A, Macdonald J. 2015.. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. . Expert Rev. Mol. Diagn. 15::147589
    [Crossref] [Google Scholar]
  67. 67.
    Munawar MA. 2022.. Critical insight into recombinase polymerase amplification technology. . Expert Rev. Mol. Diagn. 22::72537
    [Crossref] [Google Scholar]
  68. 68.
    Daher RK, Stewart G, Boissinot M, Bergeron MG. 2016.. Recombinase polymerase amplification for diagnostic applications. . Clin. Chem. 62::94758
    [Crossref] [Google Scholar]
  69. 69.
    Li J, Macdonald J, von Stetten F. 2019.. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. . Analyst 144::3167
    [Crossref] [Google Scholar]
  70. 70.
    Mekuria TA, Zhang S, Eastwell KC. 2014.. Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. . J. Virol. Methods 205::2430
    [Crossref] [Google Scholar]
  71. 71.
    US Food and Drug Administration. 2023.. In vitro diagnostics EUAs—molecular diagnostic tests for SARS-CoV-2. . US Food and Drug Administration. https://www.fda.gov/medical-devices/covid-19-emergency-use-authorizations-medical-devices/in-vitro-diagnostics-euas-molecular-diagnostic-tests-sars-cov-2
    [Google Scholar]
  72. 72.
    GenomeWeb. 2023.. Coronavirus test tracker: commercially available COVID-19 diagnostic tests. . GenomeWeb. https://www.360dx.com/coronavirus-test-tracker-launched-covid-19-tests
    [Google Scholar]
  73. 73.
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, et al. 2000.. Loop-mediated isothermal amplification of DNA. . Nucleic Acids Res. 28::E63
    [Crossref] [Google Scholar]
  74. 74.
    Francois P, Tangomo M, Hibbs J, Bonetti EJ, Boehme CC, et al. 2011.. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. . FEMS Immunol. Med. Microbiol. 62::4148
    [Crossref] [Google Scholar]
  75. 75.
    Mori Y, Kitao M, Tomita N, Notomi T. 2004.. Real-time turbidimetry of LAMP reaction for quantifying template DNA. . J. Biochem. Biophys. Methods 59::14557
    [Crossref] [Google Scholar]
  76. 76.
    Mori Y, Nagamine K, Tomita N, Notomi T. 2001.. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. . Biochem. Biophys. Res. Commun. 289::15054
    [Crossref] [Google Scholar]
  77. 77.
    Nagamine K, Hase T, Notomi T. 2002.. Accelerated reaction by loop-mediated isothermal amplification using loop primers. . Mol. Cell. Probes 16::22329
    [Crossref] [Google Scholar]
  78. 78.
    Tomita N, Mori Y, Kanda H, Notomi T. 2008.. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. . Nat. Protoc. 3::87782
    [Crossref] [Google Scholar]
  79. 79.
    Martineau RL, Murray SA, Ci S, Gao W, Chao SH, Meldrum DR. 2017.. Improved performance of loop-mediated isothermal amplification assays via swarm priming. . Anal. Chem. 89::62532
    [Crossref] [Google Scholar]
  80. 80.
    Becherer L, Borst N, Bakheit M, Frischmann S, Zengerle R, von Stetten F. 2020.. Loop-mediated isothermal amplification (LAMP)—review and classification of methods for sequence-specific detection. . Anal. Methods 12::71746
    [Crossref] [Google Scholar]
  81. 81.
    Moehling TJ, Choi G, Dugan LC, Salit M, Meagher RJ. 2021.. LAMP diagnostics at the point-of-care: emerging trends and perspectives for the developer community. . Expert Rev. Mol. Diagn. 21::4361
    [Crossref] [Google Scholar]
  82. 82.
    Notomi T, Mori Y, Tomita N, Kanda H. 2015.. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. . J. Microbiol. 53::15
    [Crossref] [Google Scholar]
  83. 83.
    Tanner NA, Zhang Y, Evans TC. 2015.. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. . BioTechniques 58::5968
    [Crossref] [Google Scholar]
  84. 84.
    Rolando JC, Jue E, Barlow JT, Ismagilov RF. 2020.. Real-time kinetics and high-resolution melt curves in single-molecule digital LAMP to differentiate and study specific and non-specific amplification. . Nucleic Acids Res. 48::e42
    [Crossref] [Google Scholar]
  85. 85.
    Rolando JC, Jue E, Schoepp NG, Ismagilov RF. 2019.. Real-time, digital LAMP with commercial microfluidic chips reveals the interplay of efficiency, speed, and background amplification as a function of reaction temperature and time. . Anal. Chem. 91::103442
    [Crossref] [Google Scholar]
  86. 86.
    Harpaldas H, Arumugam S, Rodriguez CC, Kumar BA, Shi V, Sia SK. 2021.. Point-of-care diagnostics: recent developments in a pandemic age. . Lab Chip 21::451748
    [Crossref] [Google Scholar]
  87. 87.
    US Food and Drug Administration. 2023.. Nucleic acid based tests. . US Food and Drug Administration. https://www.fda.gov/medical-devices/in-vitro-diagnostics/nucleic-acid-based-tests
    [Google Scholar]
  88. 88.
    Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, et al. 2016.. Rapid, low-cost detection of Zika virus using programmable biomolecular components. . Cell 165::125566
    [Crossref] [Google Scholar]
  89. 89.
    Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. 2018.. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. . Science 360::43944
    [Crossref] [Google Scholar]
  90. 90.
    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, et al. 2017.. Nucleic acid detection with CRISPR-Cas13a/C2c2. . Science 356::43842
    [Crossref] [Google Scholar]
  91. 91.
    Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, et al. 2018.. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. . Science 360::43639
    [Crossref] [Google Scholar]
  92. 92.
    de Puig H, Lee RA, Najjar D, Tan X, Soenksen LR, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. . Sci. Adv. 7::eabh2944
    [Crossref] [Google Scholar]
  93. 93.
    Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, et al. 2020.. CRISPR–Cas12-based detection of SARS-CoV-2. . Nat. Biotechnol. 38::87074
    [Crossref] [Google Scholar]
  94. 94.
    Nguyen PQ, Soenksen LR, Donghia NM, Angenent-Mari NM, de Puig H, et al. 2021.. Wearable materials with embedded synthetic biology sensors for biomolecule detection. . Nat. Biotechnol. 39::136674
    [Crossref] [Google Scholar]
  95. 95.
    Tian T, Zhou X. 2023.. CRISPR-based biosensing strategies: technical development and application prospects. . Annu. Rev. Anal. Chem. 16::31132
    [Crossref] [Google Scholar]
  96. 96.
    Joung J, Ladha A, Saito M, Kim N-G, Woolley AE, et al. 2020.. Detection of SARS-CoV-2 with SHERLOCK one-pot testing. . N. Engl. J. Med. 383::149294
    [Crossref] [Google Scholar]
  97. 97.
    Li L, Li S, Wu N, Wu J, Wang G, et al. 2019.. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. . ACS Synth. Biol. 8::222837
    [Crossref] [Google Scholar]
  98. 98.
    Nguyen LT, Smith BM, Jain PK. 2020.. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. . Nat. Commun. 11::4906
    [Crossref] [Google Scholar]
  99. 99.
    Ooi KH, Liu MM, Tay JWD, Teo SY, Kaewsapsak P, et al. 2021.. An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing. . Nat. Commun. 12::1739
    [Crossref] [Google Scholar]
  100. 100.
    Wang Y, Liu KI, Sutrisnoh N-AB, Srinivasan H, Zhang J, et al. 2018.. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells. . Genome Biol. 19::62
    [Crossref] [Google Scholar]
  101. 101.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021.. Highly accurate protein structure prediction with AlphaFold. . Nature 596::58389
    [Crossref] [Google Scholar]
  102. 102.
    Romero PA, Arnold FH. 2009.. Exploring protein fitness landscapes by directed evolution. . Nat. Rev. Mol. Cell Biol. 10::86676
    [Crossref] [Google Scholar]
  103. 103.
    Morrison MS, Podracky CJ, Liu DR. 2020.. The developing toolkit of continuous directed evolution. . Nat. Chem. Biol. 16::61019
    [Crossref] [Google Scholar]
  104. 104.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. 2016.. Rationally engineered Cas9 nucleases with improved specificity. . Science 351::8488
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-015112
Loading
/content/journals/10.1146/annurev-anchem-061622-015112
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error