1932

Abstract

Single-particle (or digital) measurements enhance sensitivity (10- to 100-fold improvement) and uncover heterogeneity within a population (one event in 100 to 10,000). Many biological systems are significantly influenced by rare or infrequent events, and determining what species is present, in what quantity, and the role of that species is critically important to unraveling many questions. To develop these measurement systems, resistive-pulse sensing is used as a label-free, single-particle detection technique and can be combined with a range of functional elements, e.g., mixers, reactors, filters, separators, and pores. Virtually, any two-dimensional layout of the micro- and nanofluidic conduits can be envisioned, designed, and fabricated in the plane of the device. Multiple nanopores in series lead to higher-precision measurements of particle size, shape, and charge, and reactions coupled directly with the particle-size measurements improve temporal response. Moreover, other detection techniques, e.g., fluorescence, are highly compatible with the in-plane format. These integrated in-plane nanofluidic devices expand the toolbox of what is possible with single-particle measurements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-030223
2024-07-17
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-030223.html?itemId=/content/journals/10.1146/annurev-anchem-061622-030223&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Coulter WH. 1953.. Means for counting particles suspended in a fluid. . US Patent 2,656,508 .
  2. 2.
    Pinkerton PH, Spence I, Ogilvie JC, Ronald WA, Marchant P, Ray PK. 1970.. An assessment of Coulter counter model S. . J. Clin. Pathol. 23::6876
    [Crossref] [Google Scholar]
  3. 3.
    Bull BS, Schneiderman MA, Brecher G. 1965.. Platelet counts with Coulter counter. . Am. J. Clin. Pathol. 44::67888
    [Crossref] [Google Scholar]
  4. 4.
    Barnard DF, Barnard SA, Carter AB, Patterson KG, Yardumian A, Machin SJ. 1989.. An evaluation of the Coulter VCS differential counter. . Clin. Lab. Haematol. 11::25566
    [Crossref] [Google Scholar]
  5. 5.
    DeBlois RW, Bean CP. 1970.. Counting and sizing of submicron particles by resistive pulse technique. . Rev. Sci. Instrum. 41::90916
    [Crossref] [Google Scholar]
  6. 6.
    DeBlois RW, Wesley RKA. 1977.. Sizes and concentrations of several type-C oncornaviruses and bacteriophage-T2 by resistive-pulse technique. . J. Virol. 23::22733
    [Crossref] [Google Scholar]
  7. 7.
    Kasianowicz JJ, Brandin E, Branton D, Deamer DW. 1996.. Characterization of individual polynucleotide molecules using a membrane channel. . PNAS 93::1377073
    [Crossref] [Google Scholar]
  8. 8.
    Dekker C. 2007.. Solid-state nanopores. . Nat. Nanotechnol. 2::20915
    [Crossref] [Google Scholar]
  9. 9.
    Wanunu M. 2012.. Nanopores: a journey towards DNA sequencing. . Phys. Life Rev. 9::12558
    [Crossref] [Google Scholar]
  10. 10.
    Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov AP, Edel JB. 2020.. Solid-state nanopore sensors. . Nat. Rev. Mater. 5::93151
    [Crossref] [Google Scholar]
  11. 11.
    Kozak D, Anderson W, Vogel R, Trau M. 2011.. Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection. . Nano Today 6::53145
    [Crossref] [Google Scholar]
  12. 12.
    Storm AJ, Chen J, Ling X, Zandbergen HW, Dekker C. 2003.. Fabrication of solid-state nanopores with single-nanometre precision. . Nat. Mater. 2::53740
    [Crossref] [Google Scholar]
  13. 13.
    Kennedy E, Dong ZX, Tennant C, Timp G. 2016.. Reading the primary structure of a protein with 0.07 nm3 resolution using a subnanometre-diameter pore. . Nat. Nanotechnol. 11::96876
    [Crossref] [Google Scholar]
  14. 14.
    Chien CC, Shekar S, Niedzwiecki DJ, Shepard KL, Drndic M. 2019.. Single-stranded DNA translocation recordings through solid-state nanopores on glass chips at 10 Mhz measurement bandwidth. . ACS Nano 13::1054554
    [Crossref] [Google Scholar]
  15. 15.
    Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. 2001.. Ion-beam sculpting at nanometre length scales. . Nature 412::16669
    [Crossref] [Google Scholar]
  16. 16.
    Gierak J, Madouri A, Biance AL, Bourhis E, Patriarche G, et al. 2007.. Sub-5 nm FIB direct patterning of nanodevices. . Microelectron. Eng. 84::77983
    [Crossref] [Google Scholar]
  17. 17.
    Yang JJ, Ferranti DC, Stern LA, Sanford CA, Huang J, et al. 2011.. Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. . Nanotechnology 22::285310
    [Crossref] [Google Scholar]
  18. 18.
    Patterson N, Adams DP, Hodges VC, Vasile MJ, Michael JR, Kotula PG. 2008.. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection. . Nanotechnology 19::235304
    [Crossref] [Google Scholar]
  19. 19.
    Choi J, Lee CC, Park S. 2019.. Scalable fabrication of sub-10 nm polymer nanopores for DNA analysis. . Microsyst. Nanoeng. 5::12
    [Crossref] [Google Scholar]
  20. 20.
    Wei C, Bard AJ, Feldberg SW. 1997.. Current rectification at quartz nanopipet electrodes. . Anal. Chem. 69::462733
    [Crossref] [Google Scholar]
  21. 21.
    Piper JD, Clarke RW, Korchev YE, Ying LM, Klenerman D. 2006.. A renewable nanosensor based on a glass nanopipette. . J. Am. Chem. Soc. 128::1646263
    [Crossref] [Google Scholar]
  22. 22.
    Steinbock LJ, Otto O, Chimerel C, Gornall J, Keyser UF. 2010.. Detecting DNA folding with nanocapillaries. . Nano Lett. 10::249397
    [Crossref] [Google Scholar]
  23. 23.
    Kwok H, Briggs K, Tabard-Cossa V. 2014.. Nanopore fabrication by controlled dielectric breakdown. . PLOS ONE 9::e92880
    [Crossref] [Google Scholar]
  24. 24.
    Yanagi I, Akahori R, Hatano T, Takeda K. 2014.. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection. . Sci. Rep. 4::5000
    [Crossref] [Google Scholar]
  25. 25.
    Kudr J, Skalickova S, Nejdl L, Moulick A, Ruttkay-Nedecky B, et al. 2015.. Fabrication of solid-state nanopores and its perspectives. . Electrophoresis 36::236779
    [Crossref] [Google Scholar]
  26. 26.
    Chen Q, Liu ZW. 2019.. Fabrication and applications of solid-state nanopores. . Sensors 19::1886
    [Crossref] [Google Scholar]
  27. 27.
    Haywood DG, Saha-Shah A, Baker LA, Jacobson SC. 2015.. Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. . Anal. Chem. 87::17287
    [Crossref] [Google Scholar]
  28. 28.
    Fu JY, Wu LL, Qiao Y, Tu J, Lu ZH. 2020.. Microfluidic systems applied in solid-state nanopore sensors. . Micromachines 11::332
    [Crossref] [Google Scholar]
  29. 29.
    Jain T, Guerrero RJS, Aguilar CA, Karnik R. 2013.. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes. . Anal. Chem. 85::387178
    [Crossref] [Google Scholar]
  30. 30.
    Roman J, Francais O, Jarroux N, Patriarche G, Pelta J, et al. 2018.. Solid-state nanopore easy chip integration in a cheap and reusable microfluidic device for ion transport and polymer conformation sensing. . ACS Sens. 3::212937
    [Crossref] [Google Scholar]
  31. 31.
    Yang L, Yamamoto T. 2016.. Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. . Front. Microbiol. 7::1500
    [Google Scholar]
  32. 32.
    Menard LD, Ramsey JM. 2011.. Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. . Nano Lett. 11::51217
    [Crossref] [Google Scholar]
  33. 33.
    Harms ZD, Haywood DG, Kneller AR, Selzer L, Zlotnick A, Jacobson SC. 2015.. Single-particle electrophoresis in nanochannels. . Anal. Chem. 87::699705
    [Crossref] [Google Scholar]
  34. 34.
    Harms ZD, Selzer L, Zlotnick A, Jacobson SC. 2015.. Monitoring assembly of virus capsids with nanofluidic devices. . ACS Nano 9::908796
    [Crossref] [Google Scholar]
  35. 35.
    Angeli E, Volpe A, Fanzio P, Repetto L, Firpo G, et al. 2015.. Simultaneous electro-optical tracking for nanoparticle recognition and counting. . Nano Lett. 15::5696701
    [Crossref] [Google Scholar]
  36. 36.
    Fraikin JL, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN. 2011.. A high-throughput label-free nanoparticle analyser. . Nat. Nanotechnol. 6::30813
    [Crossref] [Google Scholar]
  37. 37.
    DeBlois RW, Bean CP, Wesley RKA. 1977.. Electrokinetic measurements with submicron particles and pores by resistive pulse technique. . J. Colloid Interface Sci. 61::32335
    [Crossref] [Google Scholar]
  38. 38.
    Balakrishnan KR, Anwar G, Chapman MR, Nguyen T, Kesavaraju A, Sohn LL. 2013.. Node-pore sensing: a robust, high-dynamic range method for detecting biological species. . Lab Chip 13::13027
    [Crossref] [Google Scholar]
  39. 39.
    Zhou J, Wang YQ, Menard LD, Panyukov S, Rubinstein M, Ramsey JM. 2017.. Enhanced nanochannel translocation and localization of genomic DNA molecules using three-dimensional nanofunnels. . Nat. Commun. 8::807
    [Crossref] [Google Scholar]
  40. 40.
    Cha BJ, Byeon WJ, Choi CM, Min BK, Cho J, et al. 2022.. Ga-ion beam surface modification of glass using a custom-built liquid metal ion beam. . J. Appl. Phys. 131::014901
    [Crossref] [Google Scholar]
  41. 41.
    Haywood DG, Harms ZD, Jacobson SC. 2014.. Electroosmotic flow in nanofluidic channels. . Anal. Chem. 86::1117480
    [Crossref] [Google Scholar]
  42. 42.
    Dickey MD. 2014.. Emerging applications of liquid metals featuring surface oxides. . ACS Appl. Mater. Interfaces 6::1836979
    [Crossref] [Google Scholar]
  43. 43.
    Young TW, Kappler MP, Hockaden NM, Carpenter RL, Jacobson SC. 2023.. Characterization of extracellular vesicles by resistive-pulse sensing on in-plane multipore nanofluidic devices. . Anal. Chem. 95::1671016
    [Crossref] [Google Scholar]
  44. 44.
    Harms ZD, Mogensen KB, Nunes PS, Zhou K, Hildenbrand BW, et al. 2011.. Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. . Anal. Chem. 83::957378
    [Crossref] [Google Scholar]
  45. 45.
    Perry JM, Harms ZD, Jacobson SC. 2012.. 3D nanofluidic channels shaped by electron-beam-induced etching. . Small 8::152126
    [Crossref] [Google Scholar]
  46. 46.
    Fernandez-Cuesta I, Palmarelli AL, Liang XG, Zhang JY, Dhuey S, et al. 2011.. Fabrication of fluidic devices with 30 nm nanochannels by direct imprinting. . J. Vac. Sci. Technol. B 29::06f801
    [Crossref] [Google Scholar]
  47. 47.
    Choi J, Jia Z, Riahipour R, McKinney CJ, Amarasekara CA, et al. 2021.. Label-free identification of single mononucleotides by nanoscale electrophoresis. . Small 17::2102567
    [Crossref] [Google Scholar]
  48. 48.
    Langecker M, Pedone D, Simmel FC, Rant U. 2011.. Electrophoretic time-of-flight measurements of single DNA molecules with two stacked nanopores. . Nano Lett. 11::50027
    [Crossref] [Google Scholar]
  49. 49.
    Menard LD, Mair CE, Woodson ME, Alarie JP, Ramsey JM. 2012.. A device for performing lateral conductance measurements on individual double-stranded DNA molecules. . ACS Nano 6::908794
    [Crossref] [Google Scholar]
  50. 50.
    Zhang M, Harms ZD, Greibe T, Starr CA, Zlotnick A, Jacobson SC. 2022.. In-plane, in-series nanopores with circular cross sections for resistive-pulse sensing. . ACS Nano 16::735260
    [Crossref] [Google Scholar]
  51. 51.
    Prabhu AS, Freedman KJ, Robertson JWF, Nikolov Z, Kasianowicz JJ, Kim MJ. 2011.. SEM-induced shrinking of solid-state nanopores for single molecule detection. . Nanotechnology 22::425302
    [Crossref] [Google Scholar]
  52. 52.
    Kondylis P, Zhou JS, Harms ZD, Kneller AR, Lee LS, et al. 2017.. Nanofluidic devices with 8 pores in series for real-time, resistive-pulse analysis of hepatitis B virus capsid assembly. . Anal. Chem. 89::485562
    [Crossref] [Google Scholar]
  53. 53.
    Meagher RJ, Seong J, Laibinis PE, Barron AE. 2004.. A very thin coating for capillary zone electrophoresis of proteins based on a tri(ethylene glycol)-terminated alkyltrichlorosilane. . Electrophoresis 25::40514
    [Crossref] [Google Scholar]
  54. 54.
    Kondylis P, Schlicksup CJ, Brunk NE, Zhou JS, Zlotnick A, Jacobson SC. 2019.. Competition between normative and drug-induced virus self-assembly observed with single-particle methods. . J. Am. Chem. Soc. 141::125160
    [Crossref] [Google Scholar]
  55. 55.
    Zhou J, Kondylis P, Haywood DG, Harms ZD, Lee LS, et al. 2018.. Characterization of virus capsids and their assembly intermediates by multicycle resistive-pulse sensing with four pores in series. . Anal. Chem. 90::726774
    [Crossref] [Google Scholar]
  56. 56.
    Zhou J, Zlotnick A, Jacobson SC. 2022.. Disassembly of single virus capsids monitored in real time with multicycle resistive-pulse sensing. . Anal. Chem. 94::98592
    [Crossref] [Google Scholar]
  57. 57.
    Sen YH, Jain T, Aguilar CA, Karnik R. 2012.. Enhanced discrimination of DNA molecules in nanofluidic channels through multiple measurements. . Lab Chip 12::1094101
    [Crossref] [Google Scholar]
  58. 58.
    Plesa C, Cornelissen L, Tuijtel MW, Dekker C. 2013.. Non-equilibrium folding of individual DNA molecules recaptured up to 1000 times in a solid state nanopore. . Nanotechnology 24::475101
    [Crossref] [Google Scholar]
  59. 59.
    Edwards MA, German SR, Dick JE, Bard AJ, White HS. 2015.. High-speed multipass Coulter counter with ultrahigh resolution. . ACS Nano 9::1227482
    [Crossref] [Google Scholar]
  60. 60.
    Gershow M, Golovchenko JA. 2007.. Recapturing and trapping single molecules with a solid-state nanopore. . Nat. Nanotechnol. 2::77579
    [Crossref] [Google Scholar]
  61. 61.
    German SR, Hurd TS, White HS, Mega TL. 2015.. Sizing individual Au nanoparticles in solution with sub-nanometer resolution. . ACS Nano 9::718694
    [Crossref] [Google Scholar]
  62. 62.
    Vaidyanathan S, Wijerathne H, Gamage SST, Shiri F, Zhao Z, et al. 2023.. High sensitivity extended nano-Coulter counter for detection of viral particles and extracellular vesicles. . Anal. Chem. 95::9892900
    [Crossref] [Google Scholar]
  63. 63.
    Kim J, Han S, Lei A, Miyano M, Bloom J, et al. 2018.. Characterizing cellular mechanical phenotypes with mechano-node-pore sensing. . Microsyst. Nanoeng. 4::17091
    [Crossref] [Google Scholar]
  64. 64.
    Balakrishnan KR, Whang JC, Hwang R, Hack JH, Godley LA, Sohn LL. 2015.. Node-pore sensing enables label-free surface-marker profiling of single cells. . Anal. Chem. 87::298895
    [Crossref] [Google Scholar]
  65. 65.
    Kondylis P, Schlicksup CJ, Katen SP, Lee LS, Zlotnick A, Jacobson SC. 2019.. Evolution of intermediates during capsid assembly of hepatitis B virus with phenylpropenamide-based antivirals. . ACS Infect. Dis. 5::76977
    [Crossref] [Google Scholar]
  66. 66.
    Wong SH, Ward MCL, Wharton CW. 2004.. Micro T-mixer as a rapid mixing micromixer. . Sens. Actuator B Chem. 100::35979
    [Crossref] [Google Scholar]
  67. 67.
    Gambin Y, Simonnet C, VanDelinder V, Deniz A, Groisman A. 2010.. Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics. . Lab Chip 10::598609
    [Crossref] [Google Scholar]
  68. 68.
    Torabinia M, Asgari P, Dakarapu US, Jeon J, Moon H. 2019.. On-chip organic synthesis enabled using an engine-and-cargo system in an electrowetting-on-dielectric digital microfluidic device. . Lab Chip 19::305464
    [Crossref] [Google Scholar]
  69. 69.
    Phillips TW, Lignos IG, Maceiczyk RM, deMello AJ, deMello JC. 2014.. Nanocrystal synthesis in microfluidic reactors: Where next?. Lab Chip 14::317280
    [Crossref] [Google Scholar]
  70. 70.
    Song H, Chen DL, Ismagilov RF. 2006.. Reactions in droplets in microfluidic channels. . Angew. Chem. Int. Ed. 45::733656
    [Crossref] [Google Scholar]
  71. 71.
    Carbonaro A, Mohanty SK, Huang HY, Godley LA, Sohn LL. 2008.. Cell characterization using a protein-functionalized pore. . Lab Chip 8::147885
    [Crossref] [Google Scholar]
  72. 72.
    Persichetti G, Grimaldi IA, Testa G, Bernini R. 2017.. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis. . Lab Chip 17::263139
    [Crossref] [Google Scholar]
  73. 73.
    Liu C, Qu YY, Luo Y, Fang N. 2011.. Recent advances in single-molecule detection on micro- and nano-fluidic devices. . Electrophoresis 32::330818
    [Crossref] [Google Scholar]
  74. 74.
    Gambin Y, VanDelinder V, Ferreon ACM, Lemke EA, Groisman A, Deniz AA. 2011.. Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. . Nat. Methods 8::23941
    [Crossref] [Google Scholar]
  75. 75.
    Zhang K, Osakada Y, Vrljic M, Chen LA, Mudrakola HV, Cui BX. 2010.. Single-molecule imaging of NGF axonal transport in microfluidic devices. . Lab Chip 10::256673
    [Crossref] [Google Scholar]
  76. 76.
    Mannion JT, Craighead HG. 2007.. Nanofluidic structures for single biomolecule fluorescent detection. . Biopolymers 85::13143
    [Crossref] [Google Scholar]
  77. 77.
    Lim SF, Karpusenko A, Sakon JJ, Hook JA, Lamar TA, Riehn R. 2011.. DNA methylation profiling in nanochannels. . Biomicrofluidics 5::034106
    [Crossref] [Google Scholar]
  78. 78.
    van Mameren J, Peterman EJG, Wuite GJL. 2008.. See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. . Nucleic Acids Res. 36::438189
    [Crossref] [Google Scholar]
  79. 79.
    Wu XD, Chon CH, Wang YN, Kang YJ, Li DQ. 2008.. Simultaneous particle counting and detecting on a chip. . Lab Chip 8::194349
    [Crossref] [Google Scholar]
  80. 80.
    Hinkle P, Westerhof TM, Qiu YH, Mallin DJ, Wallace ML, et al. 2017.. A hybrid resistive pulse-optical detection platform for microfluidic experiments. . Sci. Rep. 7::10173
    [Crossref] [Google Scholar]
  81. 81.
    Nakajima K, Nakatsuka R, Tsuji T, Doi K, Kawano S. 2021.. Synchronized resistive-pulse analysis with flow visualization for single micro- and nanoscale objects driven by optical vortex in double orifice. . Sci. Rep. 11::9323
    [Crossref] [Google Scholar]
  82. 82.
    Tsutsui M, Maeda Y, He YH, Hongo S, Ryuzaki S, et al. 2013.. Trapping and identifying single-nanoparticles using a low-aspect-ratio nanopore. . Appl. Phys. Lett. 103::013108
    [Crossref] [Google Scholar]
  83. 83.
    Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, et al. 2008.. The potential and challenges of nanopore sequencing. . Nat. Biotechnol. 26::114653
    [Crossref] [Google Scholar]
  84. 84.
    Brinkerhoff H, Kang ASW, Liu JQ, Aksimentiev A, Dekker C. 2021.. Multiple rereads of single proteins at single-amino acid resolution using nanopores. . Science 374::150913
    [Crossref] [Google Scholar]
  85. 85.
    Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, et al. 2010.. Nanopore DNA sequencing with MspA. . PNAS 107::1606065
    [Crossref] [Google Scholar]
  86. 86.
    Stanford MG, Lewis BB, Mahady K, Fowlkes JD, Rack PD. 2017.. Review article: advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams. . J. Vac. Sci. Technol. B 35::030802
    [Crossref] [Google Scholar]
  87. 87.
    Xia DY, Huynh C, McVey S, Kobler A, Stern L, et al. 2018.. Rapid fabrication of solid-state nanopores with high reproducibility over a large area using a helium ion microscope. . Nanoscale 10::5198204
    [Crossref] [Google Scholar]
  88. 88.
    Smirnova A, Shimizu H, Pihosh Y, Mawatari K, Kitamori T. 2016.. On-chip step-mixing in a T-nanomixer for liquid chromatography in extended-nanochannels. . Anal. Chem. 88::1005964
    [Crossref] [Google Scholar]
  89. 89.
    Gerhardt RF, Peretzki AJ, Piendl SK, Belder D. 2017.. Seamless combination of high-pressure chip-HPLC and droplet microfluidics on an integrated microfluidic glass chip. . Anal. Chem. 89::1303037
    [Crossref] [Google Scholar]
  90. 90.
    Edgar JS, Milne G, Zhao YQ, Pabbati CP, Lim DSW, Chiu DT. 2009.. Compartmentalization of chemically separated components into droplets. . Angew. Chem. Int. Ed. 48::271922
    [Crossref] [Google Scholar]
  91. 91.
    Erfan M, Gnambodoe-Capochichi M, Sabry YM, Khalil D, Leprince-Wang Y, Bourouina T. 2021.. Spatiotemporal dynamics of nanowire growth in a microfluidic reactor. . Microsyst. Nanoeng. 7::77
    [Crossref] [Google Scholar]
  92. 92.
    Rahong S, Yasui T, Yanagida T, Nagashima K, Kanai M, et al. 2015.. Three-dimensional nanowire structures for ultra-fast separation of DNA, protein and RNA molecules. . Sci. Rep. 5::10584
    [Crossref] [Google Scholar]
  93. 93.
    Chattrairat K, Yasui T, Suzuki S, Natsume A, Nagashima K, et al. 2023.. All-in-one nanowire assay system for capture and analysis of extracellular vesicles from an ex vivo brain tumor model. . ACS Nano 17:: 223544
    [Crossref] [Google Scholar]
  94. 94.
    Takahashi H, Yasui T, Hirano M, Shinjo K, Miyazaki Y, et al. 2023.. Mutation detection of urinary cell-free DNA via catch-and-release isolation on nanowires for liquid biopsy. . Biosens. Bioelectron. 234::115318
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-030223
Loading
/content/journals/10.1146/annurev-anchem-061622-030223
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error