1932

Abstract

Analytical techniques operating at the nanoscale introduce confinement as a tool at our disposal. This review delves into the phenomenon of accelerated reactivity within micro- and nanodroplets. A decade of accelerated reactivity observations was succeeded by several years of fundamental studies aimed at mechanistic enlightenment. Herein, we provide a brief historical context for rate enhancement in and around micro- and nanodroplets and summarize the mechanisms that have been proposed to contribute to such extraordinary reactivity. We highlight recent electrochemical reports that make use of restricted mass transfer to enhance electrochemical reactions and/or quantitatively measure reaction rates within droplet-confined electrochemical cells. A comprehensive approach to nanodroplet reactivity is paramount to understanding how nature takes advantage of these systems to provide life on Earth and, in turn, how to harness the full potential of such systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-030919
2024-07-17
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-030919.html?itemId=/content/journals/10.1146/annurev-anchem-061622-030919&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Urashima S-H, Myalitsin A, Nihonyanagi S, Tahara T. 2018.. The topmost water structure at a charged silica/aqueous interface revealed by heterodyne-detected vibrational sum frequency generation spectroscopy. . J. Phys. Chem. Lett. 9::410914
    [Crossref] [Google Scholar]
  2. 2.
    Ong S, Zhao X, Eisenthal KB. 1992.. Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. . Chem. Phys. Lett. 191::32735
    [Crossref] [Google Scholar]
  3. 3.
    Corti HR, Appignanesi GA, Barbosa MC, Bordin JR, Calero C, et al. 2021.. Structure and dynamics of nanoconfined water and aqueous solutions. . Eur. Phys. J. E 44::136
    [Crossref] [Google Scholar]
  4. 4.
    Gonella G, Backus EHG, Nagata Y, Bonthuis DJ, Loche P, et al. 2021.. Water at charged interfaces. . Nat. Rev. Chem. 5::46685
    [Crossref] [Google Scholar]
  5. 5.
    Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, et al. 2018.. Anomalously low dielectric constant of confined water. . Science 360::133942
    [Crossref] [Google Scholar]
  6. 6.
    Olivieri JF, Hynes JT, Laage D. 2021.. Confined water's dielectric constant reduction is due to the surrounding low dielectric media and not to interfacial molecular ordering. . J. Phys. Chem. Lett. 12::431926
    [Crossref] [Google Scholar]
  7. 7.
    Gao D, Jin F, Lee JK, Zare RN. 2019.. Aqueous microdroplets containing only ketones or aldehydes undergo Dakin and Baeyer–Villiger reactions. . Chem. Sci. 10::1097478
    [Crossref] [Google Scholar]
  8. 8.
    Lee JK, Han HS, Chaikasetsin S, Marron DP, Waymouth RM, et al. 2020.. Condensing water vapor to droplets generates hydrogen peroxide. . PNAS 117::3093441
    [Crossref] [Google Scholar]
  9. 9.
    Remsing RC, McKendry IG, Strongin DR, Klein ML, Zdilla MJ. 2015.. Frustrated solvation structures can enhance electron transfer rates. . J. Phys. Chem. Lett. 6::48048
    [Crossref] [Google Scholar]
  10. 10.
    Dai Y, Chamberlayne CF, Messina MS, Chang CJ, Zare RN, et al. 2023.. Interface of biomolecular condensates modulates redox reactions. . Chem 9::1594609
    [Crossref] [Google Scholar]
  11. 11.
    Falahati H, Haji-Akbari A. 2019.. Thermodynamically driven assemblies and liquid–liquid phase separations in biology. . Soft Matter 15::113554
    [Crossref] [Google Scholar]
  12. 12.
    Dobson CM, Ellison GB, Tuck AF, Vaida V. 2000.. Atmospheric aerosols as prebiotic chemical reactors. . PNAS 97::186468
    [Google Scholar]
  13. 13.
    Griffith EC, Vaida V. 2012.. In situ observation of peptide bond formation at the water–air interface. . PNAS 109::15697701
    [Crossref] [Google Scholar]
  14. 14.
    Deal AM, Rapf RJ, Vaida V. 2021.. Water–air interfaces as environments to address the water paradox in prebiotic chemistry: a physical chemistry perspective. . J. Phys. Chem. A 125::492942
    [Crossref] [Google Scholar]
  15. 15.
    Holden DT, Morato NM, Cooks RG. 2022.. Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids. . PNAS 119::e2212642119
    [Crossref] [Google Scholar]
  16. 16.
    Nam I, Nam HG, Zare RN. 2018.. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. . PNAS 115::3640
    [Crossref] [Google Scholar]
  17. 17.
    Nader S, Baccouche A, Connolly F, Abou-Ghanem M, Styler SA, et al. 2023.. Model atmospheric aerosols convert to vesicles upon entry into aqueous solution. . ACS Earth Space Chem. 7::25259
    [Crossref] [Google Scholar]
  18. 18.
    Fu K, Bohn PW. 2018.. Nanopore electrochemistry: a nexus for molecular control of electron transfer reactions. . ACS Central Sci. 4::2029
    [Crossref] [Google Scholar]
  19. 19.
    Wordsworth J, Benedetti TM, Somerville SV, Schuhmann W, Tilley RD, Gooding JJ. 2022.. The influence of nanoconfinement on electrocatalysis. . Angew. Chem. Int. Ed. 61::e202200755
    [Crossref] [Google Scholar]
  20. 20.
    Deng H, Dick JE, Kummer S, Kragl U, Strauss SH, Bard AJ. 2016.. Probing ion transfer across liquid–liquid interfaces by monitoring collisions of single femtoliter oil droplets on ultramicroelectrodes. . Anal. Chem. 88::775461
    [Crossref] [Google Scholar]
  21. 21.
    Kauffmann PJ, Dick JE. 2023.. Single liquid aerosol nano-impact electrochemistry: accessing the droplet|air interface. . Environ. Sci. Nano 10::174448
    [Crossref] [Google Scholar]
  22. 22.
    Baker LA. 2018.. Perspective and prospectus on single-entity electrochemistry. . J. Am. Chem. Soc. 140::1554959
    [Crossref] [Google Scholar]
  23. 23.
    Goines S, Dick JE. 2020.. Review—Electrochemistry's potential to reach the ultimate sensitivity in measurement science. . J. Electrochem. Soc. 167::037505
    [Crossref] [Google Scholar]
  24. 24.
    Lyu Y, Scrimin P. 2021.. Mimicking enzymes: the quest for powerful catalysts from simple molecules to nanozymes. . ACS Catalysis 11::115019
    [Crossref] [Google Scholar]
  25. 25.
    Mitschke B, Turberg M, List B. 2020.. Confinement as a unifying element in selective catalysis. . Chemistry 6::251532
    [Crossref] [Google Scholar]
  26. 26.
    Breslow R. 1991.. Hydrophobic effects on simple organic reactions in water. . Acc. Chem. Res. 24::15964
    [Crossref] [Google Scholar]
  27. 27.
    Blokzijl W, Engberts JBFN. 1992.. Initial-state and transition-state effects on Diels-Alder reactions in water and mixed aqueous solvents. . J. Am. Chem. Soc. 114::544042
    [Crossref] [Google Scholar]
  28. 28.
    Desimoni G, Faita G, Righetti PP, Toma L. 1990.. Solvent effect as the result of frontier molecular orbital interaction. V. Diels-Alder with heterodienophiles: a unified approach to the solvent effect of the Diels-Alder reactions. . Tetrahedron 46::795170
    [Crossref] [Google Scholar]
  29. 29.
    van der Wel GK, Wijnen JW, Engberts JBFN. 1996.. Solvent effects on a Diels–Alder reaction involving a cationic diene: consequences of the absence of hydrogen-bond interactions for accelerations in aqueous media. . J. Org. Chem. 61::90015
    [Crossref] [Google Scholar]
  30. 30.
    Meijer A, Otto S, Engberts JBFN. 1998.. Effects of the hydrophobicity of the reactants on Diels−Alder reactions in water. . J. Org. Chem. 63::898994
    [Crossref] [Google Scholar]
  31. 31.
    Rideout DC, Breslow R. 1980.. Hydrophobic acceleration of Diels-Alder reactions. . J. Am. Chem. Soc. 102::781617
    [Crossref] [Google Scholar]
  32. 32.
    Breslow R, Maitra U, Rideout D. 1983.. Selective Diels-Alder reactions in aqueous solutions and suspensions. . Tetrahedron Lett. 24::19014
    [Crossref] [Google Scholar]
  33. 33.
    Narayan S, Muldoon J, Finn M, Fokin VV, Kolb HC, Sharpless KB. 2005.. “ On water”: unique reactivity of organic compounds in aqueous suspension. . Angew. Chem. 117::333943
    [Crossref] [Google Scholar]
  34. 34.
    Jung Y, Marcus RA. 2007.. On the theory of organic catalysis “on water. .” J. Am. Chem. Soc. 129::5492502
    [Crossref] [Google Scholar]
  35. 35.
    Butler RN, Coyne AG. 2010.. Water: nature's reaction enforcer—comparative effects for organic synthesis “in-water” and “on-water. .” Chem. Rev. 110::630237
    [Crossref] [Google Scholar]
  36. 36.
    Ben-Amotz D. 2022.. Electric buzz in a glass of pure water. . Science 376::8001
    [Crossref] [Google Scholar]
  37. 37.
    Bain RM, Sathyamoorthi S, Zare RN. 2017.. “ On-droplet” chemistry: the cycloaddition of diethyl azodicarboxylate and quadricyclane. . Angew. Chem. 129::1527983
    [Crossref] [Google Scholar]
  38. 38.
    Banerjee S, Gnanamani E, Yan X, Zare RN. 2017.. Can all bulk-phase reactions be accelerated in microdroplets?. Analyst 142::1399402
    [Crossref] [Google Scholar]
  39. 39.
    Rovelli G, Jacobs MI, Willis MD, Rapf RJ, Prophet AM, Wilson KR. 2020.. A critical analysis of electrospray techniques for the determination of accelerated rates and mechanisms of chemical reactions in droplets. . Chem. Sci. 11::1302643
    [Crossref] [Google Scholar]
  40. 40.
    Jacobs MI, Davis RD, Rapf RJ, Wilson KR. 2019.. Studying chemistry in micro-compartments by separating droplet generation from ionization. . J. Am. Soc. Mass Spectrom. 30::33943
    [Crossref] [Google Scholar]
  41. 41.
    Bain RM, Pulliam CJ, Thery F, Cooks RG. 2016.. Accelerated chemical reactions and organic synthesis in Leidenfrost droplets. . Angew. Chem. Int. Ed. 55::1047882
    [Crossref] [Google Scholar]
  42. 42.
    Li Y, Liu Y, Gao H, Helmy R, Wuelfing WP, et al. 2018.. Accelerated forced degradation of pharmaceuticals in levitated microdroplet reactors. . Chemistry 24::734953
    [Crossref] [Google Scholar]
  43. 43.
    Crawford EA, Esen C, Volmer DA. 2016.. Real time monitoring of containerless microreactions in acoustically levitated droplets via ambient ionization mass spectrometry. . Anal. Chem. 88::8396403
    [Crossref] [Google Scholar]
  44. 44.
    Wei Z, Li Y, Cooks RG, Yan X. 2020.. Accelerated reaction kinetics in microdroplets: overview and recent developments. . Annu. Rev. Phys. Chem. 71::3151
    [Crossref] [Google Scholar]
  45. 45.
    Ruiz-Lopez MF, Francisco JS, Martins-Costa MTC, Anglada JM. 2020.. Molecular reactions at aqueous interfaces. . Nat. Rev. Chem. 4::45975
    [Crossref] [Google Scholar]
  46. 46.
    Ahmed M, Blum M, Crumlin EJ, Geissler PL, Head-Gordon T, et al. 2021.. Molecular properties and chemical transformations near interfaces. . J. Phys. Chem. B 125::903751
    [Crossref] [Google Scholar]
  47. 47.
    Hao H, Ruiz Pestana L, Qian J, Liu M, Xu Q, Head-Gordon T. 2023.. Chemical transformations and transport phenomena at interfaces. . WIREs Comput. Mol. Sci. 13::e1639
    [Crossref] [Google Scholar]
  48. 48.
    Caldwell G, Magnera TF, Kebarle P. 1984.. SN2 reactions in the gas phase. Temperature dependence of the rate constants and energies of the transition states. Comparison with solution. . J. Am. Chem. Soc. 106::95966
    [Crossref] [Google Scholar]
  49. 49.
    Pullanchery S, Kulik S, Rehl B, Hassanali A, Roke S. 2021.. Charge transfer across C-H⋅⋅⋅O hydrogen bonds stabilizes oil droplets in water. . Science 374::136670
    [Crossref] [Google Scholar]
  50. 50.
    Qian Y, Brown JB, Zhang T, Huang-Fu Z-C, Rao Y. 2022.. In situ detection of chemical compositions at nanodroplet surfaces and in-nanodroplet phases. . J. Phys. Chem. A 126::375864
    [Crossref] [Google Scholar]
  51. 51.
    Straathof AJ. 2003.. Enzymatic catalysis via liquid-liquid interfaces. . Biotechnol. Bioeng. 83::37175
    [Crossref] [Google Scholar]
  52. 52.
    Laskin A, Moffet RC, Gilles MK. 2019.. Chemical imaging of atmospheric particles. . Acc. Chem. Res. 52::341931
    [Crossref] [Google Scholar]
  53. 53.
    Fallah-Araghi A, Meguellati K, Baret J-C, Harrak AE, Mangeat T, et al. 2014.. Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. . Phys. Rev. Lett. 112::028301
    [Crossref] [Google Scholar]
  54. 54.
    Wilson KR, Prophet AM, Rovelli G, Willis MD, Rapf RJ, Jacobs MI. 2020.. A kinetic description of how interfaces accelerate reactions in micro-compartments. . Chem. Sci. 11::853345
    [Crossref] [Google Scholar]
  55. 55.
    Marsh BM, Iyer K, Cooks RG. 2019.. Reaction acceleration in electrospray droplets: size, distance, and surfactant effects. . J. Am. Soc. Mass Spectrom. 30::202230
    [Crossref] [Google Scholar]
  56. 56.
    Xiong H, Lee JK, Zare RN, Min W. 2020.. Strong electric field observed at the interface of aqueous microdroplets. . J. Phys. Chem. Lett. 11::742328
    [Crossref] [Google Scholar]
  57. 57.
    Kathmann SM, Kuo IFW, Mundy CJ, Schenter GK. 2011.. Understanding the surface potential of water. . J. Phys. Chem. B 115::436977
    [Crossref] [Google Scholar]
  58. 58.
    Leung K. 2010.. Surface potential at the air–water interface computed using density functional theory. . J. Phys. Chem. Lett. 1::49699
    [Crossref] [Google Scholar]
  59. 59.
    Hao H, Leven I, Head-Gordon T. 2022.. Can electric fields drive chemistry for an aqueous microdroplet?. Nat. Commun. 13::280
    [Crossref] [Google Scholar]
  60. 60.
    Zhou Z, Yan X, Lai YH, Zare RN. 2018.. Fluorescence polarization anisotropy in microdroplets. . J. Phys. Chem. Lett. 9::292832
    [Crossref] [Google Scholar]
  61. 61.
    Lhee S, Lee JK, Kang J, Kato S, Kim S, et al. 2020.. Spatial localization of charged molecules by salt ions in oil-confined water microdroplets. . Sci. Adv. 6::eaba0181
    [Crossref] [Google Scholar]
  62. 62.
    Jungwirth P. 2009.. Spiers Memorial Lecture: Ions at aqueous interfaces. . Faraday Discuss. 141::930
    [Crossref] [Google Scholar]
  63. 63.
    Jungwirth P, Tobias DJ. 2002.. Ions at the air/water interface. . J. Phys. Chem. B 106::636173
    [Crossref] [Google Scholar]
  64. 64.
    Levin Y, dos Santos AP, Diehl A. 2009.. Ions at the air-water interface: An end to a hundred-year-old mystery?. Phys. Rev. Lett. 103::257802
    [Crossref] [Google Scholar]
  65. 65.
    Wise PK, Slipchenko LV, Ben-Amotz D. 2023.. Ion-size dependent adsorption crossover on the surface of a water droplet. . J. Phys. Chem. B 127::465865
    [Crossref] [Google Scholar]
  66. 66.
    Seki T, Yu C-C, Chiang K-Y, Greco A, Yu X, et al. 2023.. Ions speciation at the water–air interface. . J. Am. Chem. Soc. 145::1062230
    [Crossref] [Google Scholar]
  67. 67.
    Volkov AG, Deamer DW, Tanelian DL, Markin VS. 1996.. Electrical double layers at the oil/water interface. . Prog. Surface Sci. 53::1134
    [Crossref] [Google Scholar]
  68. 68.
    Chamberlayne CF, Zare RN. 2020.. Simple model for the electric field and spatial distribution of ions in a microdroplet. . J. Chem. Phys. 152::184702
    [Crossref] [Google Scholar]
  69. 69.
    Chamberlayne CF, Zare RN. 2022.. Microdroplets can act as electrochemical cells. . J. Chem. Phys. 156::054705
    [Crossref] [Google Scholar]
  70. 70.
    Cohen L, Quant MI, Donaldson DJ. 2020.. Real-time measurements of pH changes in single, acoustically levitated droplets due to atmospheric multiphase chemistry. . ACS Earth Space Chem. 4::85461
    [Crossref] [Google Scholar]
  71. 71.
    Mishra H, Enami S, Nielsen RJ, Stewart LA, Hoffmann MR, et al. 2012.. Brønsted basicity of the air–water interface. . PNAS 109::1867983
    [Crossref] [Google Scholar]
  72. 72.
    Angle KJ, Crocker DR, Simpson RM, Mayer KJ, Garofalo LA, et al. 2021.. Acidity across the interface from the ocean surface to sea spray aerosol. . PNAS 118::e2018397118
    [Crossref] [Google Scholar]
  73. 73.
    Pye HO, Nenes A, Alexander B, Ault AP, Barth MC, et al. 2020.. The acidity of atmospheric particles and clouds. . Atmos. Chem. Phys. 20::480988
    [Crossref] [Google Scholar]
  74. 74.
    Zheng G, Su H, Wang S, Andreae MO, Pöschl U, Cheng Y. 2020.. Multiphase buffer theory explains contrasts in atmospheric aerosol acidity. . Science 369::137477
    [Crossref] [Google Scholar]
  75. 75.
    Li M, Kan Y, Su H, Pöschl U, Parekh SH, et al. 2023.. Spatial homogeneity of pH in aerosol microdroplets. . Chemistry 9::103646
    [Crossref] [Google Scholar]
  76. 76.
    Wei H, Vejerano EP, Leng W, Huang Q, Willner MR, et al. 2018.. Aerosol microdroplets exhibit a stable pH gradient. . PNAS 115::727277
    [Crossref] [Google Scholar]
  77. 77.
    Gong K, Ao J, Li K, Liu L, Liu Y, et al. 2023.. Imaging of pH distribution inside individual microdroplet by stimulated Raman microscopy. . PNAS 120::e2219588120
    [Crossref] [Google Scholar]
  78. 78.
    Huang K-H, Wei Z, Cooks RG. 2021.. Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface. . Chem. Sci. 12::224250
    [Crossref] [Google Scholar]
  79. 79.
    Lee JK, Samanta D, Nam HG, Zare RN. 2019.. Micrometer-sized water droplets induce spontaneous reduction. . J. Am. Chem. Soc. 141::1058589
    [Crossref] [Google Scholar]
  80. 80.
    Song X, Basheer C, Zare RN. 2023.. Making ammonia from nitrogen and water microdroplets. . PNAS 120::e2301206120
    [Crossref] [Google Scholar]
  81. 81.
    Song X, Meng Y, Zare RN. 2022.. Spraying water microdroplets containing 1,2,3-triazole converts carbon dioxide into formic acid. . J. Am. Chem. Soc. 144::1674448
    [Crossref] [Google Scholar]
  82. 82.
    Qiu L, Morato NM, Huang K-H, Cooks RG. 2022.. Spontaneous water radical cation oxidation at double bonds in microdroplets. . Front. Chem. 10::903774
    [Crossref] [Google Scholar]
  83. 83.
    Qiu L, Psimos MD, Cooks RG. 2022.. Spontaneous oxidation of aromatic sulfones to sulfonic acids in microdroplets. . J. Am. Soc. Mass Spectrom. 33::136267
    [Crossref] [Google Scholar]
  84. 84.
    Qiu L, Cooks RG. 2022.. Simultaneous and spontaneous oxidation and reduction in microdroplets by the water radical cation/anion pair. . Angew. Chem. 134::e202210765
    [Crossref] [Google Scholar]
  85. 85.
    Lee JK, Walker KL, Han HS, Kang J, Prinz FB, et al. 2019.. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. . PNAS 116::1929498
    [Crossref] [Google Scholar]
  86. 86.
    Mehrgardi MA, Mofidfar M, Zare RN. 2022.. Sprayed water microdroplets are able to generate hydrogen peroxide spontaneously. . J. Am. Chem. Soc. 144::76069
    [Crossref] [Google Scholar]
  87. 87.
    Lee K, Lee H-R, Kim YH, Park J, Cho S, et al. 2022.. Microdroplet-mediated radical polymerization. . ACS Central Sci. 8::126571
    [Crossref] [Google Scholar]
  88. 88.
    Savolainen J, Uhlig F, Ahmed S, Hamm P, Jungwirth P. 2014.. Direct observation of the collapse of the delocalized excess electron in water. . Nat. Chem. 6::697701
    [Crossref] [Google Scholar]
  89. 89.
    Sagar DM, Bain CD, Verlet JRR. 2010.. Hydrated electrons at the water/air interface. . J. Am. Chem. Soc. 132::691719
    [Crossref] [Google Scholar]
  90. 90.
    Jordan CJC, Lowe EA, Verlet JRR. 2022.. Photooxidation of the phenolate anion is accelerated at the water/air interface. . J. Am. Chem. Soc. 144::1401215
    [Crossref] [Google Scholar]
  91. 91.
    Anglada JM, Martins-Costa MTC, Francisco JS, Ruiz-López MF. 2020.. Photoinduced oxidation reactions at the air–water interface. . J. Am. Chem. Soc. 142::1614055
    [Crossref] [Google Scholar]
  92. 92.
    Li K, Guo Y, Nizkorodov SA, Rudich Y, Angelaki M, et al. 2023.. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. . PNAS 120::e2220228120
    [Crossref] [Google Scholar]
  93. 93.
    Schulte R, Löcker M, Ihmels H, Heide M, Engelhard C. 2023.. Pushing photochemistry into water: acceleration of the Di-π-methane rearrangement and the Paternó-Büchi reaction “on-water. .” Chemistry 29::e202203203
    [Crossref] [Google Scholar]
  94. 94.
    Kappes KJ, Deal AM, Jespersen MF, Blair SL, Doussin J-F, et al. 2021.. Chemistry and photochemistry of pyruvic acid at the air–water interface. . J. Phys. Chem. A 125::103649
    [Crossref] [Google Scholar]
  95. 95.
    Jin S, Chen H, Yuan X, Xing D, Wang R, et al. 2023.. The spontaneous electron-mediated redox processes on sprayed water microdroplets. . JACS Au 3::156371
    [Crossref] [Google Scholar]
  96. 96.
    Liang Q, Zhu C, Yang J. 2023.. Water charge transfer accelerates Criegee intermediate reaction with H2O radical anion at the aqueous interface. . J. Am. Chem. Soc. 145::1015966
    [Crossref] [Google Scholar]
  97. 97.
    Terry Weatherly CK, Ren H, Edwards MA, Wang L, White HS. 2019.. Coupled electron- and phase-transfer reactions at a three-phase interface. . J. Am. Chem. Soc. 141::1809198
    [Crossref] [Google Scholar]
  98. 98.
    Freitas D, Chen X, Cheng H, Davis A, Fallon B, Yan X. 2021.. Recent advances of in-source electrochemical mass spectrometry. . ChemPlusChem 86::43445
    [Crossref] [Google Scholar]
  99. 99.
    Cheng H, Tang S, Yang T, Xu S, Yan X. 2020.. Accelerating electrochemical reactions in a voltage-controlled interfacial microreactor. . Angew. Chem. Int. Ed. 59::1986267
    [Crossref] [Google Scholar]
  100. 100.
    Solans C, Solé I. 2012.. Nano-emulsions: formation by low-energy methods. . Curr. Opin. Colloid Interface Sci. 17::24654
    [Crossref] [Google Scholar]
  101. 101.
    Taha A, Ahmed E, Ismaiel A, Ashokkumar M, Xu X, et al. 2020.. Ultrasonic emulsification: an overview on the preparation of different emulsifiers-stabilized emulsions. . Trends Food Sci. Technol. 105::36377
    [Crossref] [Google Scholar]
  102. 102.
    Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. 2005.. Nano-emulsions. . Curr. Opin. Colloid Interface Sci. 10::10210
    [Crossref] [Google Scholar]
  103. 103.
    Kim B-K, Kim J, Bard AJ. 2015.. Electrochemistry of a single attoliter emulsion droplet in collisions. . J. Am. Chem. Soc. 137::234349
    [Crossref] [Google Scholar]
  104. 104.
    Lee JY, Park Jh, Ahn HS, Kim B-K. 2022.. Nanoelectrochemistry for single-droplet analysis and applications. . Curr. Opin. Electrochem. 36::101139
    [Crossref] [Google Scholar]
  105. 105.
    Quinn BM, van't Hof PG, Lemay SG. 2004.. Time-resolved electrochemical detection of discrete adsorption events. . J. Am. Chem. Soc. 126::836061
    [Crossref] [Google Scholar]
  106. 106.
    Dick JE, Hilterbrand AT, Boika A, Upton JW, Bard AJ. 2015.. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring. . PNAS 112::53038
    [Crossref] [Google Scholar]
  107. 107.
    Sun T, Wang D, Mirkin MV. 2018.. Tunneling mode of scanning electrochemical microscopy: probing electrochemical processes at single nanoparticles. . Angew. Chem. Int. Ed. 57::746367
    [Crossref] [Google Scholar]
  108. 108.
    Moon H, Park JH. 2021.. In situ probing liquid/liquid interfacial kinetics through single nanodroplet electrochemistry. . Anal. Chem. 93::1691521
    [Crossref] [Google Scholar]
  109. 109.
    Madawala H, Sabaragamuwe SG, Elangovan S, Kim J. 2021.. In situ measuring partition coefficient at intact nanoemulsions: a new application of single-entity electrochemistry. . Anal. Chem. 93::115460
    [Crossref] [Google Scholar]
  110. 110.
    Bard AJ, Zhou H, Kwon SJ. 2010.. Electrochemistry of single nanoparticles via electrocatalytic amplification. . Israel J. Chem. 50::26776
    [Crossref] [Google Scholar]
  111. 111.
    Xiao X, Bard AJ. 2007.. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. . J. Am. Chem. Soc. 129::961012
    [Crossref] [Google Scholar]
  112. 112.
    Kwon SJ, Fan F-RF, Bard AJ. 2010.. Observing iridium oxide (IrOx) single nanoparticle collisions at ultramicroelectrodes. . J. Am. Chem. Soc. 132::1316567
    [Crossref] [Google Scholar]
  113. 113.
    Cheng W, Compton RG. 2015.. Oxygen reduction mediated by single nanodroplets containing attomoles of vitaminB12: electrocatalytic nano-impacts method. . Angew. Chem. Int. Ed. 54::708285
    [Crossref] [Google Scholar]
  114. 114.
    Cheng W, Compton RG. 2016.. Quantifying the electrocatalytic turnover of vitaminB12-mediated dehalogenation on single soft nanoparticles. . Angew. Chem. Int. Ed. 55::254549
    [Crossref] [Google Scholar]
  115. 115.
    Dick JE, Lebègue E, Strawsine LM, Bard AJ. 2016.. Millisecond coulometry via zeptoliter droplet collisions on an ultramicroelectrode. . Electroanalysis 28::232026
    [Crossref] [Google Scholar]
  116. 116.
    Vannoy KJ, Lee I, Sode K, Dick JE. 2021.. Electrochemical quantification of accelerated FADGDH rates in aqueous nanodroplets. . PNAS 118::e2025726118
    [Crossref] [Google Scholar]
  117. 117.
    Glasscott MW, Hill CM, Dick JE. 2020.. Quantifying growth kinetics of single nanoparticles in sub-femtoliter reactors. . J. Phys. Chem. C 124::1438089
    [Crossref] [Google Scholar]
  118. 118.
    Qiu L, Wei Z, Nie H, Cooks RG. 2021.. Reaction acceleration promoted by partial solvation at the gas/solution interface. . ChemPlusChem 86::136265
    [Crossref] [Google Scholar]
  119. 119.
    Hermes M, Scholz F. 2000.. The electrochemical oxidation of white phosphorus at a three-phase junction. . Electrochem. Commun. 2::84550
    [Crossref] [Google Scholar]
  120. 120.
    Tasakorn P, Chen J, Aoki K. 2002.. Voltammetry of a single oil droplet on a large electrode. . J. Electroanal. Chem. 533::11926
    [Crossref] [Google Scholar]
  121. 121.
    Donten M, Bak E, Gniadek M, Stojek Z, Scholz F. 2008.. Three-phase electrochemistry with a hanging drop of water-insoluble liquid: precipitation of decamethylferrocenium species as a marker of ion transfer route. . Electrochim. Acta 53::560814
    [Crossref] [Google Scholar]
  122. 122.
    Markin VS, Volkov AG. 1989.. The gibbs free energy of ion transfer between two immiscible liquids. . Electrochim. Acta 34::93107
    [Crossref] [Google Scholar]
  123. 123.
    Gulaboski R, Mirceski V, Komorsky-Lovric S, Lovric M. 2020.. Three-phase electrodes: simple and efficient tool for analysis of ion transfer processes across liquid-liquid interface—twenty years on. . J. Solid State Electrochem. 24::257583
    [Crossref] [Google Scholar]
  124. 124.
    Podrażka M, Maciejewska J, Adamiak W, Witkowska Nery E, Jönsson-Niedziółka M. 2019.. Facilitated cation transfer at a three-phase junction and its applicability for ionophore evaluation. . Electrochim. Acta 307::32633
    [Crossref] [Google Scholar]
  125. 125.
    Vishwanath RS, Witkowska Nery E, Jönsson-Niedziółka M. 2019.. Electrochemical reduction of 7,7,8,8-tetracyanoquinodimethane at the n-octyl pyrrolidone/water/electrode three-phase junction. . J. Electroanal. Chem. 854::113558
    [Crossref] [Google Scholar]
  126. 126.
    Vishwanath RS, Witkowska Nery E, Jönsson-Niedziółka M. 2019.. Electrochemistry of selected quinones at immiscible n-octyl-2-pyrrolidone/aqueous interface using a three-phase electrode system. . Electrochim. Acta 306::5460
    [Crossref] [Google Scholar]
  127. 127.
    Terry Weatherly CK, Glasscott MW, Dick JE. 2020.. Voltammetric analysis of redox reactions and ion transfer in water microdroplets. . Langmuir 36::823139
    [Crossref] [Google Scholar]
  128. 128.
    Glasscott MW, Dick JE. 2020.. Visualizing phase boundaries with electrogenerated chemiluminescence. . J. Phys. Chem. Lett. 11::48038
    [Crossref] [Google Scholar]
  129. 129.
    Voci S, Dick JE. 2023.. An electrochemical perspective on the interfacial width between two immiscible liquid phases. . Curr. Opin. Electrochem. 39::101244
    [Crossref] [Google Scholar]
  130. 130.
    Colón-Quintana GS, Clarke TB, Dick JE. 2023.. Interfacial solute flux promotes emulsification at the water|oil interface. . Nat. Commun. 14::705
    [Crossref] [Google Scholar]
  131. 131.
    Voci S, Clarke TB, Dick JE. 2023.. Abiotic microcompartments form when neighbouring droplets fuse: an electrochemiluminescence investigation. . Chem. Sci. 14::233641
    [Crossref] [Google Scholar]
  132. 132.
    Dale SEC, Unwin PR. 2008.. Polarised liquid/liquid micro-interfaces move during charge transfer. . Electrochem. Commun. 10::72326
    [Crossref] [Google Scholar]
  133. 133.
    Rastgar S, Pleis S, Zhang Y, Wittstock G. 2022.. Dispensing single drops as electrochemical reactors. . ChemElectroChem 9::e202200004
    [Crossref] [Google Scholar]
  134. 134.
    Renault C, Laborde C, Cossettini A, Selmi L, Widdershoven F, Lemay SG. 2022.. Electrochemical characterization of individual oil micro-droplets by high-frequency nanocapacitor array imaging. . Faraday Discuss. 233::17589
    [Crossref] [Google Scholar]
  135. 135.
    Moazzenzade T, Yang X, Walterbos L, Huskens J, Renault C, Lemay SG. 2020.. Self-induced convection at microelectrodes via electroosmosis and its influence on impact electrochemistry. . J. Am. Chem. Soc. 142::1790812
    [Crossref] [Google Scholar]
  136. 136.
    Laborde C, Pittino F, Verhoeven HA, Lemay SG, Selmi L, et al. 2015.. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. . Nat. Nanotechnol. 10::79195
    [Crossref] [Google Scholar]
  137. 137.
    Kazemi R, Tarolla NE, Dick JE. 2020.. Ultrasensitive electrochemistry by radical annihilation amplification in a solid–liquid microgap. . Anal. Chem. 92::1626066
    [Crossref] [Google Scholar]
  138. 138.
    Clarke TB, Dick JE. 2022.. Preferential electroreduction at the oil|water|conductor interface. . J. Phys. Chem. Lett. 13::333841
    [Crossref] [Google Scholar]
  139. 139.
    Clarke TB, Colón GS, Dick JE. 2023.. Tunable gold nanoring arrays by electrodeposition. . Adv. Mater. Technol. 8::2201946
    [Crossref] [Google Scholar]
  140. 140.
    Vannoy KJ, Dick JE. 2022.. Oxidation of cysteine by electrogenerated hexacyanoferrate(III) in microliter droplets. . Langmuir 38::1189298
    [Crossref] [Google Scholar]
  141. 141.
    Liu W-w, Zhu Y. 2020.. Development and application of analytical detection techniques for droplet-based microfluidics—a review. . Anal. Chim. Acta 1113::6684
    [Crossref] [Google Scholar]
  142. 142.
    Shang L, Cheng Y, Zhao Y. 2017.. Emerging droplet microfluidics. . Chem. Rev. 117::79648040
    [Crossref] [Google Scholar]
  143. 143.
    Teh S-Y, Lin R, Hung L-H, Lee AP. 2008.. Droplet microfluidics. . Lab Chip 8::198220
    [Crossref] [Google Scholar]
  144. 144.
    Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, et al. 2010.. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. . Angew. Chem. Int. Ed. 49::584668
    [Crossref] [Google Scholar]
  145. 145.
    Mellouli S, Bousekkine L, Theberge AB, Huck WT. 2012.. Investigation of “on water” conditions using a biphasic fluidic platform. . Angew. Chem. Int. Ed. 51::798184
    [Crossref] [Google Scholar]
  146. 146.
    Song H, Chen DL, Ismagilov RF. 2006.. Reactions in droplets in microfluidic channels. . Angew. Chem. Int. Ed. 45::733656
    [Crossref] [Google Scholar]
  147. 147.
    Goto H, Kanai Y, Yotsui A, Shimokihara S, Shitara S, et al. 2020.. Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases. . Lab Chip 20::85261
    [Crossref] [Google Scholar]
  148. 148.
    Han Z, Li W, Huang Y, Zheng B. 2009.. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves. . Anal. Chem. 81::584045
    [Crossref] [Google Scholar]
  149. 149.
    Bentley CL. 2022.. Scanning electrochemical cell microscopy for the study of (nano)particle electrochemistry: from the sub-particle to ensemble level. . Electrochem. Sci. Adv. 2::e2100081
    [Crossref] [Google Scholar]
  150. 150.
    Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR. 2013.. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. . Annu. Rev. Anal. Chem. 6::32951
    [Crossref] [Google Scholar]
  151. 151.
    Jia R, Mirkin MV. 2020.. The double life of conductive nanopipette: a nanopore and an electrochemical nanosensor. . Chem. Sci. 11::905666
    [Crossref] [Google Scholar]
  152. 152.
    Wahab OJ, Kang M, Unwin PR. 2020.. Scanning electrochemical cell microscopy: a natural technique for single entity electrochemistry. . Curr. Opin. Electrochem. 22::12028
    [Crossref] [Google Scholar]
  153. 153.
    Yule LC, Bentley CL, West G, Shollock BA, Unwin PR. 2019.. Scanning electrochemical cell microscopy: a versatile method for highly localised corrosion related measurements on metal surfaces. . Electrochim. Acta 298::8088
    [Crossref] [Google Scholar]
  154. 154.
    Koushik BG, Van den Steen N, Mamme MH, Van Ingelgem Y, Terryn H. 2021.. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate. . J. Mater. Sci. Technol. 62::25467
    [Crossref] [Google Scholar]
  155. 155.
    Jiang J, Wang J, Lu Y, Hu J. 2009.. Effect of length of gas/liquid/solid three-phase boundary zone on cathodic and corrosion behavior of metals. . Electrochim. Acta 54::142635
    [Crossref] [Google Scholar]
  156. 156.
    Daviddi E, Shkirskiy V, Kirkman PM, Robin MP, Bentley CL, Unwin PR. 2021.. Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure–activity-corrosion potential relationships. . Chem. Sci. 12::305569
    [Crossref] [Google Scholar]
  157. 157.
    Ciocci P, Valavanis D, Meloni GN, Lemineur J-F, Unwin PR, Kanoufi F. 2023.. Optical super-localisation of single nanoparticle nucleation and growth in nanodroplets. . ChemElectroChem 10::e202201162
    [Crossref] [Google Scholar]
  158. 158.
    Perera RT, Arcadia CE, Rosenstein JK. 2018.. Probing the nucleation, growth, and evolution of hydrogen nanobubbles at single catalytic sites. . Electrochim. Acta 283::177378
    [Crossref] [Google Scholar]
  159. 159.
    Dyett BP, Zhang X. 2020.. Accelerated formation of H2 nanobubbles from a surface nanodroplet reaction. . ACS Nano 14::1094453
    [Crossref] [Google Scholar]
  160. 160.
    Vogel YB, Evans CW, Belotti M, Xu L, Russell IC, et al. 2020.. The corona of a surface bubble promotes electrochemical reactions. . Nat. Commun. 11::6323
    [Crossref] [Google Scholar]
  161. 161.
    Shen X, Liu R, Wang D. 2022.. Nanoconfined electrochemical collision and catalysis of single enzyme inside carbon nanopipettes. . Anal. Chem. 94::811014
    [Crossref] [Google Scholar]
  162. 162.
    Wang Y, Pan R, Jiang D, Jiang D, Chen H-Y. 2021.. Nanopipettes for the electrochemical study of enhanced enzymatic activity in a femtoliter space. . Anal. Chem. 93::1452126
    [Crossref] [Google Scholar]
  163. 163.
    Vannoy KJ, Ryabykh A, Chapoval AI, Dick JE. 2021.. Single enzyme electroanalysis. . Analyst 146::341321
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-030919
Loading
/content/journals/10.1146/annurev-anchem-061622-030919
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error