1932

Abstract

Bioluminescence imaging (BLI) is a powerful method for visualizing biological processes and tracking cells. Engineered bioluminescent bacteria that utilize luciferase-catalyzed biochemical reactions to generate luminescence have become useful analytical tools for in vitro and in vivo bacterial imaging. Accordingly, this review initially introduces the development of engineered bioluminescent bacteria that use different luciferase–luciferin pairs as analytical tools and their applications for in vivo BLI, including real-time bacterial tracking of infection, probiotic investigation, tumor-targeted therapy, and drug screening. Applications of engineered bioluminescent bacteria as whole-cell biosensors for sensing biological changes in vitro and in vivo are then discussed. Finally, we review the optimizations and future directions of bioluminescent bacteria for imaging. This review aims to provide fundamental insights into bacterial BLI and highlight the potential development of this technique in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-034229
2024-07-17
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-034229.html?itemId=/content/journals/10.1146/annurev-anchem-061622-034229&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Haddock SH, Moline MA, Case JF. 2010.. Bioluminescence in the sea. . Annu. Rev. Mar. Sci. 2::44393
    [Crossref] [Google Scholar]
  2. 2.
    Yeh HW, Ai HW. 2019.. Development and applications of bioluminescent and chemiluminescent reporters and biosensors. . Annu. Rev. Anal. Chem. 12::12950
    [Crossref] [Google Scholar]
  3. 3.
    Close D, Xu T, Smartt A, Rogers A, Crossley R, et al. 2012.. The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. . Sensors 12::73252
    [Crossref] [Google Scholar]
  4. 4.
    Yang X, Qin X, Ji H, Du L, Li M. 2022.. Constructing firefly luciferin bioluminescence probes for in vivo imaging. . Org. Biomol. Chem. 20::136072
    [Crossref] [Google Scholar]
  5. 5.
    Kelley BV, Hamad C, Zoller SD, Greig D, Mamouei Z, et al. 2020.. In vivo mouse model of spinal implant infection. . J. Vis. Exp. 160::e60560
    [Google Scholar]
  6. 6.
    Archer NK, Wang Y, Ortines RV, Liu H, Nolan SJ, et al. 2020.. Preclinical models and methodologies for monitoring Staphylococcus aureus infections using noninvasive optical imaging. . Methods Mol. Biol. 2069::197228
    [Crossref] [Google Scholar]
  7. 7.
    Cai Y, Yang D, Wang J, Wang R. 2018.. Activity of colistin alone or in combination with rifampicin or meropenem in a carbapenem-resistant bioluminescent Pseudomonas aeruginosa intraperitoneal murine infection model. . J. Antimicrob. Chemother. 73::45661
    [Crossref] [Google Scholar]
  8. 8.
    Daniel C, Poiret S, Dennin V, Boutillier D, Pot B. 2013.. Bioluminescence imaging study of spatial and temporal persistence of Lactobacillus plantarum and Lactococcus lactis in living mice. . Appl. Environ. Microbiol. 79::108694
    [Crossref] [Google Scholar]
  9. 9.
    Danino T, Prindle A, Kwong GA, Skalak M, Li H, et al. 2015.. Programmable probiotics for detection of cancer in urine. . Sci. Transl. Med. 7::289ra84
    [Crossref] [Google Scholar]
  10. 10.
    Raman V, Van Dessel N, Hall CL, Wetherby VE, Whitney SA, et al. 2021.. Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases. . Nat. Commun. 12::6116
    [Crossref] [Google Scholar]
  11. 11.
    Song Y, Xu Z, Sun J. 2022.. Metabolic labeling and bioluminescent imaging of nascent peptidoglycan. . Sens. Actuators B Chem. 372::132580
    [Crossref] [Google Scholar]
  12. 12.
    Jiang T, Song J, Zhang Y. 2023.. Coelenterazine-type bioluminescence-induced optical probes for sensing and controlling biological processes. . Int. J. Mol. Sci. 24:(6):5074
    [Crossref] [Google Scholar]
  13. 13.
    Kaskova ZM, Tsarkova AS, Yampolsky IV. 2016.. 1001 Lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. . Chem. Soc. Rev. 45::604877
    [Crossref] [Google Scholar]
  14. 14.
    Cui B, Wang Y, Song Y, Wang T, Li C, et al. 2014.. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria. . mBio 5::e01050-14
    [Crossref] [Google Scholar]
  15. 15.
    Shimomura O. 2012.. Bioluminescence: Chemical Principles and Methods. Singapore:: World Sci.
    [Google Scholar]
  16. 16.
    Hastings JW, Nealson KH. 1977.. Bacterial bioluminescence. . Annu. Rev. Microbiol. 31::54995
    [Crossref] [Google Scholar]
  17. 17.
    Scott D, Dikici E, Ensor M, Daunert S. 2011.. Bioluminescence and its impact on bioanalysis. . Annu. Rev. Anal. Chem. 4::297319
    [Crossref] [Google Scholar]
  18. 18.
    Tinikul R, Chaiyen P. 2016.. Structure, mechanism, and mutation of bacterial luciferase. . In Bioluminescence: Fundamentals and Applications in Biotechnology, Vol. 3, ed. G Thouand, R Marks , pp. 4774. Cham, Switz:.: Springer
    [Google Scholar]
  19. 19.
    Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P. 2008.. LuxG is a functioning flavin reductase for bacterial luminescence. . J. Bacteriol. 190::153138
    [Crossref] [Google Scholar]
  20. 20.
    Brodl E, Csamay A, Horn C, Niederhauser J, Weber H, et al. 2020.. The impact of LuxF on light intensity in bacterial bioluminescence. . J. Photochem. Photobiol. B Biol. 207::111881
    [Crossref] [Google Scholar]
  21. 21.
    Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS. 2010.. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. . PLOS ONE 5::e12441
    [Crossref] [Google Scholar]
  22. 22.
    Andreu N, Zelmer A, Wiles S. 2011.. Noninvasive biophotonic imaging for studies of infectious disease. . FEMS Microbiol. Rev. 35::36094
    [Crossref] [Google Scholar]
  23. 23.
    Yoshioka K, Ishii K, Kuramoto T, Nagai S, Funao H, et al. 2014.. A novel mouse model of soft-tissue infection using bioluminescence imaging allows noninvasive, real-time monitoring of bacterial growth. . PLOS ONE 9::e106367
    [Crossref] [Google Scholar]
  24. 24.
    Sun Y, Connor MG, Pennington JM, Lawrenz MB. 2012.. Development of bioluminescent bioreporters for in vitro and in vivo tracking of Yersinia pestis. . PLOS ONE 7:(10):e47123
    [Crossref] [Google Scholar]
  25. 25.
    Furci L, Pascual-Pardo D, Ton J. 2021.. A rapid and non-destructive method for spatial–temporal quantification of colonization by Pseudomonas syringae pv. tomato DC3000 in Arabidopsis and tomato. . Plant Methods 17::126
    [Crossref] [Google Scholar]
  26. 26.
    Xu C, Zhong L, Huang Z, Li C, Lian J, et al. 2022.. Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. . Plant Methods 18::7
    [Crossref] [Google Scholar]
  27. 27.
    Gomi K, Kajiyama N. 2001.. Oxyluciferin, a luminescence product of firefly luciferase, is enzymatically regenerated into luciferin. . Enzyme Catal. Reg. 276::3650813
    [Google Scholar]
  28. 28.
    Chang M, Anttonen KP, Cirillo SL, Francis KP, Cirillo JD. 2014.. Real-time bioluminescence imaging of mixed mycobacterial infections. . PLOS ONE 9::e108341
    [Crossref] [Google Scholar]
  29. 29.
    Jiang T, Yang X, Li G, Zhao X, Sun T, et al. 2021.. Bacteria-based live vehicle for in vivo bioluminescence imaging. . Anal. Chem. 93::1568795
    [Crossref] [Google Scholar]
  30. 30.
    Miller RJ, Crosby HA, Schilcher K, Wang Y, Ortines RV, et al. 2019.. Development of a Staphylococcus aureus reporter strain with click beetle red luciferase for enhanced in vivo imaging of experimental bacteremia and mixed infections. . Sci. Rep. 9::16663
    [Crossref] [Google Scholar]
  31. 31.
    Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, et al. 2010.. Optimisation of bioluminescent reporters for use with mycobacteria. . PLOS ONE 5::e10777
    [Crossref] [Google Scholar]
  32. 32.
    Kong Y, Akin AR, Francis KP, Zhang N, Troy TL, et al. 2011.. Whole-body imaging of infection using fluorescence. . Curr. Protocols 21::2C.3.121
    [Google Scholar]
  33. 33.
    Daniel C, Poiret S, Dennin V, Boutillier D, Lacorre DA, et al. 2015.. Dual-color bioluminescence imaging for simultaneous monitoring of the intestinal persistence of Lactobacillus plantarum and Lactococcus lactis in living mice. . Appl. Environ. Microbiol. 81::534449
    [Crossref] [Google Scholar]
  34. 34.
    Ur Rahman S, Stanton M, Casey PG, Spagnuolo A, Bensi G, et al. 2017.. Development of a click beetle luciferase reporter system for enhanced bioluminescence imaging of Listeria monocytogenes: analysis in cell culture and murine infection models. . Front. Microbiol. 8::1797
    [Crossref] [Google Scholar]
  35. 35.
    Hutchens M, Luker GD. 2007.. Applications of bioluminescence imaging to the study of infectious diseases. . Cell. Microbiol. 9::231522
    [Crossref] [Google Scholar]
  36. 36.
    Weissleder R. 2001.. A clearer vision for in vivo imaging. . Nat. Biotechnol. 19::31617
    [Crossref] [Google Scholar]
  37. 37.
    Chang MH, Cirillo SL, Cirillo JD. 2011.. Using luciferase to image bacterial infections in mice. . Immunol. Infect. 48::e2547
    [Google Scholar]
  38. 38.
    Dworsky EM, Hegde V, Loftin AH, Richman S, Hu Y, et al. 2017.. Novel in vivo mouse model of implant related spine infection. . J. Orthop. Res. 35::19399
    [Crossref] [Google Scholar]
  39. 39.
    Gonzalez RJ, Weening EH, Frothingham R, Sempowski GD, Miller VL. 2012.. Bioluminescence imaging to track bacterial dissemination of Yersinia pestis using different routes of infection in mice. . BMC Microbiol. 12::147
    [Crossref] [Google Scholar]
  40. 40.
    Pribaz JR, Bernthal NM, Billi F, Cho JS, Ramos RI, et al. 2012.. Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study. . J. Orthop. Res. 30::33540
    [Crossref] [Google Scholar]
  41. 41.
    Bernal E, Deblais L, Rajashekara G, Francis DM. 2021.. Bioluminescent Xanthomonas hortorum pv. Gardneri as a tool to quantify bacteria in planta, screen germplasm, and identify infection routes on leaf surfaces. . Sec. Plant Interact. 12::667351
    [Google Scholar]
  42. 42.
    Bartkova S, Kokotovic B, Dalsgaard IJ. 2017.. Infection routes of Aeromonas salmonicida in rainbow trout monitored in vivo by real-time bioluminescence imaging. . J. Fish Dis. 40::7382
    [Crossref] [Google Scholar]
  43. 43.
    Guijarro JA, Méndez J. 2020.. In vivo bioluminescent imaging of Yersinia ruckeri pathogenesis in fish. . Biolumin. Imag. 6980
    [Crossref] [Google Scholar]
  44. 44.
    Nelson SM, Cooper AA, Taylor EL, Salisbury VC. 2003.. Use of bioluminescent Escherichia coli O157:H7 to study intra-protozoan survival of bacteria within Tetrahymena pyriformis. . FEMS Microbiol. Lett. 223::9599
    [Crossref] [Google Scholar]
  45. 45.
    Foucault M-L, Thomas L, Goussard S, Branchini B, Grillot-Courvalin C. 2010.. In vivo bioluminescence imaging for the study of intestinal colonization by Escherichia coli in mice. . Appl. Environ. Microbiol. 76::26474
    [Crossref] [Google Scholar]
  46. 46.
    Rodea GE, Montiel-Infante FX, Cruz-Cordova A, Saldana-Ahuactzi Z, Ochoa SA, et al. 2017.. Tracking bioluminescent ETEC during in vivo BALB/c mouse colonization. . Front. Cell. Infect. Microbiol. 7::187
    [Crossref] [Google Scholar]
  47. 47.
    Na SH, Oh MH, Jeon H, Lee Y-K, Lee B, et al. 2019.. Imaging of bioluminescent Acinetobacter baumannii in a mouse pneumonia model. . Microb. Pathogen. 137::103784
    [Crossref] [Google Scholar]
  48. 48.
    Nham T, Filali S, Danne C, Derbise A, Carniel EJ. 2012.. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis. . PLOS ONE 7::e34714
    [Crossref] [Google Scholar]
  49. 49.
    Contag PR. 2008.. Bioluminescence imaging to evaluate infections and host response in vivo. . In Innate Immunity, ed. J Ewbank, E Vivier , pp. 10118. Totowa, NJ:: Humana Press
    [Google Scholar]
  50. 50.
    Bergmann S, Rohde M, Schughart K, Lengeling A. 2013.. The bioluminescent Listeria monocytogenes strain Xen32 is defective in flagella expression and highly attenuated in orally infected BALB/cJ mice. . Gut Pathog. 5::19
    [Crossref] [Google Scholar]
  51. 51.
    Cai Y, Yang D, Wang J, Wang R. 2018.. Amikacin and cefoperazone/sulbactam alone or in combination against carbapenem-resistant Pseudomonas aeruginosa. . Diagn. Microbiol. Infect. Dis. 91::18690
    [Crossref] [Google Scholar]
  52. 52.
    Massey S, Johnston K, Mott TM, Judy BM, Kvitko BH, et al. 2011.. In vivo bioluminescence imaging of Burkholderia mallei respiratory infection and treatment in the mouse model. . Front. Microbiol. 2::174
    [Crossref] [Google Scholar]
  53. 53.
    Dumetz F, Jouvion G, Khun H, Glomski IJ, Corre J-P, et al. 2011.. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax. . Am. J. Pathol. 178::252335
    [Crossref] [Google Scholar]
  54. 54.
    Rougeaux C, Becher F, Ezan E, Tournier J-N, Goossens PL. 2016.. In vivo dynamics of active edema and lethal factors during anthrax. . Sci. Rep. 6::23346
    [Crossref] [Google Scholar]
  55. 55.
    Peetermans M, Vanassche T, Liesenborghs L, Claes J, Vande Velde G, et al. 2014.. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. . BMC Microbiol. 14::310
    [Crossref] [Google Scholar]
  56. 56.
    Bacconi M, Haag AF, Torre A, Castagnetti A, Chiarot E, et al. 2016.. A stable luciferase reporter plasmid for in vivo imaging in murine models of Staphylococcus aureus infections. . Appl. Microbiol. Biotechnol. 100::3197206
    [Crossref] [Google Scholar]
  57. 57.
    Kim Y-H, Park P-G, Seo S-H, Hong K-J, Youn H. 2018.. Development of dual reporter imaging system for Francisella tularensis to monitor the spatio-temporal pathogenesis and vaccine efficacy. . Clin. Exp. Vaccine Res. 7::12938
    [Crossref] [Google Scholar]
  58. 58.
    Hall CA, Flick-Smith HC, Harding SV, Atkins HS, Titball RW. 2016.. A bioluminescent Francisella tularensis SCHU S4 strain enables noninvasive tracking of bacterial dissemination and the evaluation of antibiotics in an inhalational mouse model of tularemia. . Antimicrob. Agents Chemother. 60::720615
    [Crossref] [Google Scholar]
  59. 59.
    Wen M, Jung S, Moon K-S, Jiang SN, Li S-Y, Min J-J. 2014.. Targeting orthotopic glioma in mice with genetically engineered Salmonella typhimurium. . J. Korean Neurosurg. Soc. 55::13135
    [Crossref] [Google Scholar]
  60. 60.
    Jiang S-N, Park S-H, Lee HJ, Zheng JH, Kim H-S, et al. 2013.. Engineering of bacteria for the visualization of targeted delivery of a cytolytic anticancer agent. . Mol. Ther. 21::198595
    [Crossref] [Google Scholar]
  61. 61.
    Nguyen D-H, You S-H, Vo A-TN, Ngo HT-T, Van Nguyen K, et al. 2022.. Optimized doxycycline-inducible gene expression system for genetic programming of tumor-targeting bacteria. . Mol. Imaging Biol. 24::8292
    [Crossref] [Google Scholar]
  62. 62.
    Leanti La Rosa S, Diep DB, Nes IF, Brede DA. 2012.. Construction and application of a luxABCDE reporter system for real-time monitoring of Enterococcus faecalis gene expression and growth. . Appl. Environ. Microbiol. 78::700311
    [Crossref] [Google Scholar]
  63. 63.
    La Rosa SL, Casey PG, Hill C, Diep DB, Nes IF, et al. 2013.. In vivo assessment of growth and virulence gene expression during commensal and pathogenic lifestyles of luxABCDE-tagged Enterococcus faecalis strains in murine gastrointestinal and intravenous infection models. . Appl. Environ. Microbiol. 79::398697
    [Crossref] [Google Scholar]
  64. 64.
    Collins JW, Akin AR, Kosta A, Zhang N, Tangney M, et al. 2012.. Pre-treatment with Bifidobacterium breve UCC2003 modulates Citrobacter rodentium-induced colonic inflammation and organ specificity. . Microbiology 158::2826
    [Crossref] [Google Scholar]
  65. 65.
    Waki N, Kuwabara Y, Yoshikawa Y, Suganuma H, Koide H, et al. 2017.. Amelioration of Citrobacter rodentium proliferation in early stage of infection in mice by pretreatment with Lactobacillus brevis KB290 and verification using in vivo bioluminescence imaging. . FEMS Microbiol. Lett. 364:(6):fnw254
    [Google Scholar]
  66. 66.
    Wiles S, Dougan G, Frankel G. 2005.. Emergence of a ‘hyperinfectious’ bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tract. . Cell. Microbiol. 7::116372
    [Crossref] [Google Scholar]
  67. 67.
    Wiles S, Pickard KM, Peng K, MacDonald TT, Frankel G. 2006.. In vivo bioluminescence imaging of the murine pathogen Citrobacter rodentium. . Infect. Immun. 74::539196
    [Crossref] [Google Scholar]
  68. 68.
    Gordon O, Miller RJ, Thompson JM, Ordonez AA, Klunk MH, et al. 2020.. Rabbit model of Staphylococcus aureus implant-associated spinal infection. . Dis. Models Mech. 13::dmm045385
    [Crossref] [Google Scholar]
  69. 69.
    Niska JA, Shahbazian JH, Ramos RI, Pribaz JR, Billi F, et al. 2012.. Daptomycin and tigecycline have broader effective dose ranges than vancomycin as prophylaxis against a Staphylococcus aureus surgical implant infection in mice. . Antimicrob. Agents Chemother. 56::259097
    [Crossref] [Google Scholar]
  70. 70.
    Guo Y, Ramos RI, Cho JS, Donegan NP, Cheung AL, et al. 2013.. In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice. . Antimicrob. Agents Chemother. 57::85563
    [Crossref] [Google Scholar]
  71. 71.
    Lambrechts SA, Demidova TN, Aalders MC, Hasanb T, Hamblin MR. 2005.. Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. . Photochem. Photobiol. Sci. 4::5039
    [Crossref] [Google Scholar]
  72. 72.
    Demidova TN, Gad F, Zahra T, Francis KP, Hamblin MR. 2005.. Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria. . J. Photochem. Photobiol. B Biol. 81::1525
    [Crossref] [Google Scholar]
  73. 73.
    Vecchio D, Dai T, Huang L, Fantetti L, Roncucci G, Hamblin MR. 2013.. Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion. . J. Biophoton. 6::73342
    [Crossref] [Google Scholar]
  74. 74.
    Bernthal NM, Pribaz JR, Stavrakis AI, Billi F, Cho JS, et al. 2011.. Protective role of IL-1β against post-arthroplasty Staphylococcus aureus infection. . J. Orthoped. Res. 29::162126
    [Crossref] [Google Scholar]
  75. 75.
    Beauchamp CJ, Kloepper JW, Lemke PA. 1993.. Luminometric analyses of plant root colonization by bioluminescent pseudomonads. . Can. J. Microbiol. 39::43441
    [Crossref] [Google Scholar]
  76. 76.
    Matsumoto A, Schlüter T, Melkonian K, Takeda A, Nakagami H, Mine A. 2022.. A versatile Tn7 transposon-based bioluminescence tagging tool for quantitative and spatial detection of bacteria in plants. . Plant Commun. 3::100227
    [Crossref] [Google Scholar]
  77. 77.
    Du H, Chen B, Zhang X, Zhang F, Miller SA, et al. 2017.. Evaluation of Ralstonia solanacearum infection dynamics in resistant and susceptible pepper lines using bioluminescence imaging. . Plant Dis. 101::27278
    [Crossref] [Google Scholar]
  78. 78.
    Dahal N, Abdelhamed H, Lu J, Karsi A, Lawrence ML. 2014.. Effect of multiple mutations in tricarboxylic acid cycle and one-carbon metabolism pathways on Edwardsiella ictaluri pathogenesis. . Vet. Microbiol. 169::10712
    [Crossref] [Google Scholar]
  79. 79.
    Karsi A, Menanteau-Ledouble S, Lawrence ML. 2006.. Development of bioluminescent Edwardsiella ictaluri for noninvasive disease monitoring. . FEMS Microbiol. Lett. 260::21623
    [Crossref] [Google Scholar]
  80. 80.
    Méndez J, Guijarro JJ. 2013.. In vivo monitoring of Yersinia ruckeri in fish tissues: progression and virulence gene expression. . Environ. Microbiol. Rep. 5::17985
    [Crossref] [Google Scholar]
  81. 81.
    Felis GE, Dellaglio F. 2007.. Taxonomy of lactobacilli and bifidobacteria. . Curr. Issues Intest. Microbiol. 8::44
    [Google Scholar]
  82. 82.
    Zhao N, Liu J-M, Liu S, Ji X-M, Lv H, et al. 2020.. A novel universal nano-luciferase-involved reporter system for long-term probing food-borne probiotics and pathogenic bacteria in mice by in situ bioluminescence imaging. . RSC Adv. 10::1302936
    [Crossref] [Google Scholar]
  83. 83.
    Zhou Y, Han Y. 2022.. Engineered bacteria as drug delivery vehicles: principles and prospects. . Eng. Microbiol. 2::100034
    [Crossref] [Google Scholar]
  84. 84.
    Gao Q, Deng S, Jiang T. 2022.. Recent developments in the identification and biosynthesis of antitumor drugs derived from microorganisms. . Eng. Microbiol. 2::100047
    [Crossref] [Google Scholar]
  85. 85.
    Min J-J, Nguyen VH, Kim H-J, Hong Y, Choy HE. 2008.. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. . Nat. Protoc. 3::62936
    [Crossref] [Google Scholar]
  86. 86.
    Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino TJ. 2019.. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. . Nat. Med. 25::105763
    [Crossref] [Google Scholar]
  87. 87.
    Gurbatri CR, Lia I, Vincent R, Coker C, Castro S, et al. 2020.. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. . Sci. Transl. Med. 12::eaax0876
    [Crossref] [Google Scholar]
  88. 88.
    Henken S, Bohling J, Ogunniyi AD, Paton JC, Salisbury VC, et al. 2010.. Evaluation of biophotonic imaging to estimate bacterial burden in mice infected with highly virulent compared to less virulent Streptococcus pneumoniae serotypes. . Antimicrob. Agents Chemother. 54::315560
    [Crossref] [Google Scholar]
  89. 89.
    Briestenská K, Mikušová M, Tomčíková K, Kostolanský F, Varečková E. 2021.. Quantification of bacteria by in vivo bioluminescence imaging in comparison with standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). . Arch. Microbiol. 203::473742
    [Crossref] [Google Scholar]
  90. 90.
    Cochrane SA, Lohans CT. 2020.. Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. . Eur. J. Med. Chem. 194::112262
    [Crossref] [Google Scholar]
  91. 91.
    Park SB, White SB, Steadman CS, Cavinder CA, Willard ST, et al. 2018.. Real-time bioluminescence analysis of Escherichia coli O157:H7 survival on livestock meats stored fresh, cold, or frozen. . J. Food Prot. 81::190612
    [Crossref] [Google Scholar]
  92. 92.
    Huang K, Tian Y, Salvi D, Karwe M, Nitin N. 2018.. Influence of exposure time, shear stress, and surfactants on detachment of Escherichia coli O157:H7 from fresh lettuce leaf surfaces during washing process. . Food Bioproc. Technol. 11::62133
    [Crossref] [Google Scholar]
  93. 93.
    Sakaguchi T, Kitagawa K, Ando T, Murakami Y, Morita Y, et al. 2003.. A rapid BOD sensing system using luminescent recombinants of Escherichia coli. . Biosens. Bioelectron. 19::11521
    [Crossref] [Google Scholar]
  94. 94.
    Zou Z-P, Yang Y, Wang J, Zhou Y, Ye B-C. 2022.. Coupling split-lux cassette with a toggle switch in bacteria for ultrasensitive blood markers detection in feces and urine. . Biosens. Bioelectron. 214::114520
    [Crossref] [Google Scholar]
  95. 95.
    Steinhuber A, Landmann R, Goerke C, Wolz C, Flückiger U. 2008.. Bioluminescence imaging to study the promoter activity of hla of Staphylococcus aureus in vitro and in vivo. . Int. J. Med. Microbiol. 298::599605
    [Crossref] [Google Scholar]
  96. 96.
    Bruckbauer ST, Kvitko BH, Karkhoff-Schweizer RR, Schweizer HPJBm. 2015.. Tn 5/7-lux: a versatile tool for the identification and capture of promoters in Gram-negative bacteria. . BMC Microbiol. 15::17
    [Crossref] [Google Scholar]
  97. 97.
    Yagur-Kroll S, Belkin SJA. 2011.. Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon. . Anal. Bioanal. Chem. 400::107182
    [Crossref] [Google Scholar]
  98. 98.
    Kaku T, Sugiura K, Entani T, Osabe K, Nagai TJ. 2021.. Enhanced brightness of bacterial luciferase by bioluminescence resonance energy transfer. . Sci. Rep. 11::14994
    [Crossref] [Google Scholar]
  99. 99.
    Loh JM, Soh KY, Proft T. 2020.. Generation of bioluminescent group A Streptococcus for biophotonic imaging. . Methods Mol. Biol. 2136::7177
    [Crossref] [Google Scholar]
  100. 100.
    Huang Y-K, Chu C, Wu C-H, Chen C-L, Chiu C-H. 2014.. Evaluation of Gram-negative bacterial infection by a stable and conjugative bioluminescence plasmid in a mouse model. . J. Biomed. Sci. 21::78
    [Crossref] [Google Scholar]
  101. 101.
    Lin J, Guo Y, Yao J, Tang K, Wang X. 2023.. Applications of toxin-antitoxin systems in synthetic biology. . Eng. Microbiol. 3::100069
    [Crossref] [Google Scholar]
  102. 102.
    Loessner H, Leschner S, Endmann A, Westphal K, Wolf K, et al. 2009.. Drug-inducible remote control of gene expression by probiotic Escherichia coli Nissle 1917 in intestine, tumor and gall bladder of mice. . Microbes Infect. 11::1097105
    [Crossref] [Google Scholar]
  103. 103.
    Yeh H-W, Karmach O, Ji A, Carter D, Martins-Green MM, Ai H. 2017.. Red-shifted luciferase–luciferin pairs for enhanced bioluminescence imaging. . Nat. Methods 14::97174
    [Crossref] [Google Scholar]
  104. 104.
    Jiang T, Du L, Li M. 2016.. Lighting up bioluminescence with coelenterazine: strategies and applications. . Photochem. Photobiol. Sci. 15::46680
    [Crossref] [Google Scholar]
  105. 105.
    Krasitskaya VV, Bashmakova EE, Frank LA. 2020.. Coelenterazine-dependent luciferases as a powerful analytical tool for research and biomedical applications. . Int. J. Mol. Sci. 21::7465
    [Crossref] [Google Scholar]
  106. 106.
    Vieira J, da Silva LP, Esteves da Silva JC. 2012.. Advances in the knowledge of light emission by firefly luciferin and oxyluciferin. . J. Photochem. Photobiol. B Biol. 117::3339
    [Crossref] [Google Scholar]
  107. 107.
    Wood KV, Lam YA, McElroy WD. 1989.. Introduction to beetle luciferases and their applications. . J. Biolumin. Chemilumin. 4::289301
    [Crossref] [Google Scholar]
  108. 108.
    Viviani VR, Bechara EJ, Ohmiya Y. 1999.. Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. . Biochemistry 38::827179
    [Crossref] [Google Scholar]
  109. 109.
    Lorenz WW, McCann RO, Longiaru M, Cormier MJ. 1991.. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. . PNAS 88::443842
    [Crossref] [Google Scholar]
  110. 110.
    Verhaegen M, Christopoulos TK. 2002.. Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. . Anal. Chem. 74::437885
    [Crossref] [Google Scholar]
  111. 111.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, et al. 2012.. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. . ACS Chem. Biol. 7::184857
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-034229
Loading
/content/journals/10.1146/annurev-anchem-061622-034229
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error