1932

Abstract

Nonlinear electrokinetic phenomena offer label-free, portable, and robust approaches for particle and cell assessment, including selective enrichment, separation, sorting, and characterization. The field of electrokinetics has evolved substantially since the first separation reports by Arne Tiselius in the 1930s. The last century witnessed major advances in the understanding of the weak-field theory, which supported developments in the use of linear electrophoresis and its adoption as a routine analytical technique. More recently, an improved understanding of the strong-field theory enabled the development of nonlinear electrokinetic techniques such as electrorotation, dielectrophoresis, and nonlinear electrophoresis. This review discusses the operating principles and recent applications of these three nonlinear electrokinetic phenomena for the analysis and manipulation of particles and cells and provides an overview of some of the latest developments in the field of nonlinear electrokinetics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-040810
2024-07-17
2025-02-17
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-040810.html?itemId=/content/journals/10.1146/annurev-anchem-061622-040810&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Hughes MP. 2002.. Nanoelectromechanics in Engineering and Biology. Boca Raton, FL:: CRC Press. , 1st ed..
    [Google Scholar]
  2. 2.
    Jones TB. 1995.. Electromechanics of Particles. New York:: Cambridge Univ. Press
    [Google Scholar]
  3. 3.
    Hywel M, Green NG. 2003.. AC Electrokinetics: Colloids and Nanoparticles. Microtechnol. Microsyst. Ser. Baldock, UK:: Research Stud. Press
    [Google Scholar]
  4. 4.
    Sancho M, Martínez G, Muñoz S, Sebastián JL, Pethig R. 2010.. Interaction between cells in dielectrophoresis and electrorotation experiments. . Biomicrofluidics 4:(2):022802
    [Crossref] [Google Scholar]
  5. 5.
    Kim D, Sonker M, Ros A. 2019.. Dielectrophoresis: from molecular to micrometer-scale analytes. . Anal. Chem. 91:(1):27795
    [Crossref] [Google Scholar]
  6. 6.
    Han CH, Woo SY, Bhardwaj J, Sharma A, Jang J. 2018.. Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes. . Sci. Rep. 8:(1):14942
    [Crossref] [Google Scholar]
  7. 7.
    Hilton SH, Crowther CV, McLaren A, Smithers JP, Hayes MA. 2020.. Biophysical differentiation of susceptibility and chemical differences in Staphylococcus aureus. . Analyst 145:(8):290414
    [Crossref] [Google Scholar]
  8. 8.
    Vaghef-Koodehi A, Ernst OD, Lapizco-Encinas BH. 2023.. Separation of cells and microparticles in insulator-based electrokinetic systems. . Anal. Chem. 95:(2):140918
    [Google Scholar]
  9. 9.
    Su Y-HH, Tsegaye M, Varhue W, Liao K-TT, Abebe LS, et al. 2014.. Quantitative dielectrophoretic tracking for characterization and separation of persistent subpopulations of Cryptosporidium parvum. . Analyst 139:(1):6673
    [Crossref] [Google Scholar]
  10. 10.
    Keck D, Stuart C, Duncan J, Gullette E, Martinez-Duarte R. 2020.. Highly localized enrichment of Trypanosoma brucei parasites using dielectrophoresis. . Micromachines 11:(6):625
    [Crossref] [Google Scholar]
  11. 11.
    Chuang HS, Raizen DM, Lamb A, Dabbish N, Bau HH. 2011.. Dielectrophoresis of Caenorhabditis elegans. . Lab Chip 11:(4):599604
    [Crossref] [Google Scholar]
  12. 12.
    Shokouhmand H, Abdollahi A. 2020.. Detection of cell-free DNA nanoparticles in insulator based dielectrophoresis systems. . J. Chromatogr. A 1626::461262
    [Crossref] [Google Scholar]
  13. 13.
    Gudagunti FD, Velmanickam L, Nawarathna D, Lima IT. 2020.. Nucleotide identification in DNA using dielectrophoresis spectroscopy. . Micromachines 11:(1):39
    [Crossref] [Google Scholar]
  14. 14.
    Lapizco-Encinas BH. 2020.. Microscale electrokinetic assessments of proteins employing insulating structures. . Curr. Opin. Chem. Eng. 29::916
    [Crossref] [Google Scholar]
  15. 15.
    Vaghef-Koodehi A, Lapizco-Encinas BH. 2022.. Microscale electrokinetic-based analysis of intact cells and viruses. . Electrophoresis 43:(1–2):26387
    [Crossref] [Google Scholar]
  16. 16.
    Ermolina I, Milner J, Morgan H. 2006.. Dielectrophoretic investigation of plant virus particles: cow pea mosaic virus and tobacco mosaic virus. . Electrophoresis 27:(20):393948
    [Crossref] [Google Scholar]
  17. 17.
    Masuda T, Maruyama H, Honda A, Arai F. 2014.. Virus enrichment for single virus infection by using 3D insulator based dielectrophoresis. . PLOS ONE 9:(6):e94083
    [Crossref] [Google Scholar]
  18. 18.
    Coll De Peña A, Mohd Redzuan NH, Abajorga M, Hill N, Thomas JA, Lapizco-Encinas BH. 2019.. Analysis of bacteriophages with insulator-based dielectrophoresis. . Micromachines 10:(7):450
    [Crossref] [Google Scholar]
  19. 19.
    Nowicka AB, Czaplicka M, Szymborski T, Kamińska A. 2021.. Combined negative dielectrophoresis with a flexible SERS platform as a novel strategy for rapid detection and identification of bacteria. . Anal. Bioanal. Chem. 213:(7):200720
    [Crossref] [Google Scholar]
  20. 20.
    Ringwelski B, Jayasooriya V, Nawarathna D. 2020.. Dielectrophoretic high purity isolation of primary T-cells in samples contaminated with leukemia cells, for biomanufacturing of therapeutic CAR T-cells. . J. Phys. D. Appl. Phys. 54:(6):10
    [Google Scholar]
  21. 21.
    Nguyen NV, Jen CP. 2018.. Impedance detection integrated with dielectrophoresis enrichment platform for lung circulating tumor cells in a microfluidic channel. . Biosens. Bioelectron. 121::1018
    [Crossref] [Google Scholar]
  22. 22.
    Jun S, Chun C, Ho K, Li Y. 2021.. Design and evaluation of a millifluidic insulator-based dielectrophoresis (Dep) retention device to separate bacteria from tap water. . Water 13:(12):1678
    [Crossref] [Google Scholar]
  23. 23.
    Du F, Hawari AH, Larbi B, Ltaief A, Pesch GR, et al. 2018.. Fouling suppression in submerged membrane bioreactors by obstacle dielectrophoresis. . J. Membr. Sci. 549::46673
    [Crossref] [Google Scholar]
  24. 24.
    Choi W, Min YW, Lee KY, Jun S, Lee HG. 2020.. Dielectrophoresis-based microwire biosensor for rapid detection of Escherichia coli K-12 in ground beef. . LWT Food Sci. Technol. 132::109230
    [Crossref] [Google Scholar]
  25. 25.
    Mishchuk NA, Takhistov PV. 1995.. Electroosmosis of the second kind. . Colloids Surfaces A Physicochem. Eng. Asp. 95:(2–3):11931
    [Crossref] [Google Scholar]
  26. 26.
    Lapizco-Encinas BH. 2022.. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. . Anal. Bioanal. Chem. 414:(2):885905
    [Crossref] [Google Scholar]
  27. 27.
    Khair AS. 2022.. Nonlinear electrophoresis of colloidal particles. . Curr. Opin. Colloid Interface Sci. 59::101587
    [Crossref] [Google Scholar]
  28. 28.
    Pethig R. 2017.. Dielectrophoresis: Theory, Methodology, and Biological Applications. Chichester, UK:: John Wiley & Sons
    [Google Scholar]
  29. 29.
    Trainito CI, Bayart E, Bisceglia E, Subra F, Français O, Le Pioufle B. 2016.. Electrorotation as a versatile tool to estimate dielectric properties of multi-scale biological samples: from single cell to spheroid analysis. . IFMBE Proc. 53::7578
    [Crossref] [Google Scholar]
  30. 30.
    Patel P, Markx GH. 2008.. Dielectric measurement of cell death. . Enzyme Microb. Technol. 43:(7):46370
    [Crossref] [Google Scholar]
  31. 31.
    Holzel R. 1999.. Non-invasive determination of bacterial single cell properties by electrorotation. . Biochim. Biophys. Acta Mol. Cell Res. 1450:(1):5360
    [Crossref] [Google Scholar]
  32. 32.
    Keim K, Rashed MZ, Kilchenmann SC, Delattre A, Gonçalves AF, et al. 2019.. On-chip technology for single-cell arraying, electrorotation-based analysis and selective release. . Electrophoresis 40:(14):183038
    [Crossref] [Google Scholar]
  33. 33.
    Dalton C, Goater AD, Burt JPH, Smith HV. 2004.. Analysis of parasites by electrorotation. . J. Appl. Microbiol. 96:(1):2432
    [Crossref] [Google Scholar]
  34. 34.
    Schwan HP, Schwarz G, Maczuk J, Pauly H. 1962.. On the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. . J. Phys. Chem. 66:(12):262635
    [Crossref] [Google Scholar]
  35. 35.
    Arnold WM, Schwan HP, Zimmermann U. 1987.. Surface conductance and other properties of latex particles measured by electrorotation. . J. Phys. Chem. 91:(19):509398
    [Crossref] [Google Scholar]
  36. 36.
    Washizu M, Jones TB. 1996.. Generalized multipolar dielectrophoretic force and electrorotational torque calculation. . J. Electrostat. 38:(3):199211
    [Crossref] [Google Scholar]
  37. 37.
    Zhou XF, Markx GH, Pethig R, Eastwood IM. 1995.. Differentiation of viable and non-viable bacterial biofilms using electrorotation. . Biochim. Biophys. Acta Gen. Subj. 1245:(1):8593
    [Crossref] [Google Scholar]
  38. 38.
    Falokun CD, Markx GH. 2007.. Electrorotation of beads of immobilized cells. . J. Electrostat. 65:(7):47582
    [Crossref] [Google Scholar]
  39. 39.
    García-Sánchez P, Flores-Mena JE, Ramos A. 2019.. Modeling the AC electrokinetic behavior of semiconducting spheres. . Micromachines 10:(2):100
    [Crossref] [Google Scholar]
  40. 40.
    García-Sánchez P, Ramos A. 2017.. Electrorotation and electroorientation of semiconductor nanowires. . Langmuir 33:(34):855361
    [Crossref] [Google Scholar]
  41. 41.
    Morganti D, Morgan H. 2011.. Characterization of non-spherical polymer particles by combined electrorotation and electroorientation. . Colloids Surfaces A Physicochem. Eng. Asp. 376:(1–3):6771
    [Crossref] [Google Scholar]
  42. 42.
    Arcenegui JJ, Ramos A, García-Sánchez P, Morgan H. 2013.. Electrorotation of titanium microspheres. . Electrophoresis 34:(7):97986
    [Crossref] [Google Scholar]
  43. 43.
    Ren YK, Morganti D, Jiang HY, Ramos A, Morgan H. 2011.. Electrorotation of metallic microspheres. . Langmuir 27:(6):212831
    [Crossref] [Google Scholar]
  44. 44.
    Lapizco-Encinas BH. 2021.. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. . Microchim. Acta 188:(3):104
    [Crossref] [Google Scholar]
  45. 45.
    Kawai S, Suzuki M, Arimoto S, Korenaga T, Yasukawa T. 2020.. Determination of membrane capacitance and cytoplasm conductivity by simultaneous electrorotation. . Analyst 145:(12):418895
    [Crossref] [Google Scholar]
  46. 46.
    Huang L, Liang F, Feng Y, Zhao P, Wang W. 2020.. On-chip integrated optical stretching and electrorotation enabling single-cell biophysical analysis. . Microsyst. Nanoeng. 6:(1):57
    [Crossref] [Google Scholar]
  47. 47.
    Falokun CD, Mavituna F, Markx GH. 2003.. AC electrokinetic characterisation and separation of cells with high and low embryogenic potential in suspension cultures of carrot (Daucus carota). . Plant Cell. Tissue Organ Cult. 75:(3):26172
    [Crossref] [Google Scholar]
  48. 48.
    Rohani A, Moore JH, Su YH, Stagnaro V, Warren C, Swami NS. 2018.. Single-cell electro-phenotyping for rapid assessment of Clostridium difficile heterogeneity under vancomycin treatment at sub-MIC (minimum inhibitory concentration) levels. . Sens. Actuators B Chem. 276::47280
    [Crossref] [Google Scholar]
  49. 49.
    Lin YY, Lo YJ, Lei U. 2020.. Measurement of the imaginary part of the Clausius-Mossotti factor of particle/cell via dual frequency electrorotation. . Micromachines 11:(3):329
    [Crossref] [Google Scholar]
  50. 50.
    Zhou XF, Markx GH, Pethig R. 1996.. Effect of biocide concentration on electrorotation spectra of yeast cells. . Biochim. Biophys. Acta Biomembr. 1281:(1):6064
    [Crossref] [Google Scholar]
  51. 51.
    Georgieva R, Neu B, Shilov VM, Knippel E, Budde A, et al. 1998.. Low frequency electrorotation of fixed red blood cells. . Biophys. J. 74:(4):211420
    [Crossref] [Google Scholar]
  52. 52.
    Gascoyne P, Pethig R, Satayavivad J, Becker FF, Ruchirawat M. 1997.. Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection. . Biochim. Biophys. Acta Biomembr. 1323:(2):24052
    [Crossref] [Google Scholar]
  53. 53.
    Huang L, Zhao P, Wang W. 2018.. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties. . Lab Chip 18:(16):235968
    [Crossref] [Google Scholar]
  54. 54.
    Trainito CI, Sweeney DC, Čemažar J, Schmelz EM, Français O, et al. 2019.. Characterization of sequentially-staged cancer cells using electrorotation. . PLOS ONE 14:(9):e0222289
    [Crossref] [Google Scholar]
  55. 55.
    Karcz A, Van Soom A, Smits K, Verplancke R, Van Vlierberghe S, Vanfleteren J. 2022.. Electrically-driven handling of gametes and embryos: taking a step towards the future of ARTs. . Lab Chip 22:(10):185275
    [Crossref] [Google Scholar]
  56. 56.
    Dalton C, Goater AD, Drysdale J, Pethig R. 2001.. Parasite viability by electrorotation. . Colloids Surfaces A Physicochem. Eng. Asp. 195:(1–3):26368
    [Crossref] [Google Scholar]
  57. 57.
    Hodgson CE, Pethig R, Hanley QS, Earle CW, Pennebaker FM, et al. 1998.. Determination of the viability of Escherichia coli at the single organism level by electrorotation. . Clin. Chem. 44:(9):204951
    [Crossref] [Google Scholar]
  58. 58.
    Dalton C, Goater AD, Pethig R, Smith HV. 2001.. Viability of Giardia intestinalis cysts and viability and sporulation state of Cyclospora cayetanensis oocysts determined by electrorotation. . Appl. Environ. Microbiol. 67:(2):58690
    [Crossref] [Google Scholar]
  59. 59.
    Voyer D, Frénéa-Robin M, Buret F, Nicolas L. 2010.. Improvements in the extraction of cell electric properties from their electrorotation spectrum. . Bioelectrochemistry 79:(1):2530
    [Crossref] [Google Scholar]
  60. 60.
    Hakim KS, Lapizco-Encinas BH. 2021.. Analysis of microorganisms with nonlinear electrokinetic microsystems. . Electrophoresis 42:(5):588604
    [Crossref] [Google Scholar]
  61. 61.
    Pohl HA. 1951.. The motion and precipitation of suspensoids in divergent electric fields. . J. Appl. Phys. 22:(7):86971
    [Crossref] [Google Scholar]
  62. 62.
    Chen Q, Yuan YJ. 2019.. A review of polystyrene bead manipulation by dielectrophoresis. . RSC Adv. 9:(9):496381
    [Crossref] [Google Scholar]
  63. 63.
    Pethig R. 2017.. Review—Where is dielectrophoresis (DEP) going?. J. Electrochem. Soc. 164:(5):B304955
    [Crossref] [Google Scholar]
  64. 64.
    Ernst OD, Vaghef-Koodehi A, Dillis C, Lomeli-Martin A, Lapizco-Encinas BH. 2023.. Dependence of nonlinear electrophoresis on particle size and electrical charge. . Anal. Chem. 95:(16):6595602
    [Crossref] [Google Scholar]
  65. 65.
    Lomeli-Martin A, Ahamed N, Abhyankar VV, Lapizco-Encinas BH. 2023.. Electropatterning—contemporary developments for selective particle arrangements employing electrokinetics. . Electrophoresis 44:(11–12):884909
    [Crossref] [Google Scholar]
  66. 66.
    Modarres P, Tabrizian M. 2017.. Alternating current dielectrophoresis of biomacromolecules: the interplay of electrokinetic effects. . Sens. Actuators B Chem. 252::391408
    [Crossref] [Google Scholar]
  67. 67.
    Pesch GR, Du F. 2021.. A review of dielectrophoretic separation and classification of non-biological particles. . Electrophoresis 42:(1–2):13452
    [Crossref] [Google Scholar]
  68. 68.
    Pethig R. 2019.. Limitations of the Clausius-Mossotti function used in dielectrophoresis and electrical impedance studies of biomacromolecules. . Electrophoresis 40:(18–19):257583
    [Crossref] [Google Scholar]
  69. 69.
    Hölzel R, Pethig R. 2020.. Protein dielectrophoresis: I. Status of experiments and an empirical theory. . Micromachines 11:(5):533
    [Crossref] [Google Scholar]
  70. 70.
    Hölzel R, Pethig R. 2021.. Protein dielectrophoresis: key dielectric parameters and evolving theory. . Electrophoresis 42:(5):51338
    [Crossref] [Google Scholar]
  71. 71.
    Mohamad AS, Hamzah R, Hoettges KF, Hughes MP. 2017.. A dielectrophoresis-impedance method for protein detection and analysis. . AIP Adv. 7:(1):015202
    [Crossref] [Google Scholar]
  72. 72.
    Zhang P, Liu Y. 2017.. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration. . Biofabrication 9:(4):45003
    [Crossref] [Google Scholar]
  73. 73.
    Kwak TJ, Jung H, Allen BD, Demirel MC, Chang WJ. 2021.. Dielectrophoretic separation of randomly shaped protein particles. . Sep. Purif. Technol. 262::118280
    [Crossref] [Google Scholar]
  74. 74.
    Duchamp M, Lee K, Dwir B, Seo JW, Kapon E, et al. 2010.. Controlled positioning of carbon nanotubes by dielectrophoresis: Insights into the solvent and substrate role. . ACS Nano 4:(1):27984
    [Crossref] [Google Scholar]
  75. 75.
    Li P, Martin CM, Yeung KK, Xue W. 2011.. Dielectrophoresis aligned single-walled carbon nanotubes as pH sensors. . Biosensors 1:(1):2335
    [Crossref] [Google Scholar]
  76. 76.
    An L, Friedrich C. 2013.. Dielectrophoretic assembly of carbon nanotubes and stability analysis. . Prog. Nat. Sci. Mater. Int. 23:(4):36773
    [Crossref] [Google Scholar]
  77. 77.
    Rabbani MT, Schmidt CF, Ros A. 2017.. Single-walled carbon nanotubes probed with insulator-based dielectrophoresis. . Anal. Chem. 89:(24):1323544
    [Crossref] [Google Scholar]
  78. 78.
    Garciá Núez C, Braa AF, López N, Pau JL, Garciá BJ. 2020.. Single GaAs nanowire based photodetector fabricated by dielectrophoresis. . Nanotechnology 31:(22):225604
    [Crossref] [Google Scholar]
  79. 79.
    Chang B, Zhao D. 2021.. Direct assembly of nanowires by electron beam-induced dielectrophoresis. . Nanotechnology 32:(41):415602
    [Crossref] [Google Scholar]
  80. 80.
    Kuzyk A. 2011.. Dielectrophoresis at the nanoscale. . Electrophoresis 32:(17):230713
    [Crossref] [Google Scholar]
  81. 81.
    Gierhart BC, Howitt DG, Chen SJ, Smith RL, Collins SD. 2007.. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. . Langmuir 23:(24):1245056
    [Crossref] [Google Scholar]
  82. 82.
    Riahifar R, Marzbanrad E, Raissi B, Zamani C, Kazemzad M, Aghaei A. 2011.. Sorting ZnO particles of different shapes with low frequency AC electric fields. . Mater. Lett. 65:(4):63235
    [Crossref] [Google Scholar]
  83. 83.
    Zhao K, Li D. 2017.. Continuous separation of nanoparticles by type via localized DC-dielectrophoresis using asymmetric nano-orifice in pressure-driven flow. . Sens. Actuators B Chem. 250::27484
    [Crossref] [Google Scholar]
  84. 84.
    Weirauch L, Lorenz M, Hill N, Lapizco-Encinas BH, Baune M, et al. 2019.. Material-selective separation of mixed microparticles via insulator-based dielectrophoresis. . Biomicrofluidics 13:(6):064112
    [Crossref] [Google Scholar]
  85. 85.
    Weirauch L, Giesler J, Baune M, Pesch GR, Thöming J. 2022.. Shape-selective remobilization of microparticles in a mesh-based DEP filter at high throughput. . Sep. Purif. Technol. 300::121792
    [Crossref] [Google Scholar]
  86. 86.
    Duncan JL, Barlow Z, Schultz J, Davalos RV. 2022.. Introducing electric field fabrication: a method of additive manufacturing via liquid dielectrophoresis. . SSRN Electron. J. 4::100107
    [Google Scholar]
  87. 87.
    Salmanzadeh A, Shafiee H, Davalos RV, Stremler MA. 2011.. Microfluidic mixing using contactless dielectrophoresis. . Electrophoresis 32:(18):256978
    [Crossref] [Google Scholar]
  88. 88.
    Rashed MZ, Williams SJ. 2020.. Advances and applications of isomotive dielectrophoresis for cell analysis. . Anal. Bioanal. Chem. 412:(16):381333
    [Crossref] [Google Scholar]
  89. 89.
    Henslee EA. 2020.. Review: dielectrophoresis in cell characterization. . Electrophoresis 41:(21–22):191530
    [Crossref] [Google Scholar]
  90. 90.
    Zellner P, Shake T, Hosseini Y, Nakidde D, Riquelme MV, et al. 2015.. 3D insulator-based dielectrophoresis using DC-biased, AC electric fields for selective bacterial trapping. . Electrophoresis 36:(2):27783
    [Crossref] [Google Scholar]
  91. 91.
    Nakidde D, Zellner P, Alemi MM, Shake T, Hosseini Y, et al. 2015.. Three dimensional passivated-electrode insulator-based dielectrophoresis. . Biomicrofluidics 9:(1):14125
    [Crossref] [Google Scholar]
  92. 92.
    Yildizhan Y, Erdem N, Islam M, Martinez-Duarte R, Elitas M. 2017.. Dielectrophoretic separation of live and dead monocytes using 3D carbon-electrodes. . Sensors 17:(11):2691
    [Crossref] [Google Scholar]
  93. 93.
    Lewpiriyawong N, Xu G, Yang C. 2018.. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads. . Electrophoresis 39:(5–6):87886
    [Crossref] [Google Scholar]
  94. 94.
    Ettehad HM, Zarrin PS, Hölzel R, Wenger C. 2020.. Dielectrophoretic immobilization of yeast cells using CMOS integrated microfluidics. . Micromachines 11:(5):501
    [Crossref] [Google Scholar]
  95. 95.
    Ettehad HM, Wenger C. 2021.. Characterization and separation of live and dead yeast cells using CMOS-based dep microfluidics. . Micromachines 12:(3):270
    [Crossref] [Google Scholar]
  96. 96.
    Nie X, Luo Y, Shen P, Han C, Yu D, Xing X. 2021.. High-throughput dielectrophoretic cell sorting assisted by cell sliding on scalable electrode tracks made of conducting-PDMS. . Sens. Actuators B Chem. 327::128873
    [Crossref] [Google Scholar]
  97. 97.
    Faraghat SA, Hoettges KF, Steinbach MK, van der Veen DR, Brackenbury WJ, et al. 2017.. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. . PNAS 114:(18):459196
    [Crossref] [Google Scholar]
  98. 98.
    Hoettges KF, Henslee EA, Torcal Serrano RM, Jabr RI, Abdallat RG, et al. 2019.. Ten-second electrophysiology: evaluation of the 3DEP platform for high-speed, high-accuracy cell analysis. . Sci. Rep. 9:(1):19153
    [Crossref] [Google Scholar]
  99. 99.
    Mahabadi S, Labeed FH, Hughes MP. 2018.. Dielectrophoretic analysis of treated cancer cells for rapid assessment of treatment efficacy. . Electrophoresis 39:(8):110410
    [Crossref] [Google Scholar]
  100. 100.
    Varmazyari V, Ghafoorifard H, Habibiyan H, Ebrahimi M, Ghafouri-Fard S. 2022.. A microfluidic device for label-free separation sensitivity enhancement of circulating tumor cells of various and similar size. . J. Mol. Liq. 349::118192
    [Crossref] [Google Scholar]
  101. 101.
    Hughes MP. 2018.. Technological developments in dielectrophoresis and its path to commercialization. . Cell Gene Ther. Insights 4:(1):8188
    [Crossref] [Google Scholar]
  102. 102.
    Salahi A, Varhue WB, Farmehini V, Hyler AR, Schmelz EM, et al. 2020.. Self-aligned microfluidic contactless dielectrophoresis device fabricated by single-layer imprinting on cyclic olefin copolymer. . Anal. Bioanal. Chem. 412:(16):388189
    [Crossref] [Google Scholar]
  103. 103.
    Aghaamoo M, Aghilinejad A, Chen X, Xu J. 2019.. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. . Electrophoresis 40:(10):148693
    [Crossref] [Google Scholar]
  104. 104.
    Torres-Castro K, Honrado C, Varhue WB, Farmehini V, Swami NS. 2020.. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines. . Anal. Bioanal. Chem. 412:(16):384757
    [Crossref] [Google Scholar]
  105. 105.
    Perez-Gonzalez VH. 2021.. Particle trapping in electrically driven insulator-based microfluidics: dielectrophoresis and induced-charge electrokinetics. . Electrophoresis 42:(23):244564
    [Crossref] [Google Scholar]
  106. 106.
    Lomeli-Martin A, Ernst OD, Cardenas-Benitez B, Cobos R, Khair AS, Lapizco-Encinas BH. 2023.. Characterization of the nonlinear electrophoretic behavior of colloidal particles in a microfluidic channel. . Anal. Chem. 95:(16):674047
    [Crossref] [Google Scholar]
  107. 107.
    Antunez-Vela S, Perez-Gonzalez VH, Coll De Peña A, Lentz CJ, Lapizco-Encinas BH. 2020.. Simultaneous determination of linear and nonlinear electrophoretic mobilities of cells and microparticles. . Anal. Chem. 92:(22):1488591
    [Crossref] [Google Scholar]
  108. 108.
    Bentor J, Dort H, Chitrao RA, Zhang Y, Xuan X. 2022.. Nonlinear electrophoresis of dielectric particles in Newtonian fluids. . Electrophoresis 44:(11–12):93846
    [Google Scholar]
  109. 109.
    Li D. 2004.. Electrophoretic motion of particles in microchannels. . In Electrokinetics in Microfluidics, Vol. 2, ed. D Li , pp. 542616. Amsterdam:: Elsevier
    [Google Scholar]
  110. 110.
    Coll De Peña A, Miller A, Lentz CJ, Hill N, Parthasarathy A, et al. 2020.. Creation of an electrokinetic characterization library for the detection and identification of biological cells. . Anal. Bioanal. Chem. 412:(16):393545
    [Crossref] [Google Scholar]
  111. 111.
    Xuan X. 2022.. Review of nonlinear electrokinetic flows in insulator-based dielectrophoresis: from induced charge to Joule heating effects. . Electrophoresis 43:(1–2):16789
    [Crossref] [Google Scholar]
  112. 112.
    Dukhin AS, Dukhin SS. 2005.. Aperiodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules. . Electrophoresis 26:(11):214953
    [Crossref] [Google Scholar]
  113. 113.
    Mishchuk NA, Barinova NO. 2011.. Theoretical and experimental study of nonlinear electrophoresis. . Colloid J. 73:(1):8896
    [Crossref] [Google Scholar]
  114. 114.
    Lapizco-Encinas BH. 2019.. On the recent developments of insulator-based dielectrophoresis: a review. . Electrophoresis 40:(3):35875
    [Crossref] [Google Scholar]
  115. 115.
    Cardenas-Benitez B, Jind B, Gallo-Villanueva RC, Martinez-Chapa SO, Lapizco-Encinas BH, Perez-Gonzalez VH. 2020.. Direct current electrokinetic particle trapping in insulator-based microfluidics: theory and experiments. . Anal. Chem. 92:(19):1287179
    [Crossref] [Google Scholar]
  116. 116.
    Vaghef-Koodehi A, Dillis C, Lapizco-Encinas BH. 2022.. High-resolution charge-based electrokinetic separation of almost identical microparticles. . Anal. Chem. 94:(17):645156
    [Crossref] [Google Scholar]
  117. 117.
    Hill N, Lapizco-Encinas BH. 2019.. On the use of correction factors for the mathematical modeling of insulator based dielectrophoretic devices. . Electrophoresis 40:(18–19):254152
    [Crossref] [Google Scholar]
  118. 118.
    Sonker M, Kim D, Egatz-Gomez A, Ros A. 2019.. Separation phenomena in tailored micro- and nanofluidic environments. . Annu. Rev. Anal. Chem. 12::475500
    [Crossref] [Google Scholar]
  119. 119.
    Lalonde A, Romero-Creel MF, Lapizco-Encinas BH. 2015.. Assessment of cell viability after manipulation with insulator-based dielectrophoresis. . Electrophoresis 36:(13):147984
    [Crossref] [Google Scholar]
  120. 120.
    Gallo-Villanueva RC, Jesús-Pérez NM, Martínez-López JI, Pacheco A, Lapizco-Encinas BH. 2011.. Assessment of microalgae viability employing insulator-based dielectrophoresis. . Microfluid. Nanofluidics 10:(6):130515
    [Crossref] [Google Scholar]
  121. 121.
    Crowther CV, Hilton SH, Kemp LK, Hayes MA. 2019.. Isolation and identification of Listeria monocytogenes utilizing DC insulator-based dielectrophoresis. . Anal. Chim. Acta. 1068::4151
    [Crossref] [Google Scholar]
  122. 122.
    Braff WA, Pignier A, Buie CR. 2012.. High sensitivity three-dimensional insulator-based dielectrophoresis. . Lab Chip 12:(7):132731
    [Crossref] [Google Scholar]
  123. 123.
    Zhu J, Canter RC, Keten G, Vedantam P, Tzeng T-RRJ, Xuan X. 2011.. Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis. . Microfluid. Nanofluidics 11:(6):74352
    [Crossref] [Google Scholar]
  124. 124.
    Mohammadi M, Madadi H, Casals-Terré J, Sellarès J. 2015.. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation. . Anal. Bioanal. Chem. 407:(16):473344
    [Crossref] [Google Scholar]
  125. 125.
    Liu Y, Jiang A, Kim E, Ro C, Adams T, et al. 2019.. Identification of neural stem and progenitor cell subpopulations using DC insulator-based dielectrophoresis. . Analyst 144:(13):406672
    [Crossref] [Google Scholar]
  126. 126.
    Srivastava SK, Artemiou A, Minerick AR. 2011.. Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing. . Electrophoresis 32:(18):253040
    [Crossref] [Google Scholar]
  127. 127.
    Braff WA, Willner D, Hugenholtz P, Rabaey K, Buie CR. 2013.. Dielectrophoresis-based discrimination of bacteria at the strain level based on their surface properties. . PLOS ONE 8:(10):e76751
    [Crossref] [Google Scholar]
  128. 128.
    Liu Y, Hayes MA. 2020.. Differential biophysical behaviors of closely related strains of Salmonella. . Front. Microbiol. 11::302
    [Crossref] [Google Scholar]
  129. 129.
    Hilton SH, Hayes MA. 2019.. A mathematical model of dielectrophoretic data to connect measurements with cell properties. . Anal. Bioanal. Chem. 411::222337
    [Crossref] [Google Scholar]
  130. 130.
    Tottori S, Misiunas K, Keyser UF, Bonthuis DJ. 2019.. Nonlinear electrophoresis of highly charged nonpolarizable particles. . Phys. Rev. Lett. 123:(1):14502
    [Crossref] [Google Scholar]
  131. 131.
    Rouhi Youssefi M, Diez FJ. 2016.. Ultrafast electrokinetics. . Electrophoresis 37:(5–6):69298
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-040810
Loading
/content/journals/10.1146/annurev-anchem-061622-040810
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error