1932

Abstract

Analytical chemistry is a fast-paced field with frequent introduction of new techniques via research labs; however, incorporation of new techniques into academic curricula lags their adoption in research and industry. This review describes the recent educational literature on microfluidics, microcontrollers, and chemometrics in the undergraduate analytical chemistry curriculum. Each section highlights opportunities for nonexpert faculty to get started with these techniques and more advanced implementations suitable for experienced practitioners. While the addition of new topics to any curriculum brings some opportunity costs, student engagement with cutting edge techniques brings many benefits, including enhanced preparation for graduate school and professional careers and development of transferable skills, such as coding. Formal assessment of student outcomes is encouraged to promote broader adoption of these techniques.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-041922
2024-07-17
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-041922.html?itemId=/content/journals/10.1146/annurev-anchem-061622-041922&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kovarik ML, Galarreta BC, Mahon PJ, McCurry DA, Gerdon AE, et al. 2022.. Survey of the undergraduate analytical chemistry curriculum. . J. Chem. Educ. 99:(6):231726
    [Crossref] [Google Scholar]
  2. 2.
    Waaijer CJF, Palmblad M. 2015.. Bibliometric mapping: eight decades of analytical chemistry, with special focus on the use of mass spectrometry. . Anal. Chem. 87:(9):458896
    [Crossref] [Google Scholar]
  3. 3.
    Wenzel TJ. 1995.. A new approach to undergraduate analytical chemistry. . Anal. Chem. 67:(15):470A75A
    [Crossref] [Google Scholar]
  4. 4.
    Skoog DA, West DM, Holler FJ, Crouch SR. 2013.. Fundamentals of Analytical Chemistry. Belmont, CA:: Cengage Learning
    [Google Scholar]
  5. 5.
    Robinson JW, Frame ES, Frame GM 2nd. 2014.. Undergraduate Instrumental Analysis. Boca Raton, FL:: CRC Press. , 7th ed..
    [Google Scholar]
  6. 6.
    Harvey DT. 2016.. Analytical Chemistry 2.1. http://dpuadweb.depauw.edu/harvey_web/eTextProject/version_2.1.html
    [Google Scholar]
  7. 7.
    Skoog DA, Holler FJ, Crouch SR. 2017.. Principles of Instrumental Analysis. Belmont, CA:: Cengage Learning
    [Google Scholar]
  8. 8.
    Granger RM, Yochum HM, Granger JN, Sienerth KD. 2017.. Instrumental Analysis. Boca Raton, FL:: Oxford Univ. Press
    [Google Scholar]
  9. 9.
    Harris DC. 2020.. Quantitative Chemical Analysis. New York:: Macmillan
    [Google Scholar]
  10. 10.
    Legge CH. 2002.. Chemistry under the microscope—lab-on-a-chip technologies. . J. Chem. Educ. 79:(2):173
    [Crossref] [Google Scholar]
  11. 11.
    Fintschenko Y. 2011.. Education: a modular approach to microfluidics in the teaching laboratory. . Lab Chip 11:(20):3394400
    [Crossref] [Google Scholar]
  12. 12.
    Rackus DG, Riedel-Kruse IH, Pamme N. 2019.. “ Learning on a chip:” microfluidics for formal and informal science education. . Biomicrofluidics 13:(4):041501
    [Crossref] [Google Scholar]
  13. 13.
    Chao T-C, Bhattacharya S, Ros A. 2012.. Microfluidic gel electrophoresis in the undergraduate laboratory applied to food analysis. . J. Chem. Educ. 89:(1):12529
    [Crossref] [Google Scholar]
  14. 14.
    Koesdjojo MT, Pengpumkiat S, Wu Y, Boonloed A, Huynh D, et al. 2015.. Cost effective paper-based colorimetric microfluidic devices and mobile phone camera readers for the classroom. . J. Chem. Educ. 92:(4):73741
    [Crossref] [Google Scholar]
  15. 15.
    Frederick KA, Harper-Leatherman AS. 2022.. An inquiry-based in-person or remote laboratory using iron analysis and paper microfluidics to teach analytical method development. . J. Chem. Educ. 99:(12):402431
    [Crossref] [Google Scholar]
  16. 16.
    Roller RM, Sumantakul S, Tran M, Van Wyk A, Zinna J, et al. 2021.. Inquiry-based laboratories using paper microfluidic devices. . J. Chem. Educ. 98:(6):194653
    [Crossref] [Google Scholar]
  17. 17.
    Lai H, Li Z, Zhu S, Cai L, Xu C, Zhou Q. 2020.. Naked-eye detection of aluminum in gastric drugs on a paper-based analytical device. . J. Chem. Educ. 97:(1):29599
    [Crossref] [Google Scholar]
  18. 18.
    Wang B, Lin Z, Wang M. 2015.. Fabrication of a paper-based microfluidic device to readily determine nitrite ion concentration by simple colorimetric assay. . J. Chem. Educ. 92:(4):73336
    [Crossref] [Google Scholar]
  19. 19.
    Cai L, Wu Y, Xu C, Chen Z. 2013.. A simple paper-based microfluidic device for the determination of the total amino acid content in a tea leaf extract. . J. Chem. Educ. 90:(2):23234
    [Crossref] [Google Scholar]
  20. 20.
    Schmuck VDE, Romine IC, Sisley TA, Immoos CE, Scott GE, et al. 2022.. At-home microscale paper-based quantitative analysis activity with external standards. . J. Chem. Educ. 99:(2):108186
    [Crossref] [Google Scholar]
  21. 21.
    Xu C, Lin W, Cai L. 2016.. Demonstrating electrophoretic separation in a straight paper channel delimited by a hydrophobic wax barrier. . J. Chem. Educ. 93:(5):9035
    [Crossref] [Google Scholar]
  22. 22.
    Lin X, Jin X, Xu C, Lai H, Lin M, et al. 2023.. Iodometric titration on microfluidic paper-based analytical devices for determination of ascorbic acid: a laboratory experiment for chemical education undergraduates. . J. Chem. Educ. 100:(5):19972002
    [Crossref] [Google Scholar]
  23. 23.
    Cai L, Ouyang Z, Huang X, Xu C. 2020.. Comprehensive training of undergraduates majoring in chemical education by designing and implementing a simple thread-based microfluidic experiment. . J. Chem. Educ. 97:(6):156671
    [Crossref] [Google Scholar]
  24. 24.
    Xu C, Jiang D, Lin J, Cai L. 2018.. Cross channel thread-based microfluidic device for separation of food dyes. . J. Chem. Educ. 95:(6):10003
    [Crossref] [Google Scholar]
  25. 25.
    Agustini D, Bergamini MF, Marcolino-Junior LH. 2018.. Simple and inexpensive microfluidic thread based device for teaching microflow injection analysis and electrochemistry. . J. Chem. Educ. 95:(8):141114
    [Crossref] [Google Scholar]
  26. 26.
    Van Wyk AL, Hunter RA, Ott LS, Cole RS, Frederick KA. 2022.. Supporting student inquiry and engagement in the analytical lab: pilot studies from three institutions. . In Active Learning in the Analytical Chemistry Curriculum, ed. TJ Wenzel, ML Kovarik, JK Robinson , pp. 16180. Washington, DC:: Am. Chem. Soc.
    [Google Scholar]
  27. 27.
    Yuen PK, Goral VN. 2012.. Low-cost rapid prototyping of whole-glass microfluidic devices. . J. Chem. Educ. 89:(10):128892
    [Crossref] [Google Scholar]
  28. 28.
    McDonald JC, Whitesides GM. 2002.. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. . Acc. Chem. Res. 35:(7):49199
    [Crossref] [Google Scholar]
  29. 29.
    Sadegh-cheri M. 2019.. Design, fabrication, and optical characterization of a low-cost and open-source spin coater. . J. Chem. Educ. 96:(6):126872
    [Crossref] [Google Scholar]
  30. 30.
    Chia MC, Sweeney CM, Odom TW. 2011.. Chemistry in microfluidic channels. . J. Chem. Educ. 88:(4):46164
    [Crossref] [Google Scholar]
  31. 31.
    Shaffer TA, Herrada CU, Walker AM, Casto-Boggess LD, Holland LA, et al. 2023.. A cost-effective microfluidic device to teach the principles of electrophoresis and electroosmosis. . J. Chem. Educ. 100:(7):278288
    [Crossref] [Google Scholar]
  32. 32.
    Nguyen D, McLane J, Lew V, Pegan J, Khine M. 2011.. Shrink-film microfluidic education modules: Complete devices within minutes. . Biomicrofluidics 5:(2):022209
    [Crossref] [Google Scholar]
  33. 33.
    Piunno PAE, Zetina A, Chu N, Tavares AJ, Noor MO, et al. 2014.. A comprehensive microfluidics device construction and characterization module for the advanced undergraduate analytical chemistry laboratory. . J. Chem. Educ. 91:(6):9027
    [Crossref] [Google Scholar]
  34. 34.
    Feng ZV, Edelman KR, Swanson BP. 2015.. Student-fabricated microfluidic devices as flow reactors for organic and inorganic synthesis. . J. Chem. Educ. 92:(4):72327
    [Crossref] [Google Scholar]
  35. 35.
    Cubberley MS, Hess WA. 2017.. An inexpensive programmable dual-syringe pump for the chemistry laboratory. . J. Chem. Educ. 94:(1):7274
    [Crossref] [Google Scholar]
  36. 36.
    Sadegh-cheri M. 2022.. Using the recycled parts of a computer DVD drive for fabrication of a low-cost Arduino-based syringe pump. . J. Chem. Educ. 99:(2):52125
    [Crossref] [Google Scholar]
  37. 37.
    Delgado P, Luna CA, Dissanayaka A, Oshinowo O, Waggoner JJ, et al. 2022.. An economical in-class sticker microfluidic activity develops student expertise in microscale physics and device manufacturing. . arXiv:2208.10368. https://doi.org/10.48550/arXiv.2208.10368
  38. 38.
    Wietsma JJ, van der Veen JT, Buesink W, van den Berg A, Odijk M. 2018.. Lab-on-a-chip: frontier science in the classroom. . J. Chem. Educ. 95:(2):26775
    [Crossref] [Google Scholar]
  39. 39.
    Mondaca E, Wright K, Chavarria N, Fahrenkrug E. 2021.. Design-based learning framework for introducing factorial experimental design and lab-on-a-chip separations in an instrumental chemistry laboratory. . J. Chem. Educ. 98:(6):195462
    [Crossref] [Google Scholar]
  40. 40.
    DeLeon C, Tabibi T, Alagic A. 2020.. Characterization and electrochemical analysis of microelectrodes and the interface with a fabricated 3D-printed microfluidic chip in an upper-division analytical course. . J. Chem. Educ. 97:(12):445361
    [Crossref] [Google Scholar]
  41. 41.
    Tabassum T, Iloska M, Scuereb D, Taira N, Jin C, et al. 2018.. Development and application of 3D printed mesoreactors in chemical engineering education. . J. Chem. Educ. 95:(5):78390
    [Crossref] [Google Scholar]
  42. 42.
    Vangunten MT, Walker UJ, Do HG, Knust KN. 2020.. 3D-printed microfluidics for hands-on undergraduate laboratory experiments. . J. Chem. Educ. 97:(1):17883
    [Crossref] [Google Scholar]
  43. 43.
    Greener J, Tumarkin E, Debono M, Dicks AP, Kumacheva E. 2012.. Education: a microfluidic platform for university-level analytical chemistry laboratories. . Lab Chip 12:(4):696701
    [Crossref] [Google Scholar]
  44. 44.
    Hemling M, Crooks JA, Oliver PM, Brenner K, Gilbertson J, et al. 2014.. Microfluidics for high school chemistry students. . J. Chem. Educ. 91:(1):11215
    [Crossref] [Google Scholar]
  45. 45.
    Teerasong S, McClain RL. 2011.. A student-made microfluidic device for electrophoretic separation of food dyes. . J. Chem. Educ. 88:(4):46567
    [Crossref] [Google Scholar]
  46. 46.
    Giri B, Peesara RR, Yanagisawa N, Dutta D. 2015.. Undergraduate laboratory module for implementing ELISA on the high performance microfluidic platform. . J. Chem. Educ. 92:(4):72832
    [Crossref] [Google Scholar]
  47. 47.
    Young EWK, Simmons CA. 2009.. “ Student lab”-on-a-chip: integrating low-cost microfluidics into undergraduate teaching labs to study multiphase flow phenomena in small vessels. . Chem. Eng. Educ. 43:(3):23240
    [Google Scholar]
  48. 48.
    Jablonski EL, Vogel BM, Cavanagh DP, Beers KL. 2010.. Microfluidics in the undergraduate laboratory: device fabrication and an experiment to mimic intravascular gas embolism. . Chem. Eng. Educ. 44:(1):8187
    [Google Scholar]
  49. 49.
    Moraes C, Wyss K, Brisson E, Keith BA, Sun Y, Simmons CA. 2010.. An undergraduate lab (on-a-chip): probing single cell mechanics on a microfluidic platform. . Cell. Mol. Bioeng. 3:(3):31930
    [Crossref] [Google Scholar]
  50. 50.
    Yang AHJ, Dimiduk K, Daniel S. 2011.. A simplified model of human alcohol metabolism that integrates biotechnology and human health into a mass balance team project. . Chem. Eng. Educ. 45:(1):2129
    [Google Scholar]
  51. 51.
    Emmanuel N, Emonds-Alt G, Lismont M, Eppe G, Monbaliu J-CM. 2017.. Exploring the fundamentals of microreactor technology with multidisciplinary lab experiments combining the synthesis and characterization of inorganic nanoparticles. . J. Chem. Educ. 94:(6):77580
    [Crossref] [Google Scholar]
  52. 52.
    Schultz KM, Snyder MA. 2019.. Chemical engineering “on-a-chip”: capturing the integrated scope of chemical engineering in STEM outreach. . Chem. Eng. Educ. 53:(3):17885
    [Google Scholar]
  53. 53.
    Lo RC, Bhatia H, Venkatraman R, Jang LK. 2015.. Microfluidics @ the beach: introduction of microfluidics technology to the ChE curriculum at Cal State Long Beach. . Chem. Eng. Educ. 49:(2):11117
    [Crossref] [Google Scholar]
  54. 54.
    Liu Y. 2011.. BioMEMS and lab-on-a-chip course education at West Virginia University. . Biosensors 1:(1):412
    [Crossref] [Google Scholar]
  55. 55.
    Madou MJ. 2017.. Fundamentals of Microfabrication: The Science of Miniaturization. Boca Raton, FL:: CRC Press. , 2nd ed..
    [Google Scholar]
  56. 56.
    Manz A, Neužil P, O'Connor JS, Simone G. 2020.. Microfluidics and Lab-on-a-Chip. London:: R. Soc. Chem. , 1st ed..
    [Google Scholar]
  57. 57.
    Nguyen N-T, Wereley S, Shaegh SAM. 2019.. Fundamentals and Applications of Microfluidics. Norwood, MA:: Artech House. , 3rd ed..
    [Google Scholar]
  58. 58.
    De Micheli AJ, Valentin T, Grillo F, Kapur M, Schuerle S. 2022.. Mixed reality for an enhanced laboratory course on microfluidics. . J. Chem. Educ. 99:(3):127279
    [Crossref] [Google Scholar]
  59. 59.
    Archer SD. 2011.. Microfluidics and microfabrication in a chemical engineering lab. . Chem. Eng. Educ. 45:(4):28589
    [Google Scholar]
  60. 60.
    Salek MM, Fernandez V, D'souza G, Puigmartí-Luis J, Stocker R, Secchi E. 2021.. An interdisciplinary and application-oriented approach to teach microfluidics. . Biomicrofluidics 15:(1):014104
    [Crossref] [Google Scholar]
  61. 61.
    Allam Y, Tomasko DL, Trott B, Schlosser P, Yang Y, et al. 2008.. Lab-on-a-chip design-build project with a nanotechnology component in a freshman engineering course. . Chem. Eng. Educ. 42:(4):18592
    [Google Scholar]
  62. 62.
    Vié C, Fattaccioli J, Jacq P. 2019.. Introduction to droplet-based millifluidic chemistry using a macroscopic-droplet generator. . J. Chem. Educ. 96:(4):797800
    [Crossref] [Google Scholar]
  63. 63.
    Sun M, Li Z, Yang Q. 2019.. μdroPi: a hand-held microfluidic droplet imager and analyzer built on Raspberry Pi. . J. Chem. Educ. 96:(6):115256
    [Crossref] [Google Scholar]
  64. 64.
    Prabhu GRD, Urban PL. 2020.. Elevating chemistry research with a modern electronics toolkit. . Chem. Rev. 120:(17):9482553
    [Crossref] [Google Scholar]
  65. 65.
    Davis JJ, Foster SW, Grinias JP. 2021.. Low-cost and open-source strategies for chemical separations. . J. Chromatogr. A 1638::461820
    [Crossref] [Google Scholar]
  66. 66.
    Nguyen T, Zoëga Andreasen S, Wolff A, Duong Bang D. 2018.. From lab on a chip to point of care devices: the role of open source microcontrollers. . Micromachines 9:(8):403
    [Crossref] [Google Scholar]
  67. 67.
    Urban PL. 2014.. Open-source electronics as a technological aid in chemical education. . J. Chem. Educ. 91:(5):75152
    [Crossref] [Google Scholar]
  68. 68.
    May M. 2019.. A DIY approach to automating your lab. . Nature 569:(7757):58788
    [Crossref] [Google Scholar]
  69. 69.
    Cressey D. 2017.. The DIY electronics transforming research. . Nature 544:(7648):12526
    [Crossref] [Google Scholar]
  70. 70.
    Fitzpatrick DE, O'Brien M, Ley SV. 2020.. A tutored discourse on microcontrollers, single board computers and their applications to monitor and control chemical reactions. . React. Chem. Eng. 5:(2):20120
    [Crossref] [Google Scholar]
  71. 71.
    Mercer C, Leech D. 2018.. Cost-effective wireless microcontroller for internet connectivity of open-source chemical devices. . J. Chem. Educ. 95:(7):122125
    [Crossref] [Google Scholar]
  72. 72.
    Clippard CM, Hughes W, Chohan BS, Sykes DG. 2016.. Construction and characterization of a compact, portable, low-cost colorimeter for the chemistry lab. . J. Chem. Educ. 93:(7):124148
    [Crossref] [Google Scholar]
  73. 73.
    Urban PL. 2018.. Prototyping instruments for the chemical laboratory using inexpensive electronic modules. . Angew. Chem. Int. Ed. 57:(34):1107477
    [Crossref] [Google Scholar]
  74. 74.
    Enciso P, Luzuriaga L, Botasini S. 2018.. Using an open-source microcontroller and a dye-sensitized solar cell to guide students from basic principles to a practical application. . J. Chem. Educ. 95:(7):117378
    [Crossref] [Google Scholar]
  75. 75.
    Kubínová Š, Šlégr J. 2015.. ChemDuino: adapting Arduino for low-cost chemical measurements in lecture and laboratory. . J. Chem. Educ. 92:(10):175153
    [Crossref] [Google Scholar]
  76. 76.
    Jin H, Qin Y, Pan S, Alam AU, Dong S, et al. 2018.. Open-source low-cost wireless potentiometric instrument for pH determination experiments. . J. Chem. Educ. 95:(2):32630
    [Crossref] [Google Scholar]
  77. 77.
    Papadopoulos NJ, Jannakoudakis A. 2016.. A chemical instrumentation course on microcontrollers and op amps. Construction of a pH meter. . J. Chem. Educ. 93:(7):132325
    [Crossref] [Google Scholar]
  78. 78.
    Tran N, Smith ET. 2016.. An open platform microcontrolled-pH meter. . Chem. Educ. 21::14345. http://chemeducator.org/bibs/0021001/21160143.html
    [Google Scholar]
  79. 79.
    Nhivekar GS, Jagdale SR, Kamble SB, Jadhav BT, Kamat RK, Dongale TD. 2022.. Versatile three-in-one single beam visible colorimeter for undergraduate chemistry laboratories. . J. Chem. Educ. 99:(11):376572
    [Crossref] [Google Scholar]
  80. 80.
    da Nobrega Gaiao E, Bezerra dos Santos SR, Bezerra dos Santos V, Lima do Nascimento EC, Lima RS, Ugulino de Araujo MC. 2008.. An inexpensive, portable and microcontrolled near infrared LED-photometer for screening analysis of gasoline. . Talanta 75:(3):79296
    [Crossref] [Google Scholar]
  81. 81.
    da Nobrego Gaiao E, de Medeiros EP, da Silva Lyra W, Moreira PNT, de Vasconcelos PC, et al. 2005.. A multi-LED, microcontrolled, portable and inexpensive photometer. . Quim. Nova 28:(6):11025
    [Crossref] [Google Scholar]
  82. 82.
    Cantrell KM, Ingle JD. 2003.. The SLIM spectrometer. . Anal. Chem. 75:(1):2735
    [Crossref] [Google Scholar]
  83. 83.
    Mabbott GA. 2014.. Teaching electronics and laboratory automation using microcontroller boards. . J. Chem. Educ. 91:(9):145863
    [Crossref] [Google Scholar]
  84. 84.
    Prabhu GRD, Yang T-H, Hsu C-Y, Shih C-P, Chang C-M, et al. 2020.. Facilitating chemical and biochemical experiments with electronic microcontrollers and single-board computers. . Nat. Protoc. 15:(3):92590
    [Crossref] [Google Scholar]
  85. 85.
    Meloni GN. 2016.. Building a microcontroller based potentiostat: a inexpensive and versatile platform for teaching electrochemistry and instrumentation. . J. Chem. Educ. 93:(7):132022
    [Crossref] [Google Scholar]
  86. 86.
    Glasscott MW, Verber MD, Hall JR, Pendergast AD, McKinney CJ, Dick JE. 2019.. SweepStat: a build-it-yourself, two-electrode potentiostat for macroelectrode and ultramicroelectrode studies. . J. Chem. Educ. 97::26570
    [Crossref] [Google Scholar]
  87. 87.
    Avdikos EM, Prodromidis MI, Efstathiou CE. 2005.. Construction and analytical applications of a palm-sized microcontroller-based amperometric analyzer. . Sens. Actuators B 107:(1):37278
    [Crossref] [Google Scholar]
  88. 88.
    Steingart DA, Redfern A, Ho C, Wright P, Evans J. 2006.. Jonny Galvo: a small, low cost wireless galvanostat. . ECS Trans. 1:(21):17
    [Crossref] [Google Scholar]
  89. 89.
    Dryden MDM, Wheeler AR. 2015.. DStat: a versatile, open-source potentiostat for electroanalysis and integration. . PLOS ONE 10:(10):e0140349
    [Crossref] [Google Scholar]
  90. 90.
    Rowe AA, Bonham AJ, White RJ, Zimmer MP, Yadgar RJ, et al. 2011.. CheapStat: an open-source, “do-it-yourself” potentiostat for analytical and educational applications. . PLOS ONE 6:(9):e23783
    [Crossref] [Google Scholar]
  91. 91.
    Owen BA, Starvaggi NC, Mensah TI, Mills IN. 2020.. TCDuino: development of an inexpensive microcontroller-based thermal conductivity detector for quantification of gas mixtures. . J. Chem. Educ. 97:(5):15047
    [Crossref] [Google Scholar]
  92. 92.
    Grinias JP, Whitfield JT, Guetschow ED, Kennedy RT. 2016.. An inexpensive, open-source USB Arduino data acquisition device for chemical instrumentation. . J. Chem. Educ. 93:(7):131619
    [Crossref] [Google Scholar]
  93. 93.
    Smith ET, Hill M. 2011.. Constructing a LabVIEW-controlled high-performance liquid chromatography (HPLC) system: an undergraduate instrumental methods exercise. . J. Chem. Educ. 88:(3):31718
    [Crossref] [Google Scholar]
  94. 94.
    Myers DL, Hill M, Baughman B, Smith ET. 2023.. An open platform microcontroller-based laser refractometer. . J. Chem. Educ. 100::125762
    [Crossref] [Google Scholar]
  95. 95.
    Meloni GN. 2017.. 3D printed and microcontrolled: the one hundred dollars scanning electrochemical microscope. . Anal. Chem. 89:(17):864349
    [Crossref] [Google Scholar]
  96. 96.
    Thrall ES, Lee SE, Schrier J, Zhao Y. 2021.. Machine learning for functional group identification in vibrational spectroscopy: a pedagogical lab for undergraduate chemistry students. . J. Chem. Educ. 98:(10):326976
    [Crossref] [Google Scholar]
  97. 97.
    Weiss CJ. 2021.. A creative commons textbook for teaching scientific computing to chemistry students with Python and Jupyter notebooks. . J. Chem. Educ. 98:(2):48994
    [Crossref] [Google Scholar]
  98. 98.
    Kim S, Bucholtz EC, Briney K, Cornell AP, Cuadros J, et al. 2021.. Teaching cheminformatics through a collaborative intercollegiate online chemistry course (OLCC). . J. Chem. Educ. 98:(2):41625
    [Crossref] [Google Scholar]
  99. 99.
    Sharaf MA, Illman DL, Kowalski BR. 1986.. Chemometrics, Vol. 82. New York:: John Wiley & Sons
    [Google Scholar]
  100. 100.
    Beebe KR, Pell RJ, Seasholtz MB. 1998.. Chemometrics: A Practical Guide. New York:: John Wiley & Sons
    [Google Scholar]
  101. 101.
    Miller JN, Miller JC. 2000.. Statistics and Chemometrics for Analytical Chemistry. Harlow, UK:: Pearson. , 4th ed..
    [Google Scholar]
  102. 102.
    Harvey D. 2020.. Chemometrics Using R (Harvey). Davis, CA:: LibreTexts. https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Chemometrics_Using_R_(Harvey)
    [Google Scholar]
  103. 103.
    Brown SD. 2017.. The chemometrics revolution re-examined. . J. Chemom. 31:(1):e2856
    [Crossref] [Google Scholar]
  104. 104.
    Wise BM. 2022.. Teaching chemometrics in short course format. . J. Chemom. 36:(5):e3399
    [Crossref] [Google Scholar]
  105. 105.
    Pérez-Arribas LV, León-González ME, Rosales-Conrado N. 2017.. Learning principal component analysis by using data from air quality networks. . J. Chem. Educ. 94:(4):45864
    [Crossref] [Google Scholar]
  106. 106.
    Sidou LF, Borges EM. 2020.. Teaching principal component analysis using a free and open source software program and exercises applying PCA to real-world examples. . J. Chem. Educ. 97:(6):166676
    [Crossref] [Google Scholar]
  107. 107.
    De Lorenzi Pezzolo A. 2011.. To see the world in a grain of sand: recognizing the origin of sand specimens by diffuse reflectance infrared Fourier transform spectroscopy and multivariate exploratory data analysis. . J. Chem. Educ. 88:(9):13048
    [Crossref] [Google Scholar]
  108. 108.
    Cazar RA. 2003.. An exercise on chemometrics for a quantitative analysis course. . J. Chem. Educ. 80:(9):1026
    [Crossref] [Google Scholar]
  109. 109.
    Hupp AM. 2023.. Incorporating chemometric methods in the undergraduate curriculum: a problem set activity for an upper-level analytical elective course. . J. Chem. Educ. 100::137781
    [Crossref] [Google Scholar]
  110. 110.
    Anderson SL, Rovnyak D, Strein TG. 2017.. Identification of edible oils by principal component analysis of 1H NMR spectra. . J. Chem. Educ. 94:(9):137782
    [Crossref] [Google Scholar]
  111. 111.
    Dahlberg DB, Lee SM, Wenger SJ, Vargo JA. 1997.. Classification of vegetable oils by FT-IR. . Appl. Spectrosc. 51:(8):111824
    [Crossref] [Google Scholar]
  112. 112.
    Flood ME, Goding JC, O'Connor JB, Ragon DY, Hupp AM. 2014.. Analysis of biodiesel feedstock using GCMS and unsupervised chemometric methods. . J. Am. Oil. Chem. Soc. 91:(8):144352
    [Crossref] [Google Scholar]
  113. 113.
    Flood ME, Connolly MP, Comiskey MC, Hupp AM. 2016.. Evaluation of single and multi-feedstock biodiesel–diesel blends using GCMS and chemometric methods. . Fuel 186::5867
    [Crossref] [Google Scholar]
  114. 114.
    Hupp AM, Marshall LJ, Campbell DI, Smith RW, McGuffin VL. 2008.. Chemometric analysis of diesel fuel for forensic and environmental applications. . Anal. Chim. Acta 606:(2):15971
    [Crossref] [Google Scholar]
  115. 115.
    Mendlein A, Szkudlarek C, Goodpaster JV. 2013.. Chemometrics. . In Encyclopedia of Forensic Sciences, ed. JA Siegel, PJ Saukko, MM Houck , pp. 64651. Waltham, MA:: Academic. , 2nd ed..
    [Google Scholar]
  116. 116.
    Goodpaster JV. 2023.. Chemometrics. . In Encyclopedia of Forensic Sciences, ed. MM Houck , pp. 53542. Oxford, UK:: Elsevier. , 3rd ed..
    [Google Scholar]
  117. 117.
    St James AG, Hand L, Mills T, Song L, Brunt ASJ, et al. 2023.. Exploring machine learning in chemistry through the classification of spectra: an undergraduate project. . J. Chem. Educ. 100:(3):134350
    [Crossref] [Google Scholar]
  118. 118.
    Ribone , Pagani AP, Olivieri AC, Goicoechea HC. 2000.. Determination of the active principle in a syrup by spectrophotometry and principal component regression analysis. An advanced undergraduate experiment involving chemometrics. . J. Chem. Educ. 77:(10):1330
    [Crossref] [Google Scholar]
  119. 119.
    Ribone , Pagani AP, Goicoechea HC, Olivieri AC. 2000.. Simultaneous determination of two antibiotics in tablets by spectrophotometry and principal component regression (PCR) analysis. An advanced undergraduate experiment involving chemometrics. . Chem. Educ. 5:(5):23641
    [Crossref] [Google Scholar]
  120. 120.
    Wang L, Mizaikoff B, Kranz C. 2009.. Quantification of sugar mixtures with near-infrared Raman spectroscopy and multivariate data analysis. A quantitative analysis laboratory experiment. . J. Chem. Educ. 86:(11):1322
    [Crossref] [Google Scholar]
  121. 121.
    Workman J. 2010.. Classical least squares, Part I: mathematical theory. . Spectroscopy, April 30. https://www.spectroscopyonline.com/view/classical-least-squares-part-i-mathematical-theory
    [Google Scholar]
  122. 122.
    Lackey HE, Sell RL, Nelson GL, Bryan TA, Lines AM, Bryan SA. 2023.. Practical guide to chemometric analysis of optical spectroscopic data. . J. Chem. Educ. 100:(7):260826
    [Crossref] [Google Scholar]
  123. 123.
    Huffman SW, Salido AL, Evanoff DD. 2010.. Quantitative infrared spectroscopy in the undergraduate laboratory via multivariate mixture analysis of a simulated analgesic. . Spectrosc. Lett. 43:(7–8):53944
    [Crossref] [Google Scholar]
  124. 124.
    Gómez DG, Olivieri AC. 2003.. Spectrophotometric analysis of mixtures by classical least-squares calibration: an advanced experiment introducing MATLAB. . Chem. Educ. 8::18791
    [Google Scholar]
  125. 125.
    Gilbert MK, Luttrell RD, Stout D, Vogt F. 2008.. Introducing chemometrics to the analytical curriculum: combining theory and lab experience. . J. Chem. Educ. 85:(1):135
    [Crossref] [Google Scholar]
  126. 126.
    Wanke R, Stauffer J. 2007.. An advanced undergraduate chemistry laboratory experiment exploring NIR spectroscopy and chemometrics. . J. Chem. Educ. 84:(7):1171
    [Crossref] [Google Scholar]
  127. 127.
    Pierce KM, Schale SP, Le TM, Larson JC. 2011.. An advanced analytical chemistry experiment using gas chromatography−mass spectrometry, MATLAB, and chemometrics to predict biodiesel blend percent composition. . J. Chem. Educ. 88:(6):80610
    [Crossref] [Google Scholar]
  128. 128.
    Zapata F, López-Fernández A, Ortega-Ojeda F, Quintanilla G, García-Ruiz C, Montalvo G. 2021.. Introducing ATR-FTIR spectroscopy through analysis of acetaminophen drugs: practical lessons for interdisciplinary and progressive learning for undergraduate students. . J. Chem. Educ. 98:(8):267586
    [Crossref] [Google Scholar]
  129. 129.
    Antonelli TM, Olivieri AC. 2020.. Developing and implementing an R Shiny application to introduce multivariate calibration to advanced undergraduate students. . J. Chem. Educ. 97:(4):117680
    [Crossref] [Google Scholar]
  130. 130.
    Kalivas JH. 2007.. Progression of chemometrics in research supportive curricula: preparing for the demands of society. . In Active Learning: Models from the Analytical Sciences, Vol. 970, ed. PA Mabrouk , pp. 14056. Washington, DC:: Am. Chem. Soc.
    [Google Scholar]
  131. 131.
    Ortiz MC. 2007.. Teaching chemometrics. . Anal. Bioanal. Chem. 388:(8):155760
    [Crossref] [Google Scholar]
  132. 132.
    Öberg T. 2006.. Introducing chemometrics to graduate students. . J. Chem. Educ. 83:(8):1178
    [Crossref] [Google Scholar]
  133. 133.
    Msimanga HZ, Elkins P, Tata SK, Smith DR. 2005.. A chemometrics module for an undergraduate instrumental analysis chemistry course. . J. Chem. Educ. 82:(3):415
    [Crossref] [Google Scholar]
  134. 134.
    Moore AJ, Bower NW. 2001.. Chemometric analysis of compositional variation in bison and cow patties: a biogeochemistry–environmental chemistry experiment. . Chem. Educ. 6:(2):8690
    [Crossref] [Google Scholar]
  135. 135.
    de Oliveira RR, das Neves LS, de Lima KMG. 2012.. Experimental design, near-infrared spectroscopy, and multivariate calibration: an advanced project in a chemometrics course. . J. Chem. Educ. 89:(12):156671
    [Crossref] [Google Scholar]
  136. 136.
    Chutakool W, Praneenararat T. 2022.. Characterization of carotenoids from pineapples: an integrated and modular experiment for practical learning of UV-vis spectroscopy, chromatography, mass spectrometry, and chemometrics. . J. Chem. Educ. 99:(5):207985
    [Crossref] [Google Scholar]
  137. 137.
    de Oliveira RR, das Neves LS, de Lima KMG. 2012.. Experimental design, near-infrared spectroscopy, and multivariate calibration: an advanced project in a chemometrics course. . J. Chem. Educ. 89:(12):156671
    [Crossref] [Google Scholar]
  138. 138.
    Weaver SD, Ambrose GA, Whelan RJ. 2022.. Activity: teaching coding in r through discipline-focused problem-solving in an analytical chemistry course. . J. Chem. Educ. 99:(8):306873
    [Crossref] [Google Scholar]
  139. 139.
    Mainka D, Krause J, Großmann L, Link A, Schulig L. 2023.. Affordable and easy data exploration of NIR spectra using chemometric techniques. . J. Chem. Educ. 100:(6):243541
    [Crossref] [Google Scholar]
  140. 140.
    Wallum A, Liu Z, Lee J, Chatterjee S, Tauzin L, et al. 2023.. An instrument assembly and data science lab for early undergraduate education. . J. Chem. Educ. 100:(5):186676
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-041922
Loading
/content/journals/10.1146/annurev-anchem-061622-041922
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error