1932

Abstract

Ribonucleic acids (RNAs) are key biomolecules responsible for the transmission of genetic information, the synthesis of proteins, and modulation of many biochemical processes. They are also often the key components of viruses. Synthetic RNAs or oligoribonucleotides are becoming more widely used as therapeutics. In many cases, RNAs will be chemically modified, either naturally via enzymatic systems within a cell or intentionally during their synthesis. Analytical methods to detect, sequence, identify, and quantify RNA and its modifications have demands that far exceed requirements found in the DNA realm. Two complementary platforms have demonstrated their value and utility for the characterization of RNA and its modifications: mass spectrometry and next-generation sequencing. This review highlights recent advances in both platforms, examines their relative strengths and weaknesses, and explores some alternative approaches that lie at the horizon.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061622-125954
2024-07-17
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-061622-125954.html?itemId=/content/journals/10.1146/annurev-anchem-061622-125954&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nachtergaele S, He C. 2017.. The emerging biology of RNA post-transcriptional modifications. . RNA Biol. 14::15663
    [Crossref] [Google Scholar]
  2. 2.
    Thuring K, Schmid K, Keller P, Helm M. 2016.. Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry. . Methods 107::4856
    [Crossref] [Google Scholar]
  3. 3.
    Heiss M, Borland K, Yoluc Y, Kellner S. 2021.. Quantification of modified nucleosides in the context of NAIL-MS. . Methods Mol. Biol. 2298::279306
    [Crossref] [Google Scholar]
  4. 4.
    Sarkar A, Gasperi W, Begley U, Nevins S, Huber SM, et al. 2021.. Detecting the epitranscriptome. . Wiley Interdisc. Rev. RNA 12::e1663
    [Crossref] [Google Scholar]
  5. 5.
    Deng L, Kumar J, Rose R, McIntyre W, Fabris D. 2022.. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. . Mass. Spectrom. Rev. 43::e21798
    [Google Scholar]
  6. 6.
    Liguori A, Napoli A, Sindona G. 1994.. Determination of substituent effects on the proton affinities of natural nucleosides by the kinetic method. . Rapid Commun. Mass. Spectrom. 8::8993
    [Crossref] [Google Scholar]
  7. 7.
    Dai Y, Qi CB, Feng Y, Cheng QY, Liu FL, et al. 2021.. Sensitive and simultaneous determination of uridine thiolation and hydroxylation modifications in eukaryotic RNA by derivatization coupled with mass spectrometry analysis. . Anal. Chem. 93::693846
    [Crossref] [Google Scholar]
  8. 8.
    Xie Y, Janssen KA, Scacchetti A, Porter EG, Lin Z, et al. 2022.. Permethylation of ribonucleosides provides enhanced mass spectrometry quantification of post-transcriptional RNA modifications. . Anal. Chem. 94::724654
    [Crossref] [Google Scholar]
  9. 9.
    Kenderdine T, Nemati R, Baker A, Palmer M, Ujma J, et al. 2020.. High-resolution ion mobility spectrometry–mass spectrometry of isomeric/isobaric ribonucleotide variants. . J. Mass Spectrom. 55::e4465
    [Crossref] [Google Scholar]
  10. 10.
    Wiener D, Schwartz S. 2021.. The epitranscriptome beyond m6A. . Nat. Rev. Genet. 22::11931
    [Crossref] [Google Scholar]
  11. 11.
    Feng YJ, You XJ, Ding JH, Zhang YF, Yuan BF, Feng YQ. 2022.. Identification of inosine and 2′-O-methylinosine modifications in yeast messenger RNA by liquid chromatography-tandem mass spectrometry analysis. . Anal. Chem. 94::474755
    [Crossref] [Google Scholar]
  12. 12.
    Petrov DP, Kaiser S, Kaiser S, Jung K. 2022.. Opportunities and challenges to profile mRNA modifications in Escherichiacoli. . ChemBioChem 23::e202200270
    [Crossref] [Google Scholar]
  13. 13.
    Yoluç Y, van de Logt E, Kellner-Kaiser S. 2021.. The stress-dependent dynamics of Saccharomyces cerevisiae tRNA and rRNA modification profiles. . Genes 12::1344 13. Dynamic changes in tRNA and rRNA modifications in yeast cells analyzed by NAIL-MS.
    [Crossref] [Google Scholar]
  14. 14.
    Heiss M, Hagelskamp F, Marchand V, Motorin Y, Kellner S. 2021.. Cell culture NAIL-MS allows insight into human tRNA and rRNA modification dynamics in vivo. . Nat. Commun. 12::389
    [Crossref] [Google Scholar]
  15. 15.
    Estevez M, Valesyan S, Jora M, Limbach PA, Addepalli B. 2021.. Oxidative damage to RNA is altered by the presence of interacting proteins or modified nucleosides. . Front. Mol. Biosci. 8::697149
    [Crossref] [Google Scholar]
  16. 16.
    Sun C, Jora M, Solivio B, Limbach PA, Addepalli B. 2018.. The effects of ultraviolet radiation on nucleoside modifications in RNA. . ACS Chem. Biol. 13::56772
    [Crossref] [Google Scholar]
  17. 17.
    Lin X, Zhang Q, Qin Y, Zhong Q, Lv D, et al. 2022.. Potential misidentification of natural isomers and mass-analogs of modified nucleosides by liquid chromatography-triple quadrupole mass spectrometry. . Genes 13::878
    [Crossref] [Google Scholar]
  18. 18.
    Rodell R, Tsao N, Ganguly A, Mosammaparast N. 2022.. Use of high-performance liquid chromatography-mass spectrometry (HPLC-MS) to quantify modified nucleosides. . Methods Mol. Biol. 2444::12540
    [Crossref] [Google Scholar]
  19. 19.
    Espadas G, Morales-Sanfrutos J, Medina R, Lucas MC, Novoa EM, Sabidó E. 2022.. High-performance nano-flow liquid chromatography column combined with high- and low-collision energy data-independent acquisition enables targeted and discovery identification of modified ribonucleotides by mass spectrometry. . J. Chromatogr. A 1665::462803 19. Focuses on using high- and low-collision energies to address the challenge of positional isomers in biological samples.
    [Crossref] [Google Scholar]
  20. 20.
    Jora M, Burns AP, Ross RL, Lobue PA, Zhao R, et al. 2018.. Differentiating positional isomers of nucleoside modifications by higher-energy collisional dissociation mass spectrometry (HCD MS). . J. Am. Soc. Mass. Spectrom. 29::174556
    [Crossref] [Google Scholar]
  21. 21.
    Li Y, Zhou J, Yuan G. 2020.. Discrimination of common isomerides of methyl nucleosides by collision-induced dissociation tandem mass spectrometry. . J. Mass. Spectrom. 56::e4594
    [Crossref] [Google Scholar]
  22. 22.
    Jora M, Borland K, Abernathy S, Zhao R, Kelley M, et al. 2021.. Chemical amination/imination of carbonothiolated nucleosides during RNA hydrolysis. . Angew. Chem. Int. Ed. 60::396166
    [Crossref] [Google Scholar]
  23. 23.
    Richter F, Plehn JE, Bessler L, Hertler J, Jörg M, et al. 2022.. RNA marker modifications reveal the necessity for rigorous preparation protocols to avoid artifacts in epitranscriptomic analysis. . Nucleic Acids Res. 50::420115
    [Crossref] [Google Scholar]
  24. 24.
    Gosset-Erard C, Didierjean M, Pansanel J, Lechner A, Wolff P, et al. 2023.. Nucleos'ID: a new search engine enabling the untargeted identification of RNA post-transcriptional modifications from tandem mass spectrometry analyses of nucleosides. . Anal. Chem. 95::160817
    [Google Scholar]
  25. 25.
    Jora M, Corcoran D, Parungao GG, Lobue PA, Oliveira LFL, et al. 2022.. Higher-energy collisional dissociation mass spectral networks for the rapid, semi-automated characterization of known and unknown ribonucleoside modifications. . Anal. Chem. 94::1395867
    [Crossref] [Google Scholar]
  26. 26.
    Apffel A, Chakel JA, Fischer S, Lichtenwalter K, Hancock WS. 1997.. Analysis of oligonucleotides by HPLC-electrospray ionization mass spectrometry. . Anal. Chem. 69::132025
    [Crossref] [Google Scholar]
  27. 27.
    Bartlett MG, Omuro S. 2021.. Evaluation of alkylamines and stationary phases to improve LC-MS of oligonucleotides. . Biomed. Chromatogr. 35::e5045
    [Crossref] [Google Scholar]
  28. 28.
    Studzinska S, Bocian S, Siecinska L, Buszewski B. 2017.. Application of phenyl-based stationary phases for the study of retention and separation of oligonucleotides. . J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1060::3643
    [Crossref] [Google Scholar]
  29. 29.
    Li N, El Zahar NM, Saad JG, van der Hage ERE, Bartlett MG. 2018.. Alkylamine ion-pairing reagents and the chromatographic separation of oligonucleotides. . J. Chromatogr. A 1580::11019
    [Crossref] [Google Scholar]
  30. 30.
    Studzinska S, Cywoniuk P, Sobczak K. 2019.. Application of ion pair chromatography coupled with mass spectrometry to assess antisense oligonucleotides concentrations in living cells. . Analyst 144::62233
    [Crossref] [Google Scholar]
  31. 31.
    Chen X, Liu Z, Gong L. 2021.. Evaluating the interplay among stationary phases/ion-pairing reagents/sequences for liquid chromatography mass spectrometry analysis of oligonucleotides. . Anal. Biochem. 625::114194
    [Crossref] [Google Scholar]
  32. 32.
    Donegan M, Nguyen JM, Gilar M. 2022.. Effect of ion-pairing reagent hydrophobicity on liquid chromatography and mass spectrometry analysis of oligonucleotides. . J. Chromatogr. A 1666::462860
    [Crossref] [Google Scholar]
  33. 33.
    McGinnis AC, Grubb EC, Bartlett MG. 2013.. Systematic optimization of ion-pairing agents and hexafluoroisopropanol for enhanced electrospray ionization mass spectrometry of oligonucleotides. . Rapid. Commun. Mass. Spectrom. 27::265564
    [Crossref] [Google Scholar]
  34. 34.
    Enmark M, Samuelsson J, Fornstedt T. 2023.. Development of a unified gradient theory for ion-pair chromatography using oligonucleotide separations as a model case. . J. Chromatogr. A 1691::463823
    [Crossref] [Google Scholar]
  35. 35.
    Enmark M, Harun S, Samuelsson J, Örnskov E, Thunberg L, et al. 2021.. Selectivity limits of and opportunities for ion pair chromatographic separation of oligonucleotides. . J. Chromatogr. A 1651::462269
    [Crossref] [Google Scholar]
  36. 36.
    Hagelskamp F, Kellner S. 2021.. Analysis of the epitranscriptome with ion-pairing reagent free oligonucleotide mass spectrometry. . Methods Enzymol. 658::11135
    [Crossref] [Google Scholar]
  37. 37.
    Kaczmarkiewicz A, Nuckowski Ł, Studzińska S, Buszewski B. 2019.. Analysis of antisense oligonucleotides and their metabolites with the use of ion pair reversed-phase liquid chromatography coupled with mass spectrometry. . Crit. Rev. Anal. Chem. 49::25670
    [Crossref] [Google Scholar]
  38. 38.
    Lobue PA, Jora M, Addepalli B, Limbach PA. 2019.. Oligonucleotide analysis by hydrophilic interaction liquid chromatography-mass spectrometry in the absence of ion-pair reagents. . J. Chromatogr. A 1595::3948
    [Crossref] [Google Scholar]
  39. 39.
    Studzińska S, Nuckowski Ł, Buszewski B. 2022.. Oligonucleotides isolation and separation—a review on adsorbent selection. . Int. J. Mol. Sci. 23::9546
    [Crossref] [Google Scholar]
  40. 40.
    Kenderdine T, Fabris D. 2023.. The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development. . Mass. Spectrom. Rev. 42::133257
    [Crossref] [Google Scholar]
  41. 41.
    Li P, Gong Y, Kim J, Liu X, Gilbert J, et al. 2020.. Hybridization liquid chromatography-tandem mass spectrometry: an alternative bioanalytical method for antisense oligonucleotide quantitation in plasma and tissue samples. . Anal. Chem. 92::1054859
    [Crossref] [Google Scholar]
  42. 42.
    Mahajan S, Zhao H, Kovacina K, Lachacz E, Hoxha S, et al. 2022.. High-sensitivity quantification of antisense oligonucleotides for pharmacokinetic characterization. . Bioanalysis 14::60313
    [Crossref] [Google Scholar]
  43. 43.
    Guimaraes G, Yuan L, Li P. 2022.. Antisense oligonucleotide in vitro protein binding determination in plasma, brain, and cerebral spinal fluid using hybridization LC-MS/MS. . Drug. Metab. Dispos. 50::26876
    [Crossref] [Google Scholar]
  44. 44.
    Yuan L, Dupuis JF, Mekhssian K. 2023.. A novel hybridization LC-MS/MS methodology for quantification of siRNA in plasma, CSF and tissue samples. . Molecules 28::1618
    [Crossref] [Google Scholar]
  45. 45.
    Pourshahian S. 2021.. Therapeutic oligonucleotides, impurities, degradants, and their characterization by mass spectrometry. . Mass. Spectrom. Rev. 40::75109
    [Crossref] [Google Scholar]
  46. 46.
    Roussis SG, Cedillo I, Rentel C. 2019.. Semi-quantitative determination of co-eluting impurities in oligonucleotide drugs using ion-pair reversed-phase liquid chromatography mass spectrometry. . J. Chromatogr. A 1584::10614
    [Crossref] [Google Scholar]
  47. 47.
    Guimaraes GJ, Sutton JM, Gilar M, Donegan M, Bartlett MG. 2022.. Impact of nonspecific adsorption to metal surfaces in ion pair-RP LC-MS impurity analysis of oligonucleotides. . J. Pharm. Biomed. Anal. 208::114439
    [Crossref] [Google Scholar]
  48. 48.
    Demelenne A, Servais AC, Crommen J, Fillet M. 2021.. Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. . J. Chromatogr. A 1651::462283
    [Crossref] [Google Scholar]
  49. 49.
    Jiang D, Yuan L. 2022.. Microflow LC-MS/MS to improve sensitivity for antisense oligonucleotides bioanalysis: critical role of sample cleanness. . Bioanalysis 14::136576
    [Crossref] [Google Scholar]
  50. 50.
    Herbert C, Dzowo YK, Urban A, Kiggins CN, Resendiz MJE. 2018.. Reactivity and specificity of RNase T1, RNase A, and RNase H toward oligonucleotides of RNA containing 8-oxo-7,8-dihydroguanosine. . Biochemistry 57::297183
    [Crossref] [Google Scholar]
  51. 51.
    Douthwaite S, Kirpekar F. 2007.. Identifying modifications in RNA by MALDI mass spectrometry. . Methods Enzymol. 425::320
    [Google Scholar]
  52. 52.
    Solivio B, Yu N, Addepalli B, Limbach PA. 2018.. Improving RNA modification mapping sequence coverage by LC-MS through a nonspecific RNase U2-E49A mutant. . Anal. Chim. Acta 1036::7379
    [Crossref] [Google Scholar]
  53. 53.
    Addepalli B, Lesner NP, Limbach PA. 2015.. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia. . RNA 21::174656
    [Crossref] [Google Scholar]
  54. 54.
    Durairaj A, Limbach PA. 2008.. Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection. . Anal. Chim. Acta 612::17381
    [Crossref] [Google Scholar]
  55. 55.
    Thakur P, Estevez M, Lobue PA, Limbach PA, Addepalli B. 2020.. Improved RNA modification mapping of cellular non-coding RNAs using C- and U-specific RNases. . Analyst 145::81627
    [Crossref] [Google Scholar]
  56. 56.
    Greiner-Stöffele T, Foerster HH, Hahn U. 2000.. Ribonuclease T1 cleaves RNA after guanosines within single-stranded gaps of any length. . Nucleosides Nucleotides Nucleic Acids 19::11019
    [Crossref] [Google Scholar]
  57. 57.
    Prats-Ejarque G, Lu L, Salazar VA, Moussaoui M, Boix E. 2019.. Evolutionary trends in RNA base selectivity within the RNase A superfamily. . Front. Pharmacol. 10::1170
    [Crossref] [Google Scholar]
  58. 58.
    Houser WM, Butterer A, Addepalli B, Limbach PA. 2015.. Combining recombinant ribonuclease U2 and protein phosphatase for RNA modification mapping by liquid chromatography-mass spectrometry. . Anal. Biochem. 478::5258
    [Crossref] [Google Scholar]
  59. 59.
    Wolf EJ, Grünberg S, Dai N, Chen TH, Roy B, et al. 2022.. Human RNase 4 improves mRNA sequence characterization by LC-MS/MS. . Nucleic Acids Res. 50::e106
    [Crossref] [Google Scholar]
  60. 60.
    Addepalli B, Venus S, Thakur P, Limbach PA. 2017.. Novel ribonuclease activity of cusativin from Cucumis sativus for mapping nucleoside modifications in RNA. . Anal. Bioanal. Chem. 409::564554
    [Crossref] [Google Scholar]
  61. 61.
    Jones JD, Simcox KM, Kennedy RT, Koutmou KS. 2023.. Direct sequencing of total Saccharomyces cerevisiae tRNAs by LC-MS/MS. . RNA 29::120114
    [Crossref] [Google Scholar]
  62. 62.
    Vanhinsbergh CJ, Criscuolo A, Sutton JN, Murphy K, Williamson AJK, et al. 2022.. Characterization and sequence mapping of large RNA and mRNA therapeutics using mass spectrometry. . Anal. Chem. 94::733949
    [Crossref] [Google Scholar]
  63. 63.
    Pomerantz SC, Kowalak JA, McCloskey JA. 1993.. Determination of oligonucleotide composition from mass spectrometrically measured molecular weight. . J. Am. Soc. Mass. Spectrom. 4::2049
    [Crossref] [Google Scholar]
  64. 64.
    Puri P, Wetzel C, Saffert P, Gaston KW, Russell SP, et al. 2014.. Systematic identification of tRNAome and its dynamics in Lactococcus lactis. . Mol. Microbiol. 93::94456
    [Crossref] [Google Scholar]
  65. 65.
    Yan TM, Pan Y, Yu ML, Hu K, Cao KY, Jiang ZH. 2021.. Full-range profiling of tRNA modifications using LC-MS/MS at single-base resolution through a site-specific cleavage strategy. . Anal. Chem. 93::142332
    [Crossref] [Google Scholar]
  66. 66.
    Inoue H, Hayase Y, Iwai S, Ohtsuka E. 1987.. Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. . FEBS Lett. 215::32730
    [Crossref] [Google Scholar]
  67. 67.
    Lima WF, Crooke ST. 1997.. Cleavage of single strand RNA adjacent to RNA-DNA duplex regions by Escherichia coli RNase H1. . J. Biol. Chem. 272::2751316
    [Crossref] [Google Scholar]
  68. 68.
    Catherman AD, Skinner OS, Kelleher NL. 2014.. Top down proteomics: facts and perspectives. . Biochem. Biophys. Res. Commun. 445::68393
    [Crossref] [Google Scholar]
  69. 69.
    Siuti N, Kelleher NL. 2007.. Decoding protein modifications using top-down mass spectrometry. . Nat. Methods 4::81721
    [Crossref] [Google Scholar]
  70. 70.
    Jebanathirajah JA, Pittman JL, Thomson BA, Budnik BA, Kaur P, et al. 2005.. Characterization of a new qQq-FTICR mass spectrometer for post-translational modification analysis and top-down tandem mass spectrometry of whole proteins. . J. Am. Soc. Mass. Spectrom. 16::198599
    [Crossref] [Google Scholar]
  71. 71.
    Huang TY, Liu J, McLuckey SA. 2010.. Top-down tandem mass spectrometry of tRNA via ion trap collision-induced dissociation. . J. Am. Soc. Mass. Spectrom. 21::89098
    [Crossref] [Google Scholar]
  72. 72.
    Riml C, Glasner H, Rodgers MT, Micura R, Breuker K. 2015.. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent. . Nucleic Acids Res. 43::517181
    [Crossref] [Google Scholar]
  73. 73.
    Taucher M, Breuker K. 2010.. Top-down mass spectrometry for sequencing of larger (up to 61 nt) RNA by CAD and EDD. . J. Am. Soc. Mass. Spectrom. 21::91829
    [Crossref] [Google Scholar]
  74. 74.
    Taucher M, Breuker K. 2012.. Characterization of modified RNA by top-down mass spectrometry. . Angew. Chem. Int. Ed. 51::1128992
    [Crossref] [Google Scholar]
  75. 75.
    Glasner H, Riml C, Micura R, Breuker K. 2017.. Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. . Nucleic Acids Res. 45::801425
    [Crossref] [Google Scholar]
  76. 76.
    Peters-Clarke TM, Quan Q, Brademan DR, Hebert AS, Westphall MS, Coon JJ. 2020.. Ribonucleic acid sequence characterization by negative electron transfer dissociation mass spectrometry. . Anal. Chem. 92::443644
    [Crossref] [Google Scholar]
  77. 77.
    Santos IC, Lanzillotti M, Shilov I, Basanta-Sanchez M, Roushan A, et al. 2022.. Ultraviolet photodissociation and activated electron photodetachment mass spectrometry for top-down sequencing of modified oligoribonucleotides. . J. Am. Soc. Mass. Spectrom. 33::51020
    [Crossref] [Google Scholar]
  78. 78.
    Gaston KW, Limbach PA. 2014.. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. . RNA Biol. 11::156885
    [Crossref] [Google Scholar]
  79. 79.
    Lobue PA, Yu N, Jora M, Abernathy S, Limbach PA. 2019.. Improved application of RNAModMapper – An RNA modification mapping software tool – For analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data. . Methods 156::12838
    [Crossref] [Google Scholar]
  80. 80.
    Yu N, Lobue PA, Cao X, Limbach PA. 2017.. RNAModMapper: RNA modification mapping software for analysis of liquid chromatography tandem mass spectrometry data. . Anal. Chem. 89::1074452
    [Crossref] [Google Scholar]
  81. 81.
    Wein S, Andrews B, Sachsenberg T, Santos-Rosa H, Kohlbacher O, et al. 2020.. A computational platform for high-throughput analysis of RNA sequences and modifications by mass spectrometry. . Nat. Commun. 11::926
    [Crossref] [Google Scholar]
  82. 82.
    D'Ascenzo L, Popova AM, Abernathy S, Sheng K, Limbach PA, Williamson JR. 2022.. Pytheas: a software package for the automated analysis of RNA sequences and modifications via tandem mass spectrometry. . Nat. Commun. 13::2424
    [Crossref] [Google Scholar]
  83. 83.
    Sample PJ, Gaston KW, Alfonzo JD, Limbach PA. 2015.. RoboOligo: software for mass spectrometry data to support manual and de novo sequencing of post-transcriptionally modified ribonucleic acids. . Nucleic Acids Res. 43:: e64
    [Crossref] [Google Scholar]
  84. 84.
    Paulines MJ, Wetzel C, Limbach PA. 2019.. Using spectral matching to interpret LC-MS/MS data during RNA modification mapping. . J. Mass Spectrom. 54::90614
    [Crossref] [Google Scholar]
  85. 85.
    Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM. 2005.. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). . J. Am. Chem. Soc. 127::422331
    [Crossref] [Google Scholar]
  86. 86.
    Scalabrin M, Siu Y, Asare-Okai PN, Fabris D. 2014.. Structure-specific ribonucleases for MS-based elucidation of higher-order RNA structure. . J. Am. Soc. Mass. Spectrom. 25::113645
    [Crossref] [Google Scholar]
  87. 87.
    Sosic A, Göttlich R, Fabris D, Gatto B. 2021.. B-CePs as cross-linking probes for the investigation of RNA higher-order structure. . Nucleic Acids Res. 49::666072
    [Crossref] [Google Scholar]
  88. 88.
    Karch KR, Snyder DT, Harvey SR, Wysocki VH. 2022.. Native mass spectrometry: recent progress and remaining challenges. . Annu. Rev. Biophys. 51::15779
    [Crossref] [Google Scholar]
  89. 89.
    Schneeberger E-M, Breuker K. 2017.. Native top-down mass spectrometry of TAR RNA in complexes with a wild-type tat peptide for binding site mapping. . Angew. Chem. Int. Ed. 56::125458
    [Crossref] [Google Scholar]
  90. 90.
    Schneeberger E-M, Halper M, Palasser M, Heel SV, Vušurović J, et al. 2020.. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. . Nat. Commun. 11::5750
    [Crossref] [Google Scholar]
  91. 91.
    Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. 2008.. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. . Genome Res. 18::150917
    [Crossref] [Google Scholar]
  92. 92.
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009.. mRNA-Seq whole-transcriptome analysis of a single cell. . Nat. Methods 6::37782
    [Crossref] [Google Scholar]
  93. 93.
    Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O'Shaughnessy AL, et al. 2013.. RNA-sequencing from single nuclei. . PNAS 110::198027
    [Crossref] [Google Scholar]
  94. 94.
    Alvarez M, Benhammou JN, Darci-Maher N, French SW, Han SB, et al. 2022.. Human liver single nucleus and single cell RNA sequencing identify a hepatocellular carcinoma-associated cell-type affecting survival. . Genome Med. 14::50
    [Crossref] [Google Scholar]
  95. 95.
    Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. 2015.. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. . Nat. Methods 12::76772 95. Increased sensitivity in sequencing from developed method allowed analysis of the whole-transcriptome from a single mouse blastomere.
    [Crossref] [Google Scholar]
  96. 96.
    Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012.. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. . Cell 149::163546
    [Crossref] [Google Scholar]
  97. 97.
    Meyer KD. 2019.. DART-seq: an antibody-free method for global m6A detection. . Nature Methods 16::127580
    [Crossref] [Google Scholar]
  98. 98.
    Zhu H, Yin X, Holley CL, Meyer KD. 2022.. Improved methods for deamination-based m6A detection. . Front. Cell Dev. Biol. 10::888279 98. Engineered protein variant enhances m6A recognition in RNA-Seq data.
    [Crossref] [Google Scholar]
  99. 99.
    Wang Y, Feng F, Zheng P, Wang L, Wang Y, et al. 2022.. Dysregulated lncRNA and mRNA may promote the progression of ischemic stroke via immune and inflammatory pathways: results from RNA sequencing and bioinformatics analysis. . Genes Genom. 44::97108
    [Crossref] [Google Scholar]
  100. 100.
    Su Z, Monshaugen I, Klungland A, Ougland R, Dutta A. 2022.. Characterization of novel small non-coding RNAs and their modifications in bladder cancer using an updated small RNA-seq workflow. . Front. Mol. Biosci. 9::887686
    [Crossref] [Google Scholar]
  101. 101.
    Potapov V, Fu X, Dai N, Corrêa IR, Tanner NA, Ong JL. 2018.. Base modifications affecting RNA polymerase and reverse transcriptase fidelity. . Nucleic Acids Res. 46::575363
    [Crossref] [Google Scholar]
  102. 102.
    Behm-Ansmant I, Helm M, Motorin Y. 2011.. Use of specific chemical reagents for detection of modified nucleotides in RNA. . J. Nucleic Acids 2011::408053
    [Crossref] [Google Scholar]
  103. 103.
    Incarnato D, Anselmi F, Morandi E, Neri F, Maldotti M, et al. 2017.. High-throughput single-base resolution mapping of RNA 2′-O-methylated residues. . Nucleic Acids Res. 45::143341
    [Crossref] [Google Scholar]
  104. 104.
    Kuksa PP, Leung YY, Vandivier LE, Anderson Z, Gregory BD, Wang L-S. 2017.. In silico identification of RNA modifications from high-throughput sequencing data using HAMR. . Methods Mol. Biol. 1562::21129
    [Crossref] [Google Scholar]
  105. 105.
    Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM. 2015.. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. . Nat. Methods 12::87984
    [Crossref] [Google Scholar]
  106. 106.
    Zheng G, Qin Y, Clark WC, Dai Q, Yi C, et al. 2015.. Efficient and quantitative high-throughput tRNA sequencing. . Nat. Methods 12::83537
    [Crossref] [Google Scholar]
  107. 107.
    Wang Y, Katanski CD, Watkins C, Pan JN, Dai Q, et al. 2020.. A high-throughput screening method for evolving a demethylase enzyme with improved and new functionalities. . Nucleic Acids Res. 49::e30
    [Crossref] [Google Scholar]
  108. 108.
    Katanski CD, Watkins CP, Zhang W, Reyer M, Miller S, Pan T. 2022.. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing. . Nucleic Acids Research 50::e99
    [Crossref] [Google Scholar]
  109. 109.
    Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. 2021.. Nanopore sequencing technology, bioinformatics and applications. . Nat. Biotechnol. 39::134865
    [Crossref] [Google Scholar]
  110. 110.
    Barkova DV, Andrianova MS, Komarova NV, Kuznetsov AE. 2020.. Channel and motor proteins for translocation of nucleic acids in nanopore sequencing. . Moscow Univ. Chem. Bull. 75::14961
    [Crossref] [Google Scholar]
  111. 111.
    Fragasso A, Schmid S, Dekker C. 2020.. Comparing current noise in biological and solid-state nanopores. . ACS Nano 14::133849
    [Crossref] [Google Scholar]
  112. 112.
    Smith AM, Jain M, Mulroney L, Garalde DR, Akeson M. 2019.. Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. . PLOS ONE 14::e0216709
    [Crossref] [Google Scholar]
  113. 113.
    Ma H, Jia X, Zhang K, Su Z. 2022.. Cryo-EM advances in RNA structure determination. . Signal Transduct. Target. Ther. 7::58
    [Crossref] [Google Scholar]
  114. 114.
    Natchiar SK, Myasnikov AG, Kratzat H, Hazemann I, Klaholz BP. 2017.. Visualization of chemical modifications in the human 80S ribosome structure. . Nature 551::47277
    [Crossref] [Google Scholar]
  115. 115.
    Pellegrino S, Dent KC, Spikes T, Warren AJ. 2023.. Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 Å resolution. . Nucleic Acids Res. 51::404354
    [Crossref] [Google Scholar]
  116. 116.
    Wang M, Chen K, Wu Q, Peng R, Zhang R, Li J. 2020.. RCasFISH: CRISPR/dCas9-mediated in situ imaging of mRNA transcripts in fixed cells and tissues. . Anal. Chem. 92::246875 116. The RCasFish method allows for increased sensitivity in imaging and expression analysis of transcript HER2 in mouse xenograft models.
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-061622-125954
Loading
/content/journals/10.1146/annurev-anchem-061622-125954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error