The development of experiments capable of probing individual molecules has led to major breakthroughs in fields ranging from molecular electronics to biophysics, allowing direct tests of knowledge derived from macroscopic measurements and enabling new assays that probe population heterogeneities and internal molecular dynamics. Although still somewhat in their infancy, such methods are also being developed for probing molecular systems in solution using electrochemical transduction mechanisms. Here we outline the present status of this emerging field, concentrating in particular on optical methods, metal-molecule-metal junctions, and electrochemical nanofluidic devices.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Walter NG, Huang C-Y, Manzo AJ, Sobhy MA. 1.  2008. Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat. Methods 5:475–89 [Google Scholar]
  2. Shon MJ, Cohen AE. 2.  2012. Mass action at the single-molecule level. J. Am. Chem. Soc. 134:14618–23 [Google Scholar]
  3. Eid J, Fehr A, Gray J, Luong K, Lyle J. 3.  et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133–38 [Google Scholar]
  4. Kwon SJ, Zhou H, Fan F-RF, Vorobyev V, Zhang B, Bard AJ. 4.  2011. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes—theory and experiments. Phys. Chem. Chem. Phys. 13:5394–402 [Google Scholar]
  5. Xiao X, Bard AJ. 5.  2007. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 129:9610–12 [Google Scholar]
  6. Xiao X, Fan F-RF, Zhou J, Bard AJ. 6.  2008. Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 130:16669–77 [Google Scholar]
  7. Kleijn SEF, Lai SCS, Miller TS, Yanson AI, Koper MTM, Unwin PR. 7.  2012. Landing and catalytic characterization of individual nanoparticles on electrode surfaces. J. Am. Chem. Soc. 134:18558–61 [Google Scholar]
  8. Shan X, Diez-Perez I, Wang L, Wiktor P, Gu Y. 8.  et al. 2012. Imaging the electrocatalytic activity of single nanoparticles. Nat. Nanotechnol. 7:668–72 [Google Scholar]
  9. Armstrong FA, Heering HA, Hirst J. 9.  1997. Reactions of complex metalloproteins studied by protein-film voltammetry. Chem. Soc. Rev. 26:169–79 [Google Scholar]
  10. Bernhardt PV.10.  2006. Enzyme electrochemistry—biocatalysis on an electrode. Aust. J. Chem. 59:233–56 [Google Scholar]
  11. Hoeben FJM, Meijer FS, Dekker C, Albracht SPJ, Heering HA, Lemay SG. 11.  2008. Toward single-enzyme molecule electrochemistry: [NiFe]-hydrogenase protein film voltammetry at nanoelectrodes. ACS Nano 2:2497–504 [Google Scholar]
  12. Audebert P, Miomandre F. 12.  2013. Electrofluorochromism: from molecular systems to set-up and display. Chem. Sci. 4:575–84 [Google Scholar]
  13. Lei CH, Hu DH, Ackerman EJ. 13.  2008. Single-molecule fluorescence spectroelectrochemistry of cresyl violet. Chem. Commun. 2008:5490–92 [Google Scholar]
  14. Lei CH, Hu DH, Ackerman E. 14.  2009. Clay nanoparticle-supported single-molecule fluorescence spectroelectrochemistry. Nano Lett. 9:655–58 [Google Scholar]
  15. Yang SK, Shi X, Park S, Ha T, Zimmerman SC. 15.  2013. A dendritic single-molecule fluorescent probe that is monovalent, photostable and minimally blinking. Nat. Chem. 5:692–97 [Google Scholar]
  16. Zhao J, Zaino LP 3rd, Bohn PW. 16.  2013. Potential-dependent single molecule blinking dynamics for flavin adenine dinucleotide covalently immobilized in zero-mode waveguide array of working electrodes. Faraday Discuss. 164:57–69 [Google Scholar]
  17. Palacios RE, Fan FRF, Bard AJ, Barbara PF. 17.  2006. Single-molecule spectroelectrochemistry (SMS-EC). J. Am. Chem. Soc. 128:9028–29 [Google Scholar]
  18. Palacios RE, Fan FRF, Grey JK, Suk J, Bard AJ, Barbara PF. 18.  2007. Charging and discharging of single conjugated-polymer nanoparticles. Nat. Mater. 6:680–85 [Google Scholar]
  19. Zhang GF, Xiao LT, Chen RY, Gao Y, Wang XB, Jia ST. 19.  2011. Single-molecule interfacial electron transfer dynamics manipulated by an external electric current. Phys. Chem. Chem. Phys. 13:13815–20 [Google Scholar]
  20. Chang Y-L, Palacios RE, Fan F-RF, Bard AJ, Barbara PF. 20.  2008. Electrogenerated chemiluminescence of single conjugated polymer nanoparticles. J. Am. Chem. Soc. 130:8906–7 [Google Scholar]
  21. Vijgenboom E, Busch JE, Canters GW. 21.  1997. In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of RpoS and ANR. Microbiology 143:2853–63 [Google Scholar]
  22. Kuznetsova S, Zauner G, Schmauder R, Mayboroda OA, Deelder AM. 22.  et al. 2006. A Forster-resonance-energy transfer-based method for fluorescence detection of the protein redox state. Anal. Biochem. 350:52–60 [Google Scholar]
  23. Schmauder R, Librizzi F, Canters GW, Schmidt T, Aartsma TJ. 23.  2005. The oxidation state of a protein observed molecule-by-molecule. Chemphyschem 6:1381–86 [Google Scholar]
  24. Goldsmith RH, Tabares LC, Kostrz D, Dennison C, Aartsma TJ. 24.  et al. 2011. Redox cycling and kinetic analysis of single molecules of solution-phase nitrite reductase. Proc. Natl. Acad. Sci. USA 108:17269–74 [Google Scholar]
  25. Kuznetsova S, Zauner G, Aartsma TJ, Engelkamp H, Hatzakis N. 25.  et al. 2008. The enzyme mechanism of nitrite reductase studied at single-molecule level. Proc. Natl. Acad. Sci. USA 105:3250–55 [Google Scholar]
  26. Tabares LC, Kostrz D, Elmalk A, Andreoni A, Dennison C. 26.  et al. 2011. Fluorescence lifetime analysis of nitrite reductase from Alcaligenes xylosoxidans at the single-molecule level reveals the enzyme mechanism. Chem.-Eur. J. 17:12015–19Illustrates new information that can be gleaned from single-molecule studies of fluorescently labeled enzymes. [Google Scholar]
  27. Davis JJ, Burgess H, Zauner G, Kuznetsova S, Salverda J. 27.  et al. 2006. Monitoring interfacial bioelectrochemistry using a FRET switch. J. Phys. Chem. B 110:20649–54 [Google Scholar]
  28. Salverda JM, Patil AV, Mizzon G, Kuznetsova S, Zauner G. 28.  et al. 2010. Fluorescent cyclic voltammetry of immobilized azurin: direct observation of thermodynamic and kinetic heterogeneity. Angew. Chem.-Int. Ed. 49:5776–79The first study in which heterogeneous electrochemistry is combined with optical detection. [Google Scholar]
  29. Patil AV, Davis JJ. 29.  2010. Visualizing and tuning thermodynamic dispersion in metalloprotein monolayers. J. Am. Chem. Soc. 132:16938–44 [Google Scholar]
  30. Cortés E, Etchegoin PG, Le Ru EC, Fainstein A, Vela ME, Salvarezza RC. 30.  2010. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132:18034–37 [Google Scholar]
  31. de Linde S, Sauer M. 31.  van 2014. How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chem. Soc. Rev. 43:1076–87 [Google Scholar]
  32. Pu K, Shuhendler AJ, Rao J. 32.  2013. Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew. Chem. 52:10325–29 [Google Scholar]
  33. Wang YM, Sevinc PC, He YF, Lu HP. 33.  2011. Probing ground-state single-electron self-exchange across a molecule-metal interface. J. Am. Chem. Soc. 133:6989–96Elegant study of electron exchange between metallic Ag nanoparticles and immobilized hemin molecules. [Google Scholar]
  34. Shen H, Xu WL, Chen P. 34.  2010. Single-molecule nanoscale electrocatalysis. Phys. Chem. Chem. Phys. 12:6555–63Demonstrates single-molecule catalysis on carbon nanotubes and derives detailed information on catalytic activity. [Google Scholar]
  35. Bard AJ, Faulkner LR. 35.  2000. Electrochemical Methods: Fundamentals and Applications New York: Wiley
  36. McCreery RL, Bergren AJ. 36.  2009. Progress with molecular electronic junctions: meeting experimental challenges in design and fabrication. Adv. Mater. 21:4303–22 [Google Scholar]
  37. Xu BQ, Tao NJJ. 37.  2003. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–23 [Google Scholar]
  38. Li Z, Han B, Meszaros G, Pobelov I, Wandlowski T. 38.  et al. 2006. Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Discuss. 131:121–43 [Google Scholar]
  39. Haiss W, van Zalinge H, Higgins SJ, Bethell D, Hobenreich H. 39.  et al. 2003. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125:15294–95 [Google Scholar]
  40. Li XL, Xu BQ, Xiao XY, Yang XM, Zang L, Tao NJ. 40.  2006. Controlling charge transport in single molecules using electrochemical gate. Faraday Discuss. 131:111–20 [Google Scholar]
  41. He J, Fu Q, Lindsay S, Ciszek JW, Tour JM. 41.  2006. Electrochemical origin of voltage-controlled molecular conductance switching. J. Am. Chem. Soc. 128:14828–35 [Google Scholar]
  42. Chen F, Nuckolls C, Lindsay S. 42.  2006. In situ measurements of oligoaniline conductance: linking electrochemistry and molecular electronics. Chem. Phys. 324:236–43 [Google Scholar]
  43. Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ. 43.  2004. Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Phys. Chem. Chem. Phys. 6:4330–37 [Google Scholar]
  44. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF. 44.  et al. 2001. Reproducible measurement of single-molecule conductivity. Science 294:571–74 [Google Scholar]
  45. Boussaad S, Tao NJ. 45.  2002. Atom-size gaps and contacts between electrodes fabricated with a self-terminated electrochemical method. Appl. Phys. Lett. 80:2398–400 [Google Scholar]
  46. Xiang J, Liu B, Wu ST, Ren B, Yang FZ. 46.  et al. 2005. A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angew. Chem. 44:1265–68 [Google Scholar]
  47. Tian JH, Liu B, Li XL, Yang ZL, Ren B. 47.  et al. 2006. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128:14748–49 [Google Scholar]
  48. Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T. 48.  et al. 2008. Single-molecule electron transfer in electrochemical environments. Chem. Rev. 108:2737–91 [Google Scholar]
  49. Zhang JD, Chi QJ, Hansen AG, Jensen PS, Salvatore P, Ulstrup J. 49.  2012. Interfacial electrochemical electron transfer in biology—towards the level of the single molecule. FEBS Lett. 586:526–35 [Google Scholar]
  50. Li C, Mishchenko A, Pobelov I, Wandlowski T. 50.  2010. Charge transport with single molecules—an electrochemical approach. Chimia 64:383–90 [Google Scholar]
  51. Nichols RJ, Haiss W, Higgins SJ, Leary E, Martin S, Bethell D. 51.  2010. The experimental determination of the conductance of single molecules. Phys. Chem. Chem. Phys. 12:2801–15 [Google Scholar]
  52. Chen F, Tao NJ. 52.  2009. Electron transport in single molecules: from benzene to graphene. Acc. Chem. Res. 42:429–38 [Google Scholar]
  53. Chen F, Hihath J, Huang ZF, Li XL, Tao NJ. 53.  2007. Measurement of single-molecule conductance. Annu. Rev. Phys. Chem. 58:535–64 [Google Scholar]
  54. Tao NJ.54.  1996. Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Lett. 76:4066–69Landmark experiment on addressing individual redox-active molecules under potential control using an STM. [Google Scholar]
  55. Kuznetsov AM, Ulstrup J. 55.  2000. Mechanisms of in situ scanning tunnelling microscopy of organized redox molecular assemblies. J. Phys. Chem. A 104:11531–40 [Google Scholar]
  56. Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S. 56.  2005. A molecular switch based on potential-induced changes of oxidation state. Nano Lett. 5:503–6 [Google Scholar]
  57. Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F. 57.  2008. Charge transport in single Au | alkanedithiol | Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130:318–26 [Google Scholar]
  58. Gorton L, Johansson G. 58.  1980. Cyclic voltammetry of FAD adsorbed on graphite, glassy carbon, platinum and gold electrodes. J. Electroanal. Chem. Interfacial Electrochem. 113:151–58 [Google Scholar]
  59. Connelly NG, Geiger WE. 59.  1996. Chemical redox agents for organometallic chemistry. Chem. Rev. 96:877–910 [Google Scholar]
  60. Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S. 60.  1986. Measurements within the diffusion layer using a microelectrode probe. Anal. Chem. 58:844–48 [Google Scholar]
  61. Bard AJ, Mirkin MV. 61.  2012. Scanning Electrochemical Microscopy Boca Raton, Fla., CRC , 2nd ed..
  62. Sanderson DG, Anderson LB. 62.  1985. Filar electrodes: steady-state currents and spectroelectrochemistry at twin interdigitated electrodes. Anal. Chem. 57:2388–93 [Google Scholar]
  63. Goluch ED, Wolfrum B, Singh PS, Zevenbergen MA, Lemay SG. 63.  2009. Redox cycling in nanofluidic channels using interdigitated electrodes. Anal. Bioanal. Chem. 394:447–56 [Google Scholar]
  64. Anderson LB, Reilley CN. 64.  1965. Thin-layer electrochemistry: use of twin working electrodes for the study of chemical kinetics. J. Electroanal. Chem. 1959 10:538–52 [Google Scholar]
  65. Zevenbergen MA, Krapf D, Zuiddam MR, Lemay SG. 65.  2007. Mesoscopic concentration fluctuations in a fluidic nanocavity detected by redox cycling. Nano Lett. 7:384–88 [Google Scholar]
  66. Mathwig K, Lemay SG. 66.  2013. Pushing the limits of electrical detection of ultralow flows in nanofluidic channels. Micromachines 4:138–48 [Google Scholar]
  67. Zevenbergen MA, Singh PS, Goluch ED, Wolfrum BL, Lemay SG. 67.  2011. Stochastic sensing of single molecules in a nanofluidic electrochemical device. Nano Lett. 11:2881–86First study of single-molecule detection by redox cycling in a microfabricated device. [Google Scholar]
  68. Fan F-RF, Bard AJ. 68.  1995. Electrochemical detection of single molecules. Science 267:871–74The first report on amperometric single-molecule detection. [Google Scholar]
  69. Bard AJ, Fan F-RF. 69.  1996. Electrochemical detection of single molecules. Acc. Chem. Res. 29:572–78 [Google Scholar]
  70. Sun P, Mirkin MV. 70.  2008. Electrochemistry of individual molecules in zeptoliter volumes. J. Am. Chem. Soc. 130:8241–50 [Google Scholar]
  71. Anderson LB, Reilley CN. 71.  1965. Thin-layer electrochemistry: steady-state methods of studying rate processes. J. Electroanal. Chem. 1959 10:295–305 [Google Scholar]
  72. Rassaei L, Singh PS, Lemay SG. 72.  2011. Lithography-based nanoelectrochemistry. Anal. Chem. 83:3974–80 [Google Scholar]
  73. Mathwig K, Lemay SG. 73.  2013. Mass transport in electrochemical nanogap sensors. Electrochim. Acta 112:943–49 [Google Scholar]
  74. Singh PS, Chan HSM, Kang S, Lemay SG. 74.  2011. Stochastic amperometric fluctuations as a probe for dynamic adsorption in nanofluidic electrochemical systems. J. Am. Chem. Soc. 133:18289–95 [Google Scholar]
  75. Kang S, Mathwig K, Lemay SG. 75.  2012. Response time of nanofluidic electrochemical sensors. Lab Chip 12:1262–67 [Google Scholar]
  76. Singh PS, Kätelhön E, Mathwig K, Wolfrum B, Lemay SG. 76.  2012. Stochasticity in single-molecule nanoelectrochemistry: origins, consequences, and solutions. ACS Nano 6:9662–71 [Google Scholar]
  77. Lemay SG, Kang S, Mathwig K, Singh PS. 77.  2012. Single-molecule electrochemistry: present status and outlook. Acc. Chem. Res. 46:369–77 [Google Scholar]
  78. Mathwig K, Mampallil D, Kang S, Lemay SG. 78.  2012. Electrical cross-correlation spectroscopy: measuring picoliter-per-minute flows in nanochannels. Phys. Rev. Lett. 109:118302 [Google Scholar]
  79. Tepper AW.79.  2010. Electrical contacting of an assembly of pseudoazurin and nitrite reductase using DNA-directed immobilization. J. Am. Chem. Soc. 132:6550–57 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error