1932

Abstract

Process analysis is an emerging discipline in analytical sciences that poses special requirements on analytical techniques, especially when conducted in an online manner. Mass spectrometric methods seem exceedingly suitable for this task, particularly if a soft ionization method is applied. Resonance-enhanced multiphoton ionization (REMPI) in combination with time-of-flight mass spectrometry (TOFMS) provides a selective and sensitive means for monitoring (poly)aromatic compounds in process flows. The properties of REMPI and various variations of the ionization process are presented. The potential of REMPI for process analysis is highlighted with several examples, and drawbacks of the method are also noted. Applications of REMPI-TOFMS for the detection and monitoring of aromatic species in a large variety of combustion processes comprising flames, vehicle exhaust, and incinerators are discussed. New trends in technical development and combination with other analytical methods are brought forward.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-062012-092648
2014-06-12
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-062012-092648.html?itemId=/content/journals/10.1146/annurev-anchem-062012-092648&mimeType=html&fmt=ahah

Literature Cited

  1. Workman JJ, Koch MV, Veltkamp DJ. 1.  2005. Process analytical chemistry. Anal. Chem. 77:3789–806 [Google Scholar]
  2. Kessler RW. 2.  2006. Prozessanalytik Weinheim: Wiley-VCH
  3. Kueppers S, Haider M. 3.  2003. Process analytical chemistry—future trends in industry. Anal. Bioanal. Chem. 376:313–15 [Google Scholar]
  4. Bakeev KA. 4.  2005. Process Analytical Technology Oxford, UK: Blackwell Publ
  5. Chalmers JM. 5.  2000. Spectroscopy in Process Analysis Sheffield, UK: Sheffield Acad.
  6. Chalmers JM, Griffiths PR. 6.  2002. Applications in Industry, Materials and the Physical Sciences Chichester, UK: Wiley
  7. Adar F, Geiger R, Noonan J. 7.  1997. Raman spectroscopy for process/quality control. Appl. Spectrosc. Rev. 32:45–101 [Google Scholar]
  8. Brody R, Clark D. 8.  2003. Raman spectroscopy: applications in product development. Eur. Pharm. Rev. 8:31–38 [Google Scholar]
  9. Wikströom H, Marsac PJ, Taylor LS. 9.  2005. In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy. J. Pharm. Sci. 94:209–19 [Google Scholar]
  10. Christensen J, Norgaard L. 10.  1999. Online fluorescence spectroscopy and chemometrics for qualitative and quantitative analysis: application in the sugar industry. Spectrosc. Eur. 11:20–22 [Google Scholar]
  11. Albert K. 11.  2002. On-Line LC-NMR and Related Techniques Chichester, UK: Wiley
  12. Maiwald M, Fischer HH, Kim Y-K, Albert K, Hasse H. 12.  2004. Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring. J. Magn. Reson. 166:135–46 [Google Scholar]
  13. Wu N, Dempsey J, Yehl PM, Dovletoglou A, Ellison D, Wyvratt J. 13.  2004. Practical aspects of fast HPLC separations for pharmaceutical process development using monolithic columns. Anal. Chim. Acta 523:149 [Google Scholar]
  14. Plum A, Braun G, Rehorek A. 14.  2003. Process monitoring of anaerobic azo dye degradation by high-performance liquid chromatography diode array detection continuously coupled to membrane filtration sampling modules. J. Chromatogr. A 987:395–402 [Google Scholar]
  15. Korkhammer SA, Bernreuther A. 15.  1996. Hyphenation of high-performance liquid chromatography (HPLC) and other chromatographic techniques (SFC, GPC, GC, CE) with nuclear magnetic resonance (NMR). A review. Fresenius J. Anal. Chem. 354:131–35 [Google Scholar]
  16. Wise MB, Guerin MR. 16.  1996. Direct sampling MS for environmental screening. Anal. Chem. 69:26A–32 [Google Scholar]
  17. Kotiaho T.17.  1996. On-site environmental and in situ process analysis by mass spectrometry. J. Mass Spectrom. 31:1–15 [Google Scholar]
  18. Lindinger W, Hansel A, Jordan A. 18.  1998. On-line monitoring of volatile organic compounds at pptv levels by means of Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) medical applications, food control and environmental research. Int. J. Mass Spectrom. Ion Process. 173:191–241 [Google Scholar]
  19. Karl T, Hansel A, Märk T, Lindinger W, Hoffmann D. 19.  2003. Trace gas monitoring at the Mauna Loa Baseline Observatory using proton-transfer mass spectrometry. Int. J. Mass Spectrom. 223–24:527–38 [Google Scholar]
  20. Yeretzian C, Jordan A, Lindinger W. 20.  2003. Analysing the headspace of coffee by proton-transfer-reaction mass-spectrometry. Int. J. Mass Spectrom. 223–24:115–39 [Google Scholar]
  21. Amman C, Spirig C, Neftel A, Steinbacher M, Komenda M, Schnaub A. 21.  2004. Application of PTR-MS for measurements of biogenic VOC in a deciduous forest. Int. J. Mass Spectrom. 239:87–101 [Google Scholar]
  22. Ketkar SN, Penn SM, Fite WL. 22.  1991. Real-time detection of parts per trillion levels of chemical warfare agents in ambient air using atmospheric pressure ionization tandem quadrupole mass spectrometry. Anal. Chem. 63:457–59 [Google Scholar]
  23. Dearth MA, Korniski TJ. 23.  1994. Nitric oxide-assisted atmospheric pressure corona discharge ionization for the analysis of automobile hydrocarbon emission species. J. Am. Soc. Mass Spectrom. 5:1107–14 [Google Scholar]
  24. Yamada M, Hashimoto Y, Suga M, Waki I, Sakairi M. 24.  et al. 2001. Real-time monitoring of chlorobenzenes in flue gas. Organohalogen Compd. 54:380–83 [Google Scholar]
  25. Butcher DJ, Goeringer DE, Hurst GB. 25.  1999. Real-time determination of aromatics in automobile exhaust by single-photon ionization ion trap mass spectrometry. Anal. Chem. 71:489–96 [Google Scholar]
  26. Steenvoorden RJJM, Kistemaker PG, Vries AE, Michalak L, Nibbering NMM. 26.  1991. Laser single photon ionization mass spectrometry of linear, branched and cyclic hexanes. Int. J. Mass Spectrom. Ion Process. 107:475–89 [Google Scholar]
  27. Mühlberger F, Zimmermann R, Kettrup A. 27.  2001. A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk components of complex gas mixtures: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser-induced electron impact ionization. Anal. Chem. 73:3590–604 [Google Scholar]
  28. Mühlberger F, Hafner K, Kaesdorf S, Ferge T, Zimmermann R. 28.  2004. Comprehensive on-line characterization of complex gas mixtures by quasi-simultaneous resonance enhanced multiphoton ionization, vacuum-UV single photon ionization and electron impact ionization in a time-of-flight mass spectrometer: setup and instrument characterization. Anal. Chem. 76:6753–64 [Google Scholar]
  29. Nir E, Hunziker HE, Vries MS. 29.  1999. Fragment-free mass spectrometric analysis with jet cooling/VUV photoionization. Anal. Chem. 71:1674–78 [Google Scholar]
  30. Ulrich A, Wieser J, Salvermoser M, Murnick D. 30.  2000. Anregung dichter Gase mit niederenergetischen Elektronenstrahlen: Neue Wege zu brillanten Lichtquellen und Excimer-Lasern. Phys. Blätter 56:49–52 [Google Scholar]
  31. Mühlberger F, Wieser J, Ulrich A, Zimmermann R. 31.  2002. Coupling of a novel electron beam pumped rare gas-excimer VUV-light source for single photon ionization (SPI) to a mobile time-of-flight mass spectrometer: a new concept for a robust and compact on-line real-time industrial process gas analyzer. Anal. Chem. 74:3790–801 [Google Scholar]
  32. Mühlberger F, Wieser J, Morozov A, Ulrich A, Zimmermann R. 32.  2005. Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source. Anal. Chem. 77:2218–26 [Google Scholar]
  33. Berezhetskaya NK, Voronov GS, Delone GA, Delone NB, Piskova GK. 33.  1970. Effect of a strong optical-frequency electromagnetic field on the hydrogen molecule. JETP 31:403–6 [Google Scholar]
  34. Chin SL.34.  1971. Multiphoton ionization of molecules. Phys. Rev. A 4:992–96 [Google Scholar]
  35. Antonov VS, Knyazev IN, Letokhov VS, Matuik VM, Movshev VG, Potapov VK. 35.  1978. Stepwise laser photoionization of molecules in a mass spectrometer: a new method for probing and detection of polyatomic molecules. Opt. Lett. 3:37 [Google Scholar]
  36. Boesl U, Neusser HJ, Schlag EW. 36.  1978. Two-photon ionization of polyatomic molecules in a mass spectrometer. Z. Naturforsch. 33a:1546–48 [Google Scholar]
  37. Boesl U, Neusser HJ, Schlag EW. 37.  1979. Mass-selective two-photon ionisation of a polyatomic molecule. Laser Induced Processes in Molecules KL Kompa, SD Smith 219–21 Berlin: Springer-Verlag [Google Scholar]
  38. Boesl U, Neusser HJ, Schlag EW. 38.  1981. Multi-photon ionization in the mass spectrometry of polyatomic molecules: cross sections. Chem. Phys. 55:193–204 [Google Scholar]
  39. Brophy JH, Rettner CT. 39.  1979. Laser two-photon ionization of aniline in a molecular beam and the bulk gas phase. Chem. Phys. Lett. 67:351–55 [Google Scholar]
  40. Cooper CD, Williamson AD, Miller JC, Compton RN. 40.  1980. Resonantly enhanced multiphoton ionization of pyrrole, N-methyl pyrrole, and furan. J. Chem. Phys. 73:1527–37 [Google Scholar]
  41. Dietz W, Neusser HJ, Boesl U, Schlag EW. 41.  1982. A model for multiphoton ionisation mass spectroscopy with application to benzene. Chem. Phys. 66:105 [Google Scholar]
  42. Fisanick GJ, Eichelberger TS, Heath BA, Robin MB. 42.  1980. Multiphoton ionization mass spectrometry of acetaldehyde. J. Chem. Phys. 72:5571–80 [Google Scholar]
  43. Lubman DM, Kronick MN. 43.  1982. Mass spectrometry of aromatic molecules with resonance-enhanced multiphoton ionization. Anal. Chem. 54:660–65 [Google Scholar]
  44. Newton KR, Lichtin DA, Bernstein RB. 44.  1981. Two-color laser study of the multiphoton ionization and fragmentation of triethylendiamine. J. Phys. Chem. 85:15–17 [Google Scholar]
  45. Zandee L, Bernstein RB. 45.  1979. Resonance-enhanced multiphoton ionization and fragmentation of molecular beams: NO, I2, benzene, and butadiene. J. Chem. Phys. 71:1359–71 [Google Scholar]
  46. Zimmermann R, Heger HJ, Kettrup A, Schramm K-W, Rohwer ER. 46.  et al. 1996. Laser induced jet-REMPI-mass spectrometry as isomer selective capillary gas chromatographic detector: a novel approach for rapid environmental analysis. Proc. Int. Symp. Capill. Chromatogr., 18th, Riva, Italy61–75 Heidelberg, Ger.: Hüthig-Verlag [Google Scholar]
  47. Boesl U.47.  2000. Laser mass spectrometry for environmental and industrial chemical trace analysis. J. Mass Spectrom. 35:289–304 [Google Scholar]
  48. Amirav A, Even U, Jortner J. 48.  1982. Analytical applications of supersonic jet spectroscopy. Anal. Chem. 54:1666–73 [Google Scholar]
  49. Hayes JM, Small GJ. 49.  1982. Rotationally cooled laser-induced fluorescence/gas chromatography. Anal. Chem. 54:1202–4 [Google Scholar]
  50. Imasaka T, Tashiro K, Ishibashi N. 50.  1986. Capillary gas chromatograph determination of aniline derivatives by supersonic jet resonance multiphoton ionization mass spectrometry. Anal. Chem. 58:3242–44 [Google Scholar]
  51. Levy DH.51.  1981. The spectroscopy of very cold gases. Science 214:263–69 [Google Scholar]
  52. Hafner K, Zimmermann R, Rohwer ER, Dorfner R, Kettrup A. 52.  2001. A capillary-based supersonic jet inlet system for resonance-enhanced laser ionization mass spectrometry: principle and first on-line process analytical applications. Anal. Chem. 73:4171–80 [Google Scholar]
  53. Ahrens J, Keller A, Kovacs R, Homann K-H. 53.  1998. Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames. Ber. Bunsenges. Phys. Chem. 102:1823–39 [Google Scholar]
  54. Ahrens J, Kovacs R, Shafranovskii EA, Homann KH. 54.  1994. Online multi-photon ionization mass spectrometry applied to PAH and fullerenes in flames. Ber. Bunsenges. Phys. Chem. 98:2265–68 [Google Scholar]
  55. Castaldi MJ, Senkan SM. 55.  1998. Real-time, ultrasensitive monitoring of air toxics by laser photoionization time-of-flight mass spectrometry. J. Air Waste Manag. Assoc. 48:77–81 [Google Scholar]
  56. Gittins CM, Castaldi MJ, Senkan SM, Rohlfing EA. 56.  1997. Real-time quantitative analysis of combustion-generated polycyclic aromatic hydrocarbons by resonance-enhanced multiphoton ionization time-of-flight mass spectrometry. Anal. Chem. 69:286–93 [Google Scholar]
  57. Kohse-Höinghaus K, Schocker A, Kasper T, Kamphus M, Brockhincke A. 57.  2005. Combination of laser- and mass-spectroscopic techniques for the investigation of fuel-rich flames. Z. Phys. Chem. 219:583–99 [Google Scholar]
  58. Hepp H, Siegmann K, Sattler K. 58.  1995. New aspects of growth mechanisms for polycyclic aromatic hydrocarbons in diffusion flames. Chem. Phys. Lett. 233:16–22 [Google Scholar]
  59. Siegmann K, Hepp H, Sattler K. 59.  1995. Reactive dimerization: a new PAH growth mechanism in flames. Combust. Sci. Technol. 109:165–81 [Google Scholar]
  60. Kasper TS, Oßwald P, Kamphus M, Kohse-Höinghaus K. 60.  2007. Ethanol flame structure investigated by molecular beam mass spectrometry. Combust. Flame 150:220–31 [Google Scholar]
  61. Kamphus M, Braun-Unkhoff M, Kohse-Höinghaus K. 61.  2008. Formation of small PAHs in laminar premixed low-pressure propene and cyclopentene flames: experiment and modeling. Combust. Flame 152:28–59 [Google Scholar]
  62. Satyapal S, Werner JH, Cool TA. 62.  1997. An extended flame zone in the combustion of CH3Cl. Chem. Phys. Lett. 275:278–82 [Google Scholar]
  63. Werner JH, Cool TA. 63.  1997. Flame sampling photoionization mass spectrometry of CH3PO2 and CH3OPO2. Chem. Phys. Lett. 275:278–82 [Google Scholar]
  64. Werner JH, Cool TA. 64.  1998. Flame sampling photoionization mass spectrometry of dichloroethenol. Chem. Phys. Lett. 290:81–87 [Google Scholar]
  65. Michael JB, Chng TL, Miles RB. 65.  2013. Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition. Combust. Flame 160:796–807 [Google Scholar]
  66. Wu Y, Zhang Z, Ombrello TM, Katta VR. 66.  2013. Quantitative Radar REMPI measurements of methyl radicals in flames at atmospheric pressure. Appl. Phys. B 111:391–97 [Google Scholar]
  67. Boesl U, Nagel H, Weickhardt C, Frey R, Schlag EW. 67.  1998. Vehicle Exhaust Emission Time-Resolved Multicomponent Analysis by Laser Mass Spectrometry. Hoboken, NJ: Wiley
  68. Nagel H, Frey R, Hertgerink C, Rikeit HE, Greiner RD. 68.  et al. 1997. Online analysis of individual aromatic hydrocarbons in automotive exhaust: dealkylation of the aromatic hydrocarbons in the catalytic converter. SAE Tech. Pap. Ser. 1997:971606 [Google Scholar]
  69. Püffel P, Thiel W, Frey R, Boesl U. 69.  1998. A new method for the investigation of unburned oil emissions in the raw exhaust of SI engines. SAE Tech. Pap. Ser. 1998:982438 [Google Scholar]
  70. Nagel H, Frey R, Boesl U. 70.  1996. On-line analysis of formaldehyde and acetaldehyde in non-stationary engine operation using laser mass spectrometry. SAE Tech. Pap. Ser. 1996:961084 [Google Scholar]
  71. Boesl U, Weishäupl R, Thiel W, Frey R. 71.  2005. Time-resolved chemical analysis by laser mass spectrometry: monitoring of in-cylinder and catalytic-converter processes of combustion engines. SAE Tech. Pap. Ser. 2005:01–679 [Google Scholar]
  72. Zhang L, Wei J, Zheng H, Li Z, Xia Z. 72.  et al. 2001. Laser mass spectrometry for high sensitive and multi-component analysis of exhaust gas from vehicles. Chinese Sci. Bull. 46:86–88 [Google Scholar]
  73. Suzuki T, Hayashi S, Ishiuchi S, Saeki M, Fujii M. 73.  2005. A new, highly sensitive time-of-flight mass spectrometer consisting of a flangeon-type conical ion lens system and a proto-type Daly detector for exhaust gas analysis based on the Jet-REMPI technique. Anal. Sci. 21:991–96 [Google Scholar]
  74. Oudejans L, Touati A, Gullett BK. 74.  2004. Real-time, on-line characterization of diesel generator air toxic emissions by resonance-enhanced multiphoton ionization time-of-flight mass spectrometry. Anal. Chem. 76:2517–24 [Google Scholar]
  75. Gullett BK, Touati A, Oudejans L, Ryan SP. 75.  2006. Real-time emission characterization of organic air toxic pollutants during steady state and transient operation of a medium duty diesel engine. Atmos. Environ. 40:4037–47 [Google Scholar]
  76. Misawa K, Tanaka K, Yamada H, Goto Y, Matsumoto J. 76.  et al. 2009. Time-resolved measurements of low concentration aromatic hydrocarbons in diesel exhaust using a resonance enhanced multi-photon ionization method. Int. J. Eng. Res. 10:409–16 [Google Scholar]
  77. Gullett BK, Touati A, Oudejans L. 77.  2008. Use of REMPI–TOFMS for real-time measurement of trace aromatics during operation of aircraft ground equipment. Atmos. Environ. 42:2117–28 [Google Scholar]
  78. Yamada H, Misawa K, Suzuki D, Tanaka K, Matsumoto J. 78.  et al. 2011. Detailed analysis of diesel vehicle exhaust emissions: nitrogen oxides, hydrocarbons and particulate size distributions. Proc. Combust. Inst. 33:2895–902 [Google Scholar]
  79. Adam TW, Chirico R, Clairotte M, Elsasser M, Manfredi U. 79.  et al. 2011. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory. Anal. Chem. 83:67–76 [Google Scholar]
  80. Adam TW, Astorga C, Clairotte M, Duane M, Elsasser M. 80.  et al. 2011. Chemical analysis and ozone formation potential of exhaust from dual-fuel (liquefied petroleum gas/gasoline) light duty vehicles. Atmos. Environ. 45:2842–48 [Google Scholar]
  81. Clairotte M, Adam Chirico TW R, Giechaskiel B, Manfredi U. 81.  et al. 2012. Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: a chemometric approach. Anal. Chim. Acta 717:28–38 [Google Scholar]
  82. Adam TW, Clairotte M, Streibel T, Elsasser M, Pommeres A. 82.  et al. 2012. Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing. Anal. Bioanal. Chem. 404:273–76 [Google Scholar]
  83. Deguchi Y, Tanaka N. 83.  2005. Determination of organic compounds in nano-particles by laser breakdown and resonant ionization time-of-flight mass spectrometry. Spectrochim. Acta B 60:1236–41 [Google Scholar]
  84. Bente M, Adam T, Ferge T, Gallarvardin S, Sklorz M, Zimmermann R. 84.  2006. An on-line aerosol laser mass spectrometer with three, easily interchangeable laser based ionisation methods for characterisation of inorganic and aromatic compounds on particles. Int. J. Mass Spectrom. 258:86–94 [Google Scholar]
  85. Bente M, Sklorz M, Streibel T, Zimmermann R. 85.  2008. Online laser desorption-multiphoton postionization mass spectrometry of individual aerosol particles: molecular source indicators for particles emitted from different traffic-related and wood combustion sources. Anal. Chem. 80:8991–9004 [Google Scholar]
  86. Bente M, Sklorz M, Streibel T, Zimmermann R. 86.  2009. Thermal desorption-multiphoton ionization time-of-flight mass spectrometry of individual aerosol particles: a simplified approach for online single-particle analysis of polycyclic aromatic hydrocarbons and their derivatives. Anal. Chem. 81:2525–36 [Google Scholar]
  87. Sakamoto T, Ohishi K, Hayashi SI, Fujii M. 87.  2013. Selective detection of polyaromatic hydrocarbons on diesel exhaust particles using sputtered neutral mass spectrometry. Surf. Interface Anal. 45:1309–12 [Google Scholar]
  88. Bornschlegl A, Weishaeupl R, Boesl U. 88.  2006. A new approach for fast, simultaneous NO/NO2 analysis: application of basic features of multiphoton-induced ionization and dissociation of NOx. Anal. Bioanal. Chem. 384:161–68 [Google Scholar]
  89. Cool TA.89.  1990. Lasers and Mass Spectrometry DM Lubma 446–67 New York: Oxford Univ. Press
  90. Cool TA, Williams BA. 90.  1992. Ultrasensitive detection of chlorinated hydrocarbons by resonance ionization. Combust. Sci. Technol. 82:67–85 [Google Scholar]
  91. Tanada TN, Velazquez J, Hemmi N, Cool TA. 91.  1993. Detection of toxic emissions from incinerators. Ber. Bunsenges. Phys. Chem. 97:1516–27 [Google Scholar]
  92. Tanada TN, Velazquez J, Hemmi N, Cool TA. 92.  1994. Surrogate detection for continuous emission monitoring by resonance ionization. Combust. Sci. Technol. 101:333–48 [Google Scholar]
  93. Oser H, Thanner R, Grotheer H-H. 93.  1996. Jet-REMPI for the detection of trace gas compounds in complex gas mixtures, a tool for kinetic research and incinerator process control. Combust. Sci. Technol. 116–117:567–82 [Google Scholar]
  94. Oser H, Thanner R, Grotheer H-H, Richters U, Walter R, Merz A. 94.  1997. Jet-REMPI for process control in incineration. Combustion Diagnostics M Tacke, W Stricker 21–29. SPIE Proc. 3108 Bellingham, WA: SPIE [Google Scholar]
  95. Oser H, Coggiola MJ, Faris GW, Young SE, Volquardsen B, Crosley DR. 95.  2001. Development of a jet-REMPI (resonantly enhanced multiphoton ionization) continuous monitor for environmental applications. Appl. Optics 40:859–65 [Google Scholar]
  96. Oser H, Copic K, Coggiola MJ, Faris GW, Crosley DR. 96.  2001. Congener-specific detection of dioxins using jet-REMPI. Chemosphere 43:469–77 [Google Scholar]
  97. Tembreull R, Sin CH, Li P, Pang HM, Lubman DM. 97.  1985. Applicability of resonant two-photon ionization in supersonic beam mass spectrometry to halogenated aromatic hydrocarbons. Anal. Chem. 57:1186–92 [Google Scholar]
  98. Oser H, Thanner R, Grotheer HH, Gullett BK, Natschke D, Raghunathan K. 98.  1998. Lowly chlorinated dibenzodioxins as TEQ indicators. A combined approach using spectroscopic measurements with DLR jet-REMPI and statistical correlations with waste combustor emissions. Combust. Sci. Technol. 134:201–20 [Google Scholar]
  99. Grotheer H-H, Nomayo M, Pokorny H, Thanner R, Gullett BK. 99.  2001. Wavelength-resolved REMPI mass spectrometry for the monitoring of toxic incineration trace gases. Trends Appl. Spectrosc. 3:181–206 [Google Scholar]
  100. Nomayo M, Thanner R, Grotheer HH. 100.  2001. Wavelength-resolved REMPI mass spectrometry in a hostile industrial environment, limitations and promises of the method. Appl. Phys. B 71:681–87 [Google Scholar]
  101. Nomayo M, Thanner R, Pokorny H, Grotheer H-H, Stützle R. 101.  2001. Measurements in the raw gas of a full scale municipal waste incinerator using a wavelength resolved REMPI mass spectrometer. Chemosphere 43:461–67 [Google Scholar]
  102. Zimmermann R, Heger HJ, Kettrup A, Boesl U. 102.  1997. A mobile resonance-enhanced multiphoton ionization time-of-flight mass spectrometry device for on-line analysis of aromatic pollutants in waste incinerator flue gases: first results. Rapid Commun. Mass Spectrom. 11:1095–102 [Google Scholar]
  103. Zimmermann R, Heger HJ, Kettrup A. 103.  1999. On-line monitoring of traces of aromatic-, phenolic- and chlorinated components in flue gases of industrial scale incinerators and cigarette smoke by direct-inlet laser ionization-mass spectrometry (REMPI-TOFMS). Fresenius J. Anal. Chem. 363:720–30 [Google Scholar]
  104. Heger HJ, Zimmermann R, Dorfner R, Beckmann M, Griebel H. 104.  et al. 1999. On-line emission analysis of polycyclic aromatic hydrocarbons down to pptv concentration levels in the flue gas of an incineration pilot plant with a mobile resonance-enhanced multiphoton ionization time-of-flight mass spectrometer. Anal. Chem. 71:46–57 [Google Scholar]
  105. Heger HJ, Zimmermann R, Blumenstock M, Kettrup A. 105.  2001. On-line real-time measurement at incineration plants: PAH and a PCDD/F surrogate compound at stationary combustion conditions and during transient emission puffs. Chemosphere 42:691–96 [Google Scholar]
  106. Heger HJ, Zimmermann R, Dorfner R, Kettrup A, Boesl U. 106.  1998. On-line monitoring of trace compounds in the flue gas of an incineration pilot plant: formation of polycyclic aromatic hydrocarbons. AIP Conf. Proc. 454:305 [Google Scholar]
  107. Zimmermann R, Blumenstock M, Heger HJ, Schramm K-W, Kettrup A. 107.  2001. Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects. Environ. Sci. Technol. 35:1019–30 [Google Scholar]
  108. Zimmermann R, Blumenstock M, Schramm K-W, Kettrup A. 108.  2000. Formation of PAH and PCDD/F in industrial incineration plants: memory effects after disturbed combustion conditions due to deposits in the high temperature region. Organohalogen Compounds 46:78–81 [Google Scholar]
  109. Zimmermann R, Heger HJ, Blumenstock M, Dorfner R, Nikolai U. 109.  et al. 1999. On-line real-time measurement of PAH and PCDD/F surrogates in the flue gas of industrial waste incineration processes. Organohalogen Compounds 41:321–28 [Google Scholar]
  110. Zimmermann R, Heger HJ, Dorfner R, Boesl U, Blumenstock M. 110.  et al. 1998. A mobile laser mass spectrometer (REMPI-TOFMS) for continuous monitoring of toxic combustion byproducts: real-time on-line analysis of PAH in waste incineration flue gases. Combust. Sci. Technol. 134:87 [Google Scholar]
  111. Zimmermann R, Heger HJ, Kettrup A, Nikolai U. 111.  2000. Direct observation of the formation of aromatic pollutants in waste incineration flue gases by on-line REMPI-TOFMS laser mass spectrometry. Fresenius J. Anal. Chem. 366:368–74 [Google Scholar]
  112. Zimmermann R, Heger HJ, Blumenstock M, Dorfner R, Schramm K-W. 112.  et al. 1999. On-line monitoring of chlorobenzene in waste incineration flue gas as a surrogate for the emission of polychlorinated dibenzo-p-dioxins/furans (I-TEQ) using mobile resonance laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 13:307–14 [Google Scholar]
  113. Streibel T, Hafner K, Mühlberger F, Adam T, Warnecke R, Zimmermann R. 113.  2005. Investigation of NOx precursor compounds and other combustion by-products in the primary combustion zone of a waste incineration plant using on-line, real time mass spectrometry and Fourier-transform infrared spectrometry (FT-IR). Anal. Bioanal. Chem. 384:1096–106 [Google Scholar]
  114. Streibel T, Hafner K, Mühlberger F, Adam T, Zimmermann R. 114.  2006. Resonance-enhance multiphoton ionization time-of-flight mass spectrometry for detection of nitrogen containing aliphatic and aromatic compounds: resonance-enhanced multiphoton ionization spectroscopic investigation and on-line analytical application. Appl. Spectrosc. 60:72–79 [Google Scholar]
  115. Gullett B, Oudejans L, Touati A, Ryan S, Tabor D. 115.  2008. Verification results of jet resonance-enhanced multiphoton ionization as a real-time PCDD/F emission monitor. J. Mater. Cycles Waste Manag. 10:32–37 [Google Scholar]
  116. Gullett BK, Oudejans L, Tabor D, Touati A, Ryan S. 116.  2012. Near-real-time combustion monitoring for PCDD/PCDF indicators by GC-REMPI-TOFMS. Environ. Sci. Technol. 46:923–28 [Google Scholar]
  117. Lee CW, Tabor DG, Cowen KA. 117.  2008. Environmental technology verification (ETV) test of dioxin emission monitors. J. Mater. Cycles Waste Manag. 10:38–45 [Google Scholar]
  118. Suzuki Y, Maeno M, Ikehata T, Kitada N, Kirihara N, Ozaki T, Kimura H. 118.  2001. A new laser mass spectrometry for chemical ultratrace analysis enhanced with multi-mirror system (RIMMPA). Anal. Sci. 17:i563–66 [Google Scholar]
  119. Ledingham KWD, Kilic HS, Kosmidis C, Deas RM, Marshall A. 119.  et al. 1995. A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules. Rapid Commun. Mass Spectrom. 9:1522–27 [Google Scholar]
  120. Lockyer NP, Vickerman JC. 120.  1998. Multiphoton ionization mass spectrometry of small biomolecules with nanosecond and femtosecond laser pulses. Int. J. Mass Spectrom. 176:77–86 [Google Scholar]
  121. Matsumoto J, Lin C-H, Imasaka T. 121.  1997. Enhancement of the molecular ion peak from halogenated benzenes and phenols using femtosecond laser pulses in conjuction with supersonic beam/multiphoton ionization mass spectrometry. Anal. Chem. 69:4524–29 [Google Scholar]
  122. Weickhardt C, Grun C, Heinicke R, Meffert A, Grotemeyer J. 122.  1997. The application of resonant multiphoton ionization by sub-picosecond laser pulses for analytical laser mass spectrometry. Rapid Commun. Mass Spectrom. 11:745–48 [Google Scholar]
  123. Weinkauf R, Aicher P, Wesley G, Grotemeyer J, Schlag EW. 123.  1994. Femtosecond versus nanosecond multiphoton ionization and dissociation of large molecules. J. Phys. Chem. 98:8381–91 [Google Scholar]
  124. Li A, Imasaka T, Uchimura T. 124.  2011. Analysis of pesticides by gas chromatography/multiphoton ionization/mass spectrometry using a femtosecond laser. Anal. Chim. Acta 701:52–59 [Google Scholar]
  125. Hashiguchi Y, Zaitsu S-I, Imasaka T. 125.  2013. Ionization of pesticides using a far-ultraviolet femtosecond laser in gas chromatography/time-of-flight mass spectrometry. Anal. Bioanal. Chem. 405:7053–59 [Google Scholar]
  126. Imasaka T.126.  2013. Gas chromatography/multiphoton ionization/time-of-flight mass spectrometry using a femtosecond laser. Anal. Bioanal. Chem. 405:6907–12 [Google Scholar]
  127. Watanabe-Ezoe Y, Li X, Imasaka T, Uchimura T. 127.  2010. Gas chromatography/femtosecond multiphoton ionization/time-of-flight mass spectrometry of dioxins. Anal. Chem. 82:6519–25 [Google Scholar]
  128. Dobson RLM, D'Silva AP, Weeks SJ, Fassel VA. 128.  1986. Multidimensional, laser-based instrument for the characterization of environmental samples for polycyclic aromatic compounds. Anal. Chem. 58:2129–37 [Google Scholar]
  129. Opsal RB, Reilly JP. 129.  1986. Selective analysis of nitro- and nitroso-containing compounds by laser ionization gas chromatography/mass spectrometry. Anal. Chem. 58:2919–23 [Google Scholar]
  130. Opsal RB, Reilly JP. 130.  1988. Ionization of alkylbenzenes studied by laser ionization gas chromatography/mass spectrometry. Anal. Chem. 58:1060–65 [Google Scholar]
  131. Welthagen W, Mitschke S, Mühlberger F, Zimmermann R. 131.  2007. One-dimensional and comprehensive two-dimensional gas chromatography coupled to soft photo ionization time-of-flight mass spectrometry: a two- and three-dimensional separation approach. J. Chromatogr. A 115054–61
  132. Köster C, Grotemeyer J, Schlag EW. 132.  1990. A high pressure pulsed valve for gases, liquids and supercritical fluids. Z. Naturforsch. 45a1285–92
  133. Pepich BV, Callis JB, Burns DH, Gouterman M, Kalman DA. 133.  1986. Capillary gas chromatography/pulsed supersonic jet/fluorescence excitation spectroscopy for the identification of methylanthracenes in a complex environmental sample. Anal. Chem. 58:2825–30 [Google Scholar]
  134. Zimmermann R, Boesl U, Heger HJ, Rohwer ER, Ortner EK. 134.  et al. 1997. Hyphenation of gas chromatography and resonace-enhanced laser mass spectrometry (REMPI-TOFMS): a multidimensional analytical technique. J. High Resolut. Chromatogr. 20:461–70 [Google Scholar]
  135. Zimmermann R, Lermer C, Schramm K-W, Kettrup A, Boesl U. 135.  1995. Three-dimensional trace analysis: combination of gas chromatography, supersonic beam UV spectroscopy and time-of-flight mass spectrometry. Eur. Mass Spectrom. 1:341–51 [Google Scholar]
  136. Zimmermann R, Rohwer ER, Heger HJ. 136.  1999. In-line catalytic derivatization method for selective detection of chlorinated aromatics with a hyphenated gas chromatography laser mass spectrometry technique: a concept for comprehensive detection of isomeric ensembles. Anal. Chem. 71:4148–53 [Google Scholar]
  137. Schmidt S, Appel MF, Garnica RM, Schindler RN, Benter T. 137.  1999. Atmospheric pressure laser ionization. An analytical technique for highly selective detection of ultralow concentrations in the gas phase. Anal. Chem. 71:3721–29 [Google Scholar]
  138. Garnica RM, Appel MF, Eagan L, McKeachie JR, Benter T. 138.  2000. A REMPI method for the ultrasensitive detection of NO and NO2 using atmospheric pressure laser ionization mass spectrometry. Anal. Chem. 72:5639–46 [Google Scholar]
  139. Constapel M, Schellenträger M, Schmitz OJ, Gäb S, Brockmann KJ. 139.  et al. 2005. Atmospheric-pressure laser ionization: a novel ionization method for liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 19:326–36 [Google Scholar]
  140. Schiewek R, Schellenträger M, Mönnikes R, Lorenz M, Giese R. 140.  et al. 2007. Ultrasensitive determination of polycyclic aromatic compounds with atmospheric-pressure laser ionization as an interface for GC/MS. Anal. Chem. 79:4135–40 [Google Scholar]
  141. Stader C, Baer FT, Achten C. 141.  2013. Environmental PAH analysis by gas chromatography-atmospheric pressure laser ionization-time-of-flight-mass spectrometry (GC-APLI-MS). Anal. Bioanal. Chem. 405:7041–52 [Google Scholar]
  142. Kersten H, Lorenz M, Brockmann KJ, Benter T. 142.  2011. Evaluation of the performance of small diode pumped UV solid state (DPSS) Nd:YAG lasers as new radiation sources for atmospheric pressure laser ionization mass spectrometry (APLI-MS). J. Am. Soc. Mass Spectrom. 22:1063–69 [Google Scholar]
  143. Klee S, Albrecht S, Derpmann V, Kersten H, Benter T. 143.  2013. Generation of ion-bound solvent clusters as reactant ions in dopant-assisted APPI and APLI. Anal. Bioanal. Chem. 405:6933–51 [Google Scholar]
  144. Boesl U, Bornschlegl A, Logé K, Tietze C. 144.  2013. Resonance-enhanced multiphoton ionization with circularly polarized light: chiral carbonyls. Anal. Bioanal. Chem. 405:6913–24 [Google Scholar]
  145. Kuraishi T, Uchimura T. 145.  2013. Resonance-enhanced multiphoton ionization/time-of-flight mass spectrometry for sensitive analysis of product ions formed by online concentration from analyte adsorption/laser desorption. Anal. Chem. 85:3493–96 [Google Scholar]
/content/journals/10.1146/annurev-anchem-062012-092648
Loading
/content/journals/10.1146/annurev-anchem-062012-092648
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error