1932

Abstract

It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040118
2015-07-22
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040118.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040118&mimeType=html&fmt=ahah

Literature Cited

  1. Aviram A, Ratner MA. 1.  1974. Molecular rectifiers. Chem. Phys. Lett. 29:277–83 [Google Scholar]
  2. Metzger RM. 2.  1999. Electrical rectification by a molecule: the advent of unimolecular electronic devices. Acc. Chem. Res. 32:950–57 [Google Scholar]
  3. Tao NJ. 3.  2006. Electron transport in molecular junctions. Nat. Nanotechnol. 1:173–81 [Google Scholar]
  4. Nichols RJ, Haiss W, Higgins SJ, Leary E, Martin S, Bethell D. 4.  2010. The experimental determination of the conductance of single molecules. Phys. Chem. Chem. Phys. 12:2801–15 [Google Scholar]
  5. Aradhya SV, Venkataraman L. 5.  2013. Single-molecule junctions beyond electronic transport. Nat. Nanotechnol. 8:399–410 [Google Scholar]
  6. Chen F, Hihath J, Huang ZF, Li XL, Tao NJ. 6.  2007. Measurement of single-molecule conductance. Annu. Rev. Phys. Chem. 58:535–64 [Google Scholar]
  7. Guo S, Manuel Artes J, Diez-Perez I. 7.  2013. Electrochemically-gated single-molecule electrical devices. Electrochim. Acta 110:741–53 [Google Scholar]
  8. Kiguchi M, Kaneko S. 8.  2013. Single molecule bridging between metal electrodes. Phys. Chem. Chem. Phys. 15:2253–67 [Google Scholar]
  9. van der Molen SJ, Liljeroth P. 9.  2010. Charge transport through molecular switches. J. Phys. Condensed Matter 22:133001 [Google Scholar]
  10. Lindsay SM, Ratner MA. 10.  2007. Molecular transport junctions: clearing mists. Adv. Mater. 19:23–31 [Google Scholar]
  11. Agrait N, Yeyati AL, van Ruitenbeek JM. 11.  2003. Quantum properties of atomic-sized conductors. Phys. Rep. 377:81–279 [Google Scholar]
  12. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. 12.  1997. Conductance of a molecular junction. Science 278:252–54 [Google Scholar]
  13. Xu BQ, Tao NJJ. 13.  2003. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–23 [Google Scholar]
  14. Kergueris C, Bourgoin JP, Palacin S, Esteve D, Urbina C. 14.  et al. 1999. Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59:12505–13 [Google Scholar]
  15. Weber HB, Reichert J, Weigend F, Ochs R, Beckmann D. 15.  et al. 2002. Electronic transport through single conjugated molecules. Chem. Phys. 281:113–25 [Google Scholar]
  16. Gonzalez MT, Wu SM, Huber R, van der Molen SJ, Schonenberger C, Calame M. 16.  2006. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 6:2238–42 [Google Scholar]
  17. Huber R, Gonzalez MT, Wu S, Langer M, Grunder S. 17.  et al. 2008. Electrical conductance of conjugated oligomers at the single molecule level. J. Am. Chem. Soc. 130:1080–84 [Google Scholar]
  18. Smit RHM, Noat Y, Untiedt C, Lang ND, van Hemert MC, van Ruitenbeek JM. 18.  2002. Measurement of the conductance of a hydrogen molecule. Nature 419:906–9 [Google Scholar]
  19. Krans JM, Vanruitenbeek JM, Fisun VV, Yanson IK, Dejongh LJ. 19.  1995. The signature of conductance quantization in metallic point contacts. Nature 375:767–69 [Google Scholar]
  20. Olesen L, Laegsgaard E, Stensgaard I, Besenbacher F, Schiotz J. 20.  et al. 1995. Reply to “Comment on: ‘Quantized conductance in an atom-sized point-contact.’. Phys. Rev. Lett. 74:2147 [Google Scholar]
  21. Gai Z, He Y, Yu HB, Yang WS. 21.  1996. Observation of conductance quantization of ballistic metallic point contacts at room temperature. Phys. Rev. B 53:1042–45 [Google Scholar]
  22. Briechle BM, Kim Y, Ehrenreich P, Erbe A, Sysoiev D. 22.  et al. 2012. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution. Beilstein J. Nanotechnol. 3:798–808 [Google Scholar]
  23. Cui XD, Primak A, Zarate X, Tomfohr J, Sankey OF. 23.  et al. 2001. Reproducible measurement of single-molecule conductivity. Science 294:571–74 [Google Scholar]
  24. Morita T, Lindsay S. 24.  2007. Determination of single molecule conductances of alkanedithiols by conducting-atomic force microscopy with large gold nanoparticles. J. Am. Chem. Soc. 129:7262–63 [Google Scholar]
  25. Haiss W, Martin S, Leary E, van Zalinge H, Higgins SJ. 25.  et al. 2009. Impact of junction formation method and surface roughness on single molecule conductance. J. Phys. Chem. C 113:5823–33 [Google Scholar]
  26. Zhou X-S, Liang J-H, Chen Z-B, Mao B-W. 26.  2011. An electrochemical jump-to-contact STM-break junction approach to construct single molecular junctions with different metallic electrodes. Electrochem. Commun. 13:407–10 [Google Scholar]
  27. Peng Z-L, Chen Z-B, Zhou X-Y, Sun Y-Y, Liang J-H. 27.  et al. 2012. Single molecule conductance of carboxylic acids contacting Ag and Cu electrodes. J. Phys. Chem. C 116:21699–705 [Google Scholar]
  28. Wang Y-H, Zhou X-Y, Sun Y-Y, Han D, Zheng J-F. 28.  et al. 2014. Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction. Electrochim. Acta 123:205–10 [Google Scholar]
  29. Haiss W, van Zalinge H, Higgins SJ, Bethell D, Hobenreich H. 29.  et al. 2003. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 125:15294–95 [Google Scholar]
  30. Bui PT, Nishino T. 30.  2014. Electron transfer through coordination bond interaction between single molecules: conductance switching by a metal ion. Phys. Chem. Chem. Phys. 16:5490–94 [Google Scholar]
  31. Kay NJ, Nichols RJ, Higgins SJ, Haiss W, Sedghi G. 31.  et al. 2011. Ionic liquids as a medium for STM-based single molecule conductance determination: an exploration employing alkanedithiols. J. Phys. Chem. C 115:21402–8 [Google Scholar]
  32. Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F. 32.  2008. Charge transport in single Au—alkanedithiol—Au junctions: coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 130:318–26 [Google Scholar]
  33. Mishchenko A, Vonlanthen D, Meded V, Buerkle M, Li C. 33.  et al. 2010. Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 10:156–63 [Google Scholar]
  34. Ramachandran GK, Hopson TJ, Rawlett AM, Nagahara LA, Primak A, Lindsay SM. 34.  2003. A bond-fluctuation mechanism for stochastic switching in wired molecules. Science 300:1413–16 [Google Scholar]
  35. Chang S, He J, Lin L, Zhang P, Liang F. 35.  et al. 2009. Tunnel conductance of Watson-Crick nucleoside-base pairs from telegraph noise. Nanotechnology 20:185102 [Google Scholar]
  36. Xia JL, Diez-Perez I, Tao NJ. 36.  2008. Electron transport in single molecules measured by a distance-modulation assisted break junction method. Nano Lett. 8:1960–64 [Google Scholar]
  37. Haiss W, Nichols RJ, van Zalinge H, Higgins SJ, Bethell D, Schiffrin DJ. 37.  2004. Measurement of single molecule conductivity using the spontaneous formation of molecular wires. Phys. Chem. Chem. Phys. 6:4330–37 [Google Scholar]
  38. Xu BQ, Xiao XY, Tao NJ. 38.  2003. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125:16164–65 [Google Scholar]
  39. Paulsson M, Datta S. 39.  2003. Thermoelectric effect in molecular electronics. Phys. Rev. B 67:241403 [Google Scholar]
  40. Baheti K, Malen JA, Doak P, Reddy P, Jang S-Y. 40.  et al. 2008. Probing the chemistry of molecular heterojunctions using thermoelectricity. Nano Lett. 8:715–19 [Google Scholar]
  41. Reddy P, Jang SY, Segalman RA, Majumdar A. 41.  2007. Thermoelectricity in molecular junctions. Science 315:1568–71 [Google Scholar]
  42. Malen JA, Doak P, Baheti K, Tilley TD, Segalman RA, Majumdar A. 42.  2009. Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions. Nano Lett. 9:1164–69 [Google Scholar]
  43. Tan A, Balachandran J, Sadat S, Gavini V, Dunietz BD. 43.  et al. 2011. Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions. J. Am. Chem. Soc. 133:8838–41 [Google Scholar]
  44. Widawsky JR, Darancet P, Neaton JB, Venkataraman L. 44.  2012. Simultaneous determination of conductance and thermopower of single molecule junctions. Nano Lett. 12:354–58 [Google Scholar]
  45. Evangeli C, Gillemot K, Leary E, Teresa Gonzalez M, Rubio-Bollinger G. 45.  et al. 2013. Engineering the thermopower of C60 molecular junctions. Nano Lett. 13:2141–45 [Google Scholar]
  46. Guo S, Zhou G, Tao N. 46.  2013. Single molecule conductance, thermopower, and transition voltage. Nano Lett. 13:4326–32 [Google Scholar]
  47. Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, von Lohneysen H. 47.  2002. Driving current through single organic molecules. Phys. Rev. Lett. 88:176804 [Google Scholar]
  48. Nuzzo RG, Allara DL. 48.  1983. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105:4481–83 [Google Scholar]
  49. Ulman A. 49.  1996. Formation and structure of self-assembled monolayers. Chem. Rev. 96:1533–54 [Google Scholar]
  50. Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG. 50.  et al. 2009. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 4:230–34 [Google Scholar]
  51. Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML. 51.  2006. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6:458–62 [Google Scholar]
  52. Chen F, Li X, Hihath J, Huang Z, Tao N. 52.  2006. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules. J. Am. Chem. Soc. 128:15874–81 [Google Scholar]
  53. Hong W, Manrique DZ, Moreno-Garcia P, Gulcur M, Mishchenko A. 53.  et al. 2012. Single molecular conductance of tolanes: experimental and theoretical study on the junction evolution dependent on the anchoring group. J. Am. Chem. Soc. 134:2292–304 [Google Scholar]
  54. Park YS, Whalley AC, Kamenetska M, Steigerwald ML, Hybertsen MS. 54.  et al. 2007. Contact chemistry and single-molecule conductance: a comparison of phosphines, methyl sulfides, and amines. J. Am. Chem. Soc. 129:15768–69 [Google Scholar]
  55. Kiguchi M, Miura S, Hara K, Sawamura M, Murakoshi K. 55.  2006. Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes. Appl. Phys. Lett. 89:213104 [Google Scholar]
  56. Mishchenko A, Zotti LA, Vonlanthen D, Buerkle M, Pauly F. 56.  et al. 2011. Single-molecule junctions based on nitrile-terminated biphenyls: a promising new anchoring group. J. Am. Chem. Soc. 133:184–87 [Google Scholar]
  57. Yamada R, Kumazawa H, Noutoshi T, Tanaka S, Tada H. 57.  2008. Electrical conductance of oligothiophene molecular wires. Nano Lett. 8:1237–40 [Google Scholar]
  58. Fu MD, Chen WP, Lu HC, Kuo CT, Tseng WH, Chen CH. 58.  2007. Conductance of alkanediisothiocyanates: effect of headgroup-electrode contacts. J. Phys. Chem. C 111:11450–55 [Google Scholar]
  59. Ko C-H, Huang M-J, Fu M-D, Chen C-H. 59.  2010. Superior contact for single-molecule conductance: electronic coupling of thiolate and isothiocyanate on Pt, Pd, and Au. J. Am. Chem. Soc. 132:756–64 [Google Scholar]
  60. Yin C, Huang G-C, Kuo C-K, Fu M-D, Lu H-C. 60.  et al. 2008. Extended metal-atom chains with an inert second row transition metal: [Ru55-tpda)4X2] (tpda2− = tripyridyldiamido dianion, X = Cl and NCS). J. Am. Chem. Soc. 130:10090–92 [Google Scholar]
  61. Zotti LA, Kirchner T, Cuevas J-C, Pauly F, Huhn T. 61.  et al. 2010. Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6:1529–35 [Google Scholar]
  62. Xing Y, Park T-H, Venkatramani R, Keinan S, Beratan DN. 62.  et al. 2010. Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers. J. Am. Chem. Soc. 132:7946–56 [Google Scholar]
  63. Li Z, Li H, Chen S, Froehlich T, Yi C. 63.  et al. 2014. Regulating a benzodifuran single molecule redox switch via electrochemical gating and optimization of molecule/electrode coupling. J. Am. Chem. Soc. 136:8867–70 [Google Scholar]
  64. Kirn T, Vazquez H, Hybertsen MS, Venkataraman L. 64.  2013. Conductance of molecular junctions formed with silver electrodes. Nano Lett. 13:3358–64 [Google Scholar]
  65. Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD. 65.  2003. Comparison of electronic transport measurements on organic molecules. Adv. Mater. 15:1881–90 [Google Scholar]
  66. Gillemot K, Evangeli C, Leary E, La Rosa A, Teresa Gonzalez M. 66.  et al. 2013. A detailed experimental and theoretical study into the properties of C60 dumbbell junctions. Small 9:3812–22 [Google Scholar]
  67. Leary E, Gonzalez MT, van der Pol C, Bryce MR, Filippone S. 67.  et al. 2011. Unambiguous one-molecule conductance measurements under ambient conditions. Nano Lett. 11:2236–41 [Google Scholar]
  68. Ie Y, Hirose T, Nakamura H, Kiguchi M, Takagi N. 68.  et al. 2011. Nature of electron transport by pyridine-based tripodal anchors: potential for robust and conductive single-molecule junctions with gold electrodes. J. Am. Chem. Soc. 133:3014–22 [Google Scholar]
  69. Chen W, Widawsky JR, Vazquez H, Schneebeli ST, Hybertsen MS. 69.  et al. 2011. Highly conducting ∏-conjugated molecular junctions covalently bonded to gold electrodes. J. Am. Chem. Soc. 133:17160–63 [Google Scholar]
  70. Cheng ZL, Skouta R, Vazquez H, Widawsky JR, Schneebeli S. 70.  et al. 2011. In situ formation of highly conducting covalent Au-C contacts for single-molecule junctions. Nat. Nanotechnol. 6:353–57 [Google Scholar]
  71. Hong W, Li H, Liu S-X, Fu Y, Li J. 71.  et al. 2012. Trimethylsilyl-terminated oligo(phenylene ethynylene)s: an approach to single-molecule junctions with covalent au-c sigma-bonds. J. Am. Chem. Soc. 134:19425–31 [Google Scholar]
  72. Martin S, Grace I, Bryce MR, Wang C, Jitchati R. 72.  et al. 2010. Identifying diversity in nanoscale electrical break junctions. J. Am. Chem. Soc. 132:9157–64 [Google Scholar]
  73. Osorio HM, Cea P, Ballesteros LM, Gascon I, Marques-Gonzalez S. 73.  et al. 2014. Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films. J. Mater. Chem. C 2:7348–55 [Google Scholar]
  74. Marina Ballesteros L, Martin S, Momblona C, Marques-Gonzalez S, Carmen Lopez M. 74.  et al. 2012. Acetylene used as a new linker for molecular junctions in phenylene-ethynylene oligomer Langmuir-Blodgett films. J. Phys. Chem. C 116:9142–50 [Google Scholar]
  75. Millar D, Venkataraman L, Doerrer LH. 75.  2007. Efficacy of Au-Au contacts for scanning tunneling microscopy molecular conductance measurements. J. Phys. Chem. C 111:17635–39 [Google Scholar]
  76. Marques-Gonzalez S, Yufit DS, Howard JAK, Martin S, Osorio HM. 76.  et al. 2013. Simplifying the conductance profiles of molecular junctions: the use of the trimethylsilylethynyl moiety as a molecule-gold contact. Dalton Trans. 42:338–41 [Google Scholar]
  77. Pera G, Martin S, Ballesteros LM, Hope AJ, Low PJ. 77.  et al. 2010. Metal-molecule-metal junctions in Langmuir-Blodgett films using a new linker: Trimethylsilane. Chem.-Eur. J. 16:13398–405 [Google Scholar]
  78. Marchenko A, Katsonis N, Fichou D, Aubert C, Malacria M. 78.  2002. Long-range self-assembly of a polyunsaturated linear organosilane at the n-Tetradecane/Au(111) interface studied by STM. J. Am. Chem. Soc. 124:9998–99 [Google Scholar]
  79. Katsonis N, Marchenko A, Taillemite S, Fichou D, Chouraqui G. 79.  et al. 2003. A molecular approach to self-assembly of trimethylsilylacetylene derivatives on gold. Chemistry 9:2574–81 [Google Scholar]
  80. Katsonis N, Marchenko A, Fichou D, Barrett N. 80.  2008. Investigation on the nature of the chemical link between acetylenic organosilane self-assembled monolayers and Au(111) by means of synchrotron radiation photoelectron spectroscopy and scanning tunneling microscopy. Surf. Sci. 602:9–16 [Google Scholar]
  81. Watcharinyanon S, Nilsson D, Moons E, Shaporenko A, Zharnikov M. 81.  et al. 2008. A spectroscopic study of self-assembled monolayer of porphyrin-functionalized oligo(phenyleneethynylene)s on gold: the influence of the anchor moiety. Phys. Chem. Chem. Phys. 10:5264–75 [Google Scholar]
  82. Li XL, He J, Hihath J, Xu BQ, Lindsay SM, Tao NJ. 82.  2006. Conductance of single alkanedithiols: conduction mechanism and effect of molecule-electrode contacts. J. Am. Chem. Soc. 128:2135–41 [Google Scholar]
  83. Zhou J, Chen F, Xu B. 83.  2009. Fabrication and electronic characterization of single molecular junction devices: a comprehensive approach. J. Am. Chem. Soc. 131:10439–46 [Google Scholar]
  84. Haiss W, van Zalinge H, Bethell D, Ulstrup J, Schiffrin DJ, Nichols RJ. 84.  2006. Thermal gating of the single molecule conductance of alkanedithiols. Faraday Discuss. 131:253–64 [Google Scholar]
  85. Jones DR, Troisi A. 85.  2007. Single molecule conductance of linear dithioalkanes in the liquid phase: apparently activated transport due to conformational flexibility. J. Phys. Chem. C 111:14567–73 [Google Scholar]
  86. Haiss W, Wang C, Grace I, Batsanov AS, Schiffrin DJ. 86.  et al. 2006. Precision control of single-molecule electrical junctions. Nat. Mater. 5:995–1002 [Google Scholar]
  87. Diez-Perez I, Hihath J, Hines T, Wang Z-S, Zhou G. 87.  et al. 2011. Controlling single-molecule conductance through lateral coupling of pi orbitals. Nat. Nanotechnol. 6:226–31 [Google Scholar]
  88. Paulsson M, Krag C, Frederiksen T, Brandbyge M. 88.  2009. Conductance of alkanedithiol single-molecule junctions: a molecular dynamics study. Nano Lett. 9:117–21 [Google Scholar]
  89. Kamenetska M, Koentopp M, Whalley AC, Park YS, Steigerwald ML. 89.  et al. 2009. Formation and evolution of single-molecule junctions. Phys. Rev. Lett. 102:126803 [Google Scholar]
  90. Leary E, Higgins SJ, van Zalinge H, Haiss W, Nichols RJ. 90.  2007. Chemical control of double barrier tunnelling in alpha, omega-dithiaalkane molecular wires. Chem. Commun. 38:3939–41 [Google Scholar]
  91. Venkataraman L, Park YS, Whalley AC, Nuckolls C, Hybertsen MS, Steigerwald ML. 91.  2007. Electronics and chemistry: varying single-molecule junction conductance using chemical substituents. Nano Lett. 7:502–6 [Google Scholar]
  92. Xiao XY, Nagahara LA, Rawlett AM, Tao NJ. 92.  2005. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127:9235–40 [Google Scholar]
  93. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML. 93.  2006. Dependence of single-molecule junction conductance on molecular conformation. Nature 442:904–7 [Google Scholar]
  94. Sedghi G, Esdaile LJ, Anderson HL, Martin S, Bethell D. 94.  et al. 2012. Comparison of the conductance of three types of porphyrin-based molecular wires: beta, meso, beta-fused tapes, meso-butadiyne-linked and twisted meso-meso linked oligomers. Adv. Mater. 24:653 [Google Scholar]
  95. Kolivoska V, Valasek M, Gal M, Sokolova R, Bulickova J. 95.  et al. 2013. Single-molecule conductance in a series of extended viologen molecules. J. Phys. Chem. Lett. 4:589–95 [Google Scholar]
  96. Wu SM, Gonzalez MT, Huber R, Grunder S, Mayor M. 96.  et al. 2008. Molecular junctions based on aromatic coupling. Nat. Nanotechnol. 3:569–74 [Google Scholar]
  97. Nishino T, Hayashi N, Bui PT. 97.  2013. Direct measurement of electron transfer through a hydrogen bond between single molecules. J. Am. Chem. Soc. 135:4592–95 [Google Scholar]
  98. Bui PT, Nishino T, Yamamoto Y, Shiigi H. 98.  2013. Quantitative exploration of electron transfer in a single noncovalent supramolecular assembly. J. Am. Chem. Soc. 135:5238–41 [Google Scholar]
  99. Gittins DI, Bethell D, Schiffrin DJ, Nichols RJ. 99.  2000. A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408:67–69 [Google Scholar]
  100. Martin S, Haiss W, Higgins SJ, Nichols RJ. 100.  2010. The impact of E-Z photo-isomerization on single molecular conductance. Nano Lett. 10:2019–23 [Google Scholar]
  101. Roldan D, Kaliginedi V, Cobo S, Kolivoska V, Bucher C. 101.  et al. 2013. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J. Am. Chem. Soc. 135:5974–77 [Google Scholar]
  102. Battacharyya S, Kibel A, Kodis G, Liddell PA, Gervaldo M. 102.  et al. 2011. Optical modulation of molecular conductance. Nano Lett. 11:2709–14 [Google Scholar]
  103. Scullion L, Doneux T, Bouffier L, Fernig DG, Higgins SJ. 103.  et al. 2011. Large conductance changes in peptide single molecule junctions controlled by pH. J. Phys. Chem. C 115:8361–68 [Google Scholar]
  104. Nichols RJ, Higgins SJ. 104.  2014. Single molecular electrochemistry within an STM. Electrocatalysis 14 Theoretical Foundations and Model Experiments RC Alkire, DM Kolb, J Lipkowski. Weinham Ger: Wiley-VCH [Google Scholar]
  105. Shu C, Li CZ, He HX, Bogozi A, Bunch JS, Tao NJ. 105.  2000. Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control. Phys. Rev. Lett. 84:5196–99 [Google Scholar]
  106. Tian J-H, Yang Y, Zhou X-S, Schoellhorn B, Maisonhaute E. 106.  et al. 2010. Electrochemically assisted fabrication of metal atomic wires and molecular junctions by MCBJ and STM-BJ methods. Chemphyschem 11:2745–55 [Google Scholar]
  107. Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J. 107.  et al. 2012. Single-molecule electrochemical gating in ionic liquids. J. Am. Chem. Soc. 134:16817–26 [Google Scholar]
  108. Li Z, Han B, Meszaros G, Pobelov I, Wandlowski T. 108.  et al. 2006. Two-dimensional assembly and local redox activity of molecular hybrid structures in an electrochemical environment. Faraday Discuss. 131:121–43 [Google Scholar]
  109. Haiss W, Albrecht T, van Zalinge H, Higgins SJ, Bethell D. 109.  et al. 2007. Single-molecule conductance of redox molecules in electrochemical scanning tunneling microscopy. J. Phys. Chem. B 111:6703–12 [Google Scholar]
  110. Li ZH, Pobelov I, Han B, Wandlowski T, Blaszczyk A, Mayor M. 110.  2007. Conductance of redox-active single molecular junctions: an electrochemical approach. Nanotechnology 18:044018 [Google Scholar]
  111. Leary E, Higgins SJ, van Zalinge H, Haiss W, Nichols RJ. 111.  et al. 2008. Structure-property relationships in redox-gated single molecule junctions—a comparison of pyrrolo-tetrathiafulvalene and viologen redox groups. J. Am. Chem. Soc. 130:12204–5 [Google Scholar]
  112. Kolivoska V, Moreno-Garcia P, Kaliginedi V, Hong W, Mayor M. 112.  et al. 2013. Electron transport through catechol-functionalized molecular rods. Electrochim. Acta 110:709–17 [Google Scholar]
  113. Li C, Mishchenko A, Li Z, Pobelov I, Wandlowski T. 113.  et al. 2008. Electrochemical gate-controlled electron transport of redox-active single perylene bisimide molecular junctions. J. Phys.-Condens. Matter 20:374122 [Google Scholar]
  114. Li XL, Xu BQ, Xiao XY, Yang XM, Zang L, Tao NJ. 114.  2006. Controlling charge transport in single molecules using electrochemical gate. Faraday Discuss. 131:111–20 [Google Scholar]
  115. Li C, Stepanenko V, Lin M-J, Hong W, Wuerthner F, Wandlowski T. 115.  2013. Charge transport through perylene bisimide molecular junctions: an electrochemical approach. Phys. Status Solidi B 250:2458–67 [Google Scholar]
  116. Li X, Hihath J, Chen F, Masuda T, Zang L, Tao N. 116.  2007. Thermally activated electron transport in single redox molecules. J. Am. Chem. Soc. 129:11535–42 [Google Scholar]
  117. Chen F, Nuckolls C, Lindsay S. 117.  2006. In situ measurements of oligoaniline conductance: linking electrochemistry and molecular electronics. Chem. Phys. 324:236–43 [Google Scholar]
  118. He J, Chen F, Lindsay S, Nuckolls C. 118.  2007. Length dependence of charge transport in oligoanilines. Appl. Phys. Lett. 90:072112 [Google Scholar]
  119. Darwish N, Diez-Perez I, Guo SY, Tao NJ, Gooding JJ, Paddon-Row MN. 119.  2012. Single molecular switches: electrochemical gating of a single anthraquinone-based norbornylogous bridge molecule. J. Phys. Chem. C 116:21093–97 [Google Scholar]
  120. Darwish N, Diez-Perez I, Da Silva P, Tao NJ, Gooding JJ, Paddon-Row MN. 120.  2012. Observation of electrochemically controlled quantum interference in a single anthraquinone-based norbornylogous bridge molecule. Angew. Chem. Int. Ed. 51:3203–6 [Google Scholar]
  121. Li Z, Smeu M, Afsari S, Xing Y, Ratner MA, Borguet E. 121.  2014. Single-molecule sensing of environmental pH—an STM break junction and NEGF-DFT approach. Angew. Chem. Int. Ed. 53:1098–102 [Google Scholar]
  122. Xiao XY, Xu BQ, Tao NJ. 122.  2004. Changes in the conductance of single peptide molecules upon metal-ion binding. Angew. Chem. Int. Ed. 43:6148–52 [Google Scholar]
  123. Pratesi A, Zanello P, Giorgi G, Messori L, Laschi F. 123.  et al. 2007. New copper(II)/cyclic tetrapeptide system that easily oxidizes to copper(III) under atmospheric oxygen. Inorganic Chem. 46:10038–40 [Google Scholar]
  124. Holzenberg A, Scrutton NS. 124.  2002. Enzyme-Catalyzed Electron and Radical Transfer 35 Subcellular Biochemistry New York, London: Plenum Press [Google Scholar]
  125. Sanchez L, Sierra M, Martin N, Myles AJ, Dale TJ. 125.  et al. 2006. Exceptionally strong electronic communication through hydrogen bonds in porphyrin–C60 pairs. Angew. Chem. Int. Ed. 45:4637–41 [Google Scholar]
  126. Sek S, Maicka E, Bilewicz R. 126.  2005. Efficient electron transfer through hydrogen bonded interface. Electrochim. Acta 50:4857–60 [Google Scholar]
  127. Chang S, He J, Kibel A, Lee M, Sankey O. 127.  et al. 2009. Tunnelling readout of hydrogen-bonding-based recognition. Nat. Nanotechnol. 4:297–301 [Google Scholar]
  128. Zwolak M, Di Ventra M. 128.  2005. Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5:421–24 [Google Scholar]
  129. Huang S, He J, Chang S, Zhang P, Liang F. 129.  et al. 2010. Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5:868–73 [Google Scholar]
  130. Zhao Y, Ashcroft B, Zhang P, Liu H, Sen S. 130.  et al. 2014. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nat. Nanotechnol. 9:466–73 [Google Scholar]
  131. Leary E, Hobenreich H, Higgins SJ, van Zalinge H, Haiss W. 131.  et al. 2009. Single-molecule solvation-shell sensing. Phys. Rev. Lett. 102:086801 [Google Scholar]
  132. Bryce MR. 132.  1991. Recent progress on conducting organic charge-transfer salts. Chem. Soc. Rev. 20:355–90 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040118
Loading
/content/journals/10.1146/annurev-anchem-071114-040118
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error