Synthetic nano- and microscale machines move autonomously in solution or drive fluid flows by converting sources of energy into mechanical work. Their sizes are comparable to analytes (sub-nano- to microscale), and they respond to signals from each other and their surroundings, leading to emergent collective behavior. These machines can potentially enable hitherto difficult analytical applications. In this article, we review the development of different classes of synthetic nano- and micromotors and pumps and indicate their possible applications in real-time in situ chemical sensing, on-demand directional transport, cargo capture and delivery, as well as analyte isolation and separation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Paxton WF, Kistler KC, Olmeda CC, Sen A, St. Angelo SK. 1.  et al. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126:13424–31 [Google Scholar]
  2. Fournier-Bidoz S, Arsenault AC, Manners I, Ozin GA. 2.  2005. Synthetic self-propelled nanorotors. Chem. Commun. 2005:441–43 [Google Scholar]
  3. Ozin GA, Manners I, Fournier-Bidoz S, Arsenault A. 3.  2005. Dream nanomachines. Adv. Mater. 17:3011–18 [Google Scholar]
  4. Paxton WF, Sundararajan S, Mallouk TE, Sen A. 4.  2006. Chemical locomotion. Angew. Chem. Int. Ed. 45:5420–29 [Google Scholar]
  5. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R. 5.  2007. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99:048102 [Google Scholar]
  6. Mallouk TE, Sen A. 6.  2009. Powering nanorobots. Sci. Am. 300:72–77 [Google Scholar]
  7. Sen A, Ibele M, Hong Y, Velegol D. 7.  2009. Chemo and phototactic nano/microbots. Faraday Discuss. 143:15–27 [Google Scholar]
  8. Gibbs JG, Fragnito NA, Zhao Y. 8.  2010. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth. Appl. Phys. Lett. 97:253107 [Google Scholar]
  9. Ke H, Ye S, Carroll RL, Showalter K. 9.  2010. Motion analysis of self-propelled Pt-silica particles in hydrogen peroxide solutions. J. Phys. Chem. A 114:5462–67 [Google Scholar]
  10. Mirkovic T, Zacharia NS, Scholes GD, Ozin GA. 10.  2010. Nanolocomotion—catalytic nanomotors and nanorotors. Small 6:159–67 [Google Scholar]
  11. Loget G, Kuhn A. 11.  2011. Electric field-induced chemical locomotion of conducting objects. Nat. Commun. 2:535 [Google Scholar]
  12. Golestanian R, Liverpool TB, Ajdari A. 12.  2005. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94:220801 [Google Scholar]
  13. Hess H. 13.  2006. Self-assembly driven by molecular motors. Soft Matter 2:669–77 [Google Scholar]
  14. Chang ST, Paunov VN, Petsev DN, Velev OD. 14.  2007. Remotely powered self-propelling particles and micropumps based on miniature diodes. Nat. Mater. 6:235–40 [Google Scholar]
  15. Dhar P, Cao YY, Kline T, Pal P, Swayne C. 15.  et al. 2007. Autonomously moving local nanoprobes in heterogeneous magnetic fields. J. Phys. Chem. C 111:3607–13 [Google Scholar]
  16. Chang ST, Beaumont E, Petsev DN, Velev OD. 16.  2008. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Lab Chip 8:117–24 [Google Scholar]
  17. Golestanian R, Ajdari A. 17.  2008. Mechanical response of a small swimmer driven by conformational transitions. Phys. Rev. Lett. 100:038101 [Google Scholar]
  18. Gibbs JG, Zhao YP. 18.  2009. Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94:163104–3 [Google Scholar]
  19. Gibbs JG, Zhao YP. 19.  2009. Design and characterization of rotational multicomponent catalytic nanomotors. Small 5:2304–8 [Google Scholar]
  20. Sánchez S, Pumera M. 20.  2009. Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. Chem. Asian J. 4:1402–10 [Google Scholar]
  21. Tao YG, Kapral R. 21.  2009. Dynamics of chemically powered nanodimer motors subject to an external force. J. Chem. Phys. 131:024113 [Google Scholar]
  22. Wang J. 22.  2009. Can man-made nanomachines compete with nature biomotors?. ACS Nano 3:4–9 [Google Scholar]
  23. Ebbens SJ, Howse JR. 23.  2010. In pursuit of propulsion at the nanoscale. Soft Matter 6:726–38 [Google Scholar]
  24. Loget G, Kuhn A. 24.  2010. Propulsion of microobjects by dynamic bipolar self-regeneration. J. Am. Chem. Soc. 132:15918–19 [Google Scholar]
  25. Ramaswamy S. 25.  2010. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1:323–45 [Google Scholar]
  26. Wheat PM, Marine NA, Moran JL, Posner JD. 26.  2010. Rapid fabrication of bimetallic spherical motors. Langmuir 26:13052–55 [Google Scholar]
  27. Mei Y, Solovev AA, Sanchez S, Schmidt OG. 27.  2011. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40:2109–19 [Google Scholar]
  28. Miño G, Mallouk TE, Darnige T, Hoyos M, Dauchet J. 28.  et al. 2011. Enhanced diffusion due to active swimmers at a solid surface. Phys. Rev. Lett. 106:048102 [Google Scholar]
  29. Gao W, Sattayasamitsathit S, Wang J. 29.  2012. Catalytically propelled micro-/nanomotors: How fast can they move?. Chem. Rec. 12:224–31 [Google Scholar]
  30. Masoud H, Bingham BI, Alexeev A. 30.  2012. Designing maneuverable micro-swimmers actuated by responsive gel. Soft Matter 8:8944–51 [Google Scholar]
  31. Reinmuller A, Oguz EC, Messina R, Lowen H, Schope HJ, Palberg T. 31.  2012. Colloidal crystallization in the quasi-two-dimensional induced by electrolyte gradients. J. Chem. Phys. 136:164505–10 [Google Scholar]
  32. Sengupta S, Ibele ME, Sen A. 32.  2012. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51:8434–45 [Google Scholar]
  33. Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C. 33.  et al. 2012. Self-propelled nanotools. ACS Nano 6:1751–56 [Google Scholar]
  34. Wang W, Duan W, Ahmed S, Mallouk TE, Sen A. 34.  2013. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–54 [Google Scholar]
  35. Soler L, Sanchez S. 35.  2014. Catalytic nanomotors for environmental monitoring and water remediation. Nanoscale 67175–82 [Google Scholar]
  36. Sakaue T, Kapral R, Mikhailov AS. 36.  2010. Nanoscale swimmers: hydrodynamic interactions and propulsion of molecular machines. Eur. Phys. J. B 75:381–87 [Google Scholar]
  37. Kapral R. 37.  2013. Perspective: nanomotors without moving parts that propel themselves in solution. J. Chem. Phys. 138:020901 [Google Scholar]
  38. Liu R, Sen A. 38.  2011. Autonomous nanomotor based on copper–platinum segmented nanobattery. J. Am. Chem. Soc. 133:20064–67 [Google Scholar]
  39. Pantarotto D, Browne WR, Feringa BL. 39.  2008. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem. Commun. 2008:1533–35 [Google Scholar]
  40. Mano N, Heller A. 40.  2005. Bioelectrochemical propulsion. J. Am. Chem. Soc. 127:11574–75 [Google Scholar]
  41. Kline TR, Paxton WF, Mallouk TE, Sen A. 41.  2005. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 44:744–46 [Google Scholar]
  42. Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A. 42.  2006. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128:14881–88 [Google Scholar]
  43. Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J. 43.  2010. Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1:36 [Google Scholar]
  44. Stock C, Heureux N, Browne WR, Feringa BL. 44.  2008. Autonomous movement of silica and glass micro-objects based on a catalytic molecular propulsion System. Chem. Eur. J. 14:3146–53 [Google Scholar]
  45. Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG. 45.  2009. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–92 [Google Scholar]
  46. Gao W, Sattayasamitsathit S, Orozco J, Wang J. 46.  2011. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133:11862–64 [Google Scholar]
  47. Pavlick RA, Sengupta S, McFadden T, Zhang H, Sen A. 47.  2011. A polymerization-powered motor. Angew. Chem. Int. Ed. 50:9374–77 [Google Scholar]
  48. Zhang L, Abbott JJ, Dong L, Peyer KE, Kratochvil BE. 48.  et al. 2009. Characterizing the swimming properties of artificial bacterial flagella. Nano Lett. 9:3663–67 [Google Scholar]
  49. Ghosh A, Fischer P. 49.  2009. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9:2243–45 [Google Scholar]
  50. Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregon A, Nelson BJ. 50.  2012. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24:811–16 [Google Scholar]
  51. Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J. 51.  2010. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132:14403–5 [Google Scholar]
  52. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J. 52.  2005. Microscopic artificial swimmers. Nature 437:862–65 [Google Scholar]
  53. Zhang L, Petit T, Lu Y, Kratochvil BE, Peyer KE. 53.  et al. 2010. Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. ACS Nano 4:6228–34 [Google Scholar]
  54. Tierno P, Golestanian R, Pagonabarraga I, Sagués F. 54.  2008. Magnetically actuated colloidal microswimmers. J. Phys. Chem. B 112:16525–28 [Google Scholar]
  55. Masoud H, Alexeev A. 55.  2010. Modeling magnetic microcapsules that crawl in microchannels. Soft Matter 6:794–99 [Google Scholar]
  56. Fischer P, Ghosh A. 56.  2011. Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3:557–63 [Google Scholar]
  57. Calvo-Marzal P, Sattayasamitsathit S, Balasubramanian S, Windmiller JR, Dao C, Wang J. 57.  2010. Propulsion of nanowire diodes. Chem. Commun. 46:1623–24 [Google Scholar]
  58. Hong Y, Diaz M, Córdova-Figueroa UM, Sen A. 58.  2010. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 20:1568–76 [Google Scholar]
  59. Liu M, Zentgraf T, Liu Y, Bartal G, Zhang X. 59.  2010. Light-driven nanoscale plasmonic motors. Nat. Nanotechnol. 5:570–73 [Google Scholar]
  60. Ibele M, Mallouk TE, Sen A. 60.  2009. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48:3308–12 [Google Scholar]
  61. Abid J-P, Frigoli M, Pansu R, Szeftel J, Zyss J. 61.  et al. 2011. Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium. Langmuir 27:7967–71 [Google Scholar]
  62. Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE. 62.  2014. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 126:3265–68 [Google Scholar]
  63. Ahmed S, Wang W, Mair LO, Fraleigh RD, Li S. 63.  et al. 2013. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29:16113–18 [Google Scholar]
  64. Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J. 64.  2012. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51:7519–22 [Google Scholar]
  65. Jiang HR, Yoshinaga N, Sano M. 65.  2010. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105:268302 [Google Scholar]
  66. Baraban L, Streubel R, Makarov D, Han L, Karnaushenko D. 66.  et al. 2012. Fuel-free locomotion of Janus motors: magnetically induced thermophoresis. ACS Nano 7:1360–67 [Google Scholar]
  67. Qian B, Montiel D, Bregulla A, Cichos F, Yang H. 67.  2013. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 4:1420–29 [Google Scholar]
  68. Murray R. 68.  2010. Challenges in environmental analytical chemistry. Anal. Chem. 82:1569–69 [Google Scholar]
  69. Pappas D, Wang K. 69.  2007. Cellular separations: a review of new challenges in analytical chemistry. Anal. Chim. Acta 601:26–35 [Google Scholar]
  70. Abbott JJ, Peyer KE, Lagomarsino MC, Zhang L, Dong L. 70.  et al. 2009. How should microrobots swim?. Int. J. Robot. Res. 28:1434–47 [Google Scholar]
  71. Purcell EM. 71.  1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  72. Kline TR, Iwata J, Lammert PE, Mallouk TE, Sen A, Velegol D. 72.  2006. Catalytically driven colloidal patterning and transport. J. Phys. Chem. B 110:24513–21 [Google Scholar]
  73. Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR. 73.  et al. 2006. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22:10451–56 [Google Scholar]
  74. Moran JL, Posner JD. 74.  2011. Electrokinetic locomotion due to reaction-induced charge auto-electrophoresis. J. Fluid Mech. 680:31–66 [Google Scholar]
  75. Yariv E. 75.  2010. Electrokinetic self-propulsion by inhomogeneous surface kinetics. Proc. R. Soc. A 467:1645–64 [Google Scholar]
  76. Kagan D, Balasubramanian S, Wang J. 76.  2011. Chemically triggered swarming of gold microparticles. Angew. Chem. Int. Ed. 50:503–6 [Google Scholar]
  77. Duan W, Liu R, Sen A. 77.  2013. Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 135:1280–83 [Google Scholar]
  78. Ebbens S, Tu MH, Howse JR, Golestanian R. 78.  2012. Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. Phys. Rev. E 85:020401(R) [Google Scholar]
  79. Wang W, Castro LA, Hoyos M, Mallouk TE. 79.  2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6:6122–32 [Google Scholar]
  80. Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F. 80.  et al. 2013. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7:9232–40 [Google Scholar]
  81. Nadal F, Lauga E. 81.  2014. Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Phys. Fluids 26:082001 [Google Scholar]
  82. Wilson DA, Nolte RJM, van Hest JCM. 82.  2012. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4:268–74 [Google Scholar]
  83. Manesh KM, Cardona M, Yuan R, Clark M, Kagan D. 83.  et al. 2010. Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano 4:1799–804 [Google Scholar]
  84. Gao W, Manesh KM, Hua J, Sattayasamitsathit S, Wang J. 84.  2011. Hybrid nanomotor: a catalytically/magnetically powered adaptive nanowire swimmer. Small 7:2047–51 [Google Scholar]
  85. Zhao G, Pumera M. 85.  2012. Magnetotactic artificial self-propelled nanojets. Langmuir 29:7411–15 [Google Scholar]
  86. Zhao G, Ambrosi A, Pumera M. 86.  2013. Self-propelled nanojets via template electrodeposition. Nanoscale 5:1319–24 [Google Scholar]
  87. Mirkovic T, Zacharia NS, Scholes GD, Ozin GA. 87.  2010. Fuel for thought: chemically powered nanomotors out-swim nature's flagellated bacteria. ACS Nano 4:1782–89 [Google Scholar]
  88. Brunner C, Wahnes C, Vogel V. 88.  2007. Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles. Lab Chip 7:1263–71 [Google Scholar]
  89. Soong RK, Bachand GD, Neves HP, Olkhovets AG, Craighead HG, Montemagno CD. 89.  2000. Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555–58 [Google Scholar]
  90. Orozco J, García-Gradilla V, D'Agostino M, Gao W, Cortés A, Wang J. 90.  2012. Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7:818–24 [Google Scholar]
  91. Muddana HS, Sengupta S, Mallouk TE, Sen A, Butler PJ. 91.  2010. Substrate catalysis enhances single-enzyme diffusion. J. Am. Chem. Soc. 132:2110–11 [Google Scholar]
  92. Sengupta S, Dey KK, Muddana HS, Tabouillot T, Ibele ME. 92.  et al. 2013. Enzyme molecules as nanomotors. J. Am. Chem. Soc. 135:1406–14 [Google Scholar]
  93. Sengupta S, Spiering MM, Dey KK, Duan W, Patra D. 93.  et al. 2014. DNA polymerase as a molecular motor and pump. ACS Nano 8:2410–18 [Google Scholar]
  94. Lauga E. 94.  2011. Enhanced diffusion by reciprocal swimming. Phys. Rev. Lett. 106:178101 [Google Scholar]
  95. Cressman A, Togashi Y, Mikhailov AS, Kapral R. 95.  2008. Mesoscale modeling of molecular machines: Cyclic dynamics and hydrodynamical fluctuations. Phys. Rev. E 77:050901 [Google Scholar]
  96. Iima M, Mikhailov AS. 96.  2009. Propulsion hydrodynamics of a butterfly micro-swimmer. EPL (Europhysics Letters) 85:44001 [Google Scholar]
  97. Golestanian R. 97.  2010. Synthetic mechanochemical molecular swimmer. Phys. Rev. Lett. 105:018103 [Google Scholar]
  98. Lee T-C, Alarcón-Correa M, Miksch C, Hahn K, Gibbs JG, Fischer P. 98.  2014. Self-propelling nanomotors in the presence of strong Brownian forces. Nano Lett. 14:2407–12 [Google Scholar]
  99. Peter HC, Raymond K. 99.  2014. Ångström-scale chemically powered motors. EPL 106:30004 [Google Scholar]
  100. Ibele ME, Wang Y, Kline TR, Mallouk TE, Sen A. 100.  2007. Hydrazine fuels for bimetallic catalytic microfluidic pumping. J. Am. Chem. Soc. 129:7762–63 [Google Scholar]
  101. Kline TR, Paxton WF, Wang Y, Velegol D, Mallouk TE, Sen A. 101.  2005. Catalytic micropumps: microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 127:17150–51 [Google Scholar]
  102. Jun I-K, Hess H. 102.  2010. A biomimetic, self-pumping membrane. Adv. Mater. 22:4823–25 [Google Scholar]
  103. McDermott JJ, Kar A, Daher M, Klara S, Wang G. 103.  et al. 2012. Self-generated diffusioosmotic flows from calcium carbonate micropumps. Langmuir 28:15491–97 [Google Scholar]
  104. Yadav V, Zhang H, Pavlick R, Sen A. 104.  2012. Triggered “on/off” micropumps and colloidal photodiode. J. Am. Chem. Soc. 134:15688–91 [Google Scholar]
  105. Sengupta S, Patra D, Rivera IO, Agrawal A, Dey KK. 105.  et al. 2014. Self-powered enzyme micropumps. Nat. Chem. 6:415–22 [Google Scholar]
  106. Zhang H, Yeung K, Robbins JS, Pavlick RA, Wu M. 106.  et al. 2012. Self-powered microscale pumps based on analyte-initiated depolymerization reactions. Angew. Chem. Int. Ed. 51:2400–4 [Google Scholar]
  107. Patra D, Zhang H, Sengupta S, Sen A. 107.  2013. Dual stimuli-responsive, rechargeable micropumps via “host-guest” interactions. ACS Nano 7:7674–79 [Google Scholar]
  108. Solovev AA, Sanchez S, Mei Y, Schmidt OG. 108.  2011. Tunable catalytic tubular micro-pumps operating at low concentrations of hydrogen peroxide. Phys. Chem. Chem. Phys. 13:10131–35 [Google Scholar]
  109. Bunea A-I, Pavel I-A, David S, Gáspár S. 109.  2015. Sensing based on the motion of enzyme-modified nanorods. Biosens. Bioelectron. 67:42–48 [Google Scholar]
  110. Demirok UK, Laocharoensuk R, Manesh KM, Wang J. 110.  2008. Ultrafast catalytic alloy nanomotors. Angew. Chem. Int. Ed. 47:9349–51 [Google Scholar]
  111. Yoshizumi Y, Date Y, Ohkubo K, Yokokawa M, Suzuki H. 111.  2013. Bimetallic micromotor autonomously movable in biofuels Presented at Micro Electro Mech. Sys. (MEMS), Inst. Electr. Electron. Eng. (IEEE), 26th, Seoul, S. Korea [Google Scholar]
  112. Gao W, Pei A, Dong R, Wang J. 112.  2014. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 136:2276–79 [Google Scholar]
  113. Sentic M, Loget G, Manojlovic D, Kuhn A, Sojic N. 113.  2012. Light-emitting electrochemical “swimmers.”. Angew. Chem. Int. Ed. 51:11284–88 [Google Scholar]
  114. Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM. 114.  et al. 2009. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131:12082–83 [Google Scholar]
  115. Zhao G, Sanchez S, Schmidt OG, Pumera M. 115.  2013. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale 5:2909–14 [Google Scholar]
  116. Zhao G, Wang H, Khezri B, Webster RD, Pumera M. 116.  2013. Influence of real-world environments on the motion of catalytic bubble-propelled micromotors. Lab Chip 13:2937–41 [Google Scholar]
  117. Moo JGS, Wang H, Zhao G, Pumera M. 117.  2014. Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water. Chem. Eur. J. 20:4292–96 [Google Scholar]
  118. DiLauro AM, Zhang H, Baker MS, Wong F, Sen A, Phillips ST. 118.  2013. Accessibility of responsive end-caps in films composed of stimuli-responsive, depolymerizable poly(phthalaldehydes). Macromolecules 46:7257–65 [Google Scholar]
  119. Baker MS, Yadav V, Sen A, Phillips ST. 119.  2013. A self-powered polymeric material that responds autonomously and continuously to fleeting stimuli. Angew. Chem. Int. Ed. 52:10295–99 [Google Scholar]
  120. DiLauro AM, Abbaspourrad A, Weitz DA, Phillips ST. 120.  2013. Stimuli-responsive core–shell microcapsules with tunable rates of release by using a depolymerizable poly(phthalaldehyde) membrane. Macromolecules 46:3309–13 [Google Scholar]
  121. Schmid KM, Jensen L, Phillips ST. 121.  2012. A self-immolative spacer that enables tunable controlled release of phenols under neutral conditions. J. Org. Chem. 77:4363–74 [Google Scholar]
  122. Nuñez SA, Yeung K, Fox NS, Phillips ST. 122.  2011. A structurally simple self-immolative reagent that provides three distinct, simultaneous responses per detection event. J. Org. Chem. 76:10099–113 [Google Scholar]
  123. Van Haastert PJ, Devreotes PN. 123.  2004. Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol. 5:626–34 [Google Scholar]
  124. Macnab RM, Koshland D. 124.  1972. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 69:2509–12 [Google Scholar]
  125. Berg HC, Brown DA. 125.  1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–4 [Google Scholar]
  126. Hong Y, Blackman NMK, Kopp ND, Sen A, Velegol D. 126.  2007. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99:178103 [Google Scholar]
  127. Baraban L, Harazim SM, Sanchez S, Schmidt OG. 127.  2013. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 52:5552–56 [Google Scholar]
  128. Duan W, Ibele M, Liu R, Sen A. 128.  2012. Motion analysis of light-powered autonomous silver chloride nanomotors. Eur. Phys. J. E 35:77–84 [Google Scholar]
  129. Solovev AA, Sanchez S, Schmidt OG. 129.  2013. Collective behaviour of self-propelled catalytic micromotors. Nanoscale 5:1284–93 [Google Scholar]
  130. Ibele ME, Lammert PE, Crespi VH, Sen A. 130.  2010. Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 4:4845–51 [Google Scholar]
  131. Yadav V, Freeman JD, Grinstaff M, Sen A. 131.  2013. Bone-crack detection, targeting, and repair using ion gradients. Angew. Chem. Int. Ed. 52:10997–1001 [Google Scholar]
  132. Arns S, Gibe R, Moreau A, Monzur Morshed M, Young RN. 132.  2012. Design and synthesis of novel bone-targeting dual-action pro-drugs for the treatment and reversal of osteoporosis. Biorg. Med. Chem. 20:2131–40 [Google Scholar]
  133. Zhang H, Duan W, Lu M, Zhao X, Shklyaev S. 133.  et al. 2014. Self-powered glucose-responsive micropumps. ACS Nano 8:8537–42 [Google Scholar]
  134. Chaturvedi N, Hong Y, Sen A, Velegol D. 134.  2010. Magnetic enhancement of phototaxing catalytic motors. Langmuir 26:6308–13 [Google Scholar]
  135. Solovev AA, Sanchez S, Pumera M, Mei YF, Schmidt OG. 135.  2010. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv. Funct. Mater. 20:2430–35 [Google Scholar]
  136. Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S. 136.  et al. 2010. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6:2741–47 [Google Scholar]
  137. Baraban L, Makarov D, Streubel R, Monch I, Grimm D. 137.  et al. 2012. Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. ACS Nano 6:3383–89 [Google Scholar]
  138. Zhao G, Wang H, Sanchez S, Schmidt OG, Pumera M. 138.  2013. Artificial micro-Cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles. Chem. Commun. 49:5147–49 [Google Scholar]
  139. Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A. 139.  2008. Catalytic motors for transport of colloidal cargo. Nano Lett. 8:1271–76 [Google Scholar]
  140. Wang W, Duan W, Sen A, Mallouk TE. 140.  2013. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proc. Natl. Acad. Sci. USA 110:17744–49 [Google Scholar]
  141. Gao W, Pei A, Feng X, Hennessy C, Wang J. 141.  2013. Organized self-assembly of Janus micromotors with hydrophobic hemispheres. J. Am. Chem. Soc. 135:998–1001 [Google Scholar]
  142. Guix M, Orozco J, Garcia M, Gao W, Sattayasamitsathit S. 142.  et al. 2012. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6:4445–51 [Google Scholar]
  143. Sanchez S, Solovev AA, Schulze S, Schmidt OG. 143.  2011. Controlled manipulation of multiple cells using catalytic microbots. Chem. Commun. 47:698–700 [Google Scholar]
  144. Kim S, Qiu F, Kim S, Ghanbari A, Moon C. 144.  et al. 2013. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25:5863–68 [Google Scholar]
  145. Sundararajan S, Sengupta S, Ibele ME, Sen A. 145.  2010. Drop-off of colloidal cargo transported by catalytic Pt–Au nanomotors via photochemical stimuli. Small 6:1479–82 [Google Scholar]
  146. Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig G-U, Wang J. 146.  2011. Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 11:2083–87 [Google Scholar]
  147. Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. 147.  2011. Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal. Chem. 83:7962–69 [Google Scholar]
  148. Balasubramanian S, Kagan D, Jack Hu C-M, Campuzano S, Lobo-Castañon MJ. 148.  et al. 2011. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50:4161–64 [Google Scholar]
  149. Campuzano S, Orozco J, Kagan D, Guix M, Gao W. 149.  et al. 2011. Bacterial isolation by lectin-modified microengines. Nano Lett. 12:396–401 [Google Scholar]
  150. Masaeli M, Sollier E, Amini H, Mao W, Camacho K. 150.  et al. 2012. Continuous inertial focusing and separation of particles by shape. Phys. Rev. X 2:031017 [Google Scholar]
  151. Ito Y, Shinomiya K. 151.  2001. A new continuous-flow cell separation method based on cell density: principle, apparatus, and preliminary application to separation of human buffy coat. J. Clin. Apheresis 16:186–91 [Google Scholar]
  152. Schägger H, von Jagow G. 152.  1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368–79 [Google Scholar]
  153. Ozin GA. 153.  2013. Channel crossing by a catalytic nanomotor. Chemcatchem 5:2798–801 [Google Scholar]
  154. Volpe G, Buttinoni I, Vogt D, Kummerer H-J, Bechinger C. 154.  2011. Microswimmers in patterned environments. Soft Matter 7:8810–15 [Google Scholar]
  155. Dey KK, Das S, Poyton MF, Sengupta S, Cremer PS, Sen A. 155.  2014. Chemotactic separation of enzymes. ACS Nano 8:11941–49 [Google Scholar]
  156. Sheehan PE, Whitman LJ. 156.  2005. Detection limits for nanoscale biosensors. Nano Lett. 5:803–7 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error