1932

Abstract

Since their advent in the early 1990s, microarray technologies have developed into a powerful and ubiquitous platform for biomolecular analysis. Microarrays consist of three major elements: the substrate upon which they are constructed, the chemistry employed to attach biomolecules, and the biomolecules themselves. Although glass substrates and silane-based attachment chemistries are used for the vast majority of current microarray platforms, these materials suffer from severe limitations in stability, due to hydrolysis of both the substrate material itself and of the silyl ether linkages employed for attachment. These limitations in stability compromise assay performance and render impossible many potential microarray applications. We describe here a suite of alternative carbon-based substrates and associated attachment chemistries for microarray fabrication. The substrates themselves, as well as the carbon-carbon bond-based attachment chemistries, offer greatly increased chemical stability, enabling a myriad of novel applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040146
2015-07-22
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040146.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040146&mimeType=html&fmt=ahah

Literature Cited

  1. Fodor S, Read J, Pirrung M, Stryer L, Lu A, Solas D. 1.  1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–73 [Google Scholar]
  2. Pease A, Solas D, Sullivan E, Cronin M, Holmes C, Fodor S. 2.  1994. Light-generated oligonucleotide arrays for rapid DNA-sequence analysis. Proc. Natl. Acad. Sci. USA 91:5022–26 [Google Scholar]
  3. Singh-Gasson S, Green R, Yue Y, Nelson C, Blattner F. 3.  et al. 1999. Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat. Biotechnol. 17:974–78 [Google Scholar]
  4. Hughes T, Mao M, Jones A, Burchard J, Marton M. 4.  et al. 2001. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19:342–47 [Google Scholar]
  5. Vegas A, Fuller J, Koehler A. 5.  2008. Small-molecule microarrays as tools in ligand discovery. Chem. Soc. Rev. 37:1385–94 [Google Scholar]
  6. Horlacher T, Seeberger P. 6.  2008. Carbohydrate arrays as tools for research and diagnostics. Chem. Soc. Rev. 37:1414–22 [Google Scholar]
  7. Paulson J, Blixit O, Collins B. 7.  2006. Sweet spot in functional glycomics. Nat. Chem. Biol. 2:238–48 [Google Scholar]
  8. Ribeiro J, Mahal L. 8.  2013. Dot by dot: analyzing the glycome using lectin microarrays. Curr. Opin. Chem. Biol. 17:827–31 [Google Scholar]
  9. Lee J, Magee D, Gaster R, LaBaer J, Wang S. 9.  2013. Emerging protein array technologies for proteomics. Expert Rev. Proteomics 10:65–75 [Google Scholar]
  10. Spurrier B, Honkanen P, Holway A, Kumamoto K, Terashima M. 10.  et al. 2008. Protein and lysate array technologies in cancer research. Biotechnol. Adv. 26:361–69 [Google Scholar]
  11. Phillips M, Lockett MR, Rodesch M, Shortreed M, Cerrina F, Smith L. 11.  2008. In situ oligonucleotide synthesis on carbon materials: stable substrates for microarray fabrication. Nucleic Acids Res. 36:e7 [Google Scholar]
  12. Radadia A, Stavis C, Carr R, Zeng H, King W. 12.  et al. 2011. Control of nanoscale environment to improve stability of immobilized proteins on diamond surfaces. Adv. Funct. Mater. 21:1040–50 [Google Scholar]
  13. Aissaoul N, Bergaoul L, Landoulsi J, Lambert J, Boujday S. 13.  2012. Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. Langmuir 28:656–65 [Google Scholar]
  14. Yang W, Auciello O, Butler J, Cai W, Carlisle J. 14.  et al. 2002. DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat. Mater. 1:253–57 [Google Scholar]
  15. Augenlicht L, Kobrin D. 15.  1982. Cloning and screening of sequences expressed in a mouse colon tumor. Cancer Res. 42:1088–93 [Google Scholar]
  16. McGall G, Barone A, Digglemann M, Fodor S, Gentalen E, Ngo N. 16.  1997. The efficiency of light-directed synthesis of DNA arrays on glass substrates. J. Am. Chem. Soc. 119:5081–90 [Google Scholar]
  17. Forsstrom B, Anxas B, Stengele K, Buhler J, Albert T. 17.  et al. 2014. Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol. Cell Proteomics 13:1585–97 [Google Scholar]
  18. Ramsay G. 18.  1998. DNA chips: state-of-the art. Nat. Biotechnol. 16:40–44 [Google Scholar]
  19. Love J, Estroff L, Kriebel J, Nuzzo R, Whitesides G. 19.  2005. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105:1103–70 [Google Scholar]
  20. Redeker E, Ta D, Cortens D, Billen B, Gudens W, Adriaensens P. 20.  2013. Protein engineering for directed immobilization. Bioconjugate Chem. 24:1761–77 [Google Scholar]
  21. Wong L, Khan F, Micklefield J. 21.  2009. Selective covalent protein immobilization: strategies and applications. Chem. Rev. 109:4025–53 [Google Scholar]
  22. Weisbrod S, Marx A. 22.  2008. Novel strategies for the site-specific covalent labeling of nucleic acids. Chem. Comm. 44:5675–85 [Google Scholar]
  23. Eritja R. 23.  2007. Solid-phase synthesis of modified oligonucleotides. Int. J. Pept. Res. Ther. 13:53–68 [Google Scholar]
  24. Larson B, Gillmor S, Lagally M. 24.  2004. Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Rev. Sci. Instrum. 75:832–36 [Google Scholar]
  25. LeProust E, Peck B, Spirin K, McCuen H, Moore B. 25.  et al. 2010. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res. 38:2522–40 [Google Scholar]
  26. Schlinke-Braun M, Couget J. 26.  2007. Expression profiling using affymetrix genechip probe arrays. Methods Mol. Biol. 366:13–40 [Google Scholar]
  27. Curtis C, Lynch A, Dunning M, Spiteri I, Marioni J. 27.  et al. 2009. The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genomics 10:1–23 [Google Scholar]
  28. Haraksingh R, Abyzov A, Gerstein M, Urban A, Snyder M. 28.  2011. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS ONE 6:e27859 [Google Scholar]
  29. Stryer L. 29.  1978. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47:819–46 [Google Scholar]
  30. Franssen-van Hal N, van der Putte P, Matysiak S, Kretschy N, Somoza M. 30.  2013. Optimized light-directed synthesis of aptamer microarrays. Anal. Chem. 85:5950–57 [Google Scholar]
  31. Epstein J, Biran I, Walt D. 31.  2002. Fluorescence-based nucleic acid detection and microarrays. Anal. Chim. Acta 469:3–36 [Google Scholar]
  32. Cho M, Oh S, Nie J, Stewart R, Eisenstein M. 32.  et al. 2013. Quantitative selection and parallel characterization of aptamers. Proc. Natl. Acad. Sci. USA 110:18460–65 [Google Scholar]
  33. Lubin A, Plaxco K. 33.  2010. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc. Chem. Res. 43:496–505 [Google Scholar]
  34. Lu M, Hall J, Shortreed M, Wang L, Berggren W. 34.  et al. 2002. Structure-specific DNA cleavage on surfaces. J. Am. Chem. Soc. 124:7924–31 [Google Scholar]
  35. Lu M, Knickerbocker T, Cai W, Yang W, Hamers R, Smith L. 35.  2004. Invasive cleavage reactions on DNA-modified diamond surfaces. Biopolymers 73:606–13 [Google Scholar]
  36. Abbas A, Linman M, Cheng Q. 36.  2011. New trends in instrumental design for surface plasmon resonance-based biosensors. Biosens. Bioelectron. 26:1815–24 [Google Scholar]
  37. Wark A, Corn R. 37.  2008. Advanced methods for SPR imaging biosensing. Handbook of Surface Plasmon Resonance R Schasfoort, A Tudors 246–74 Cambridge, UK: Royal Soc. Chem. [Google Scholar]
  38. Brockman J, Nelson B, Corn R. 38.  2000. Surface plasmon resonance imaging measurements of ultrathin organic films. Annu. Rev. Phys. Chem. 51:41–63 [Google Scholar]
  39. Huang Y, Hsu Y, Huang C. 39.  2007. A protein detection technique by using surface plasmon resonance (SPR) with rolling circle amplification (RCA) and nanogold-modified tags. Biosens. Bioelectron. 22:980–85 [Google Scholar]
  40. Li Y, Wark A, Lee H, Corn R. 40.  2006. Single nucleotide polymorphism genotyping by nanoparticle-enhanced SPR imaging measurements of surface ligation reactions. Anal. Chem. 78:3158–64 [Google Scholar]
  41. Sendroiu I, Gifford L, Luptak A, Corn R. 41.  2011. Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced SPR imaging. J. Am. Chem. Soc. 133:4271–73 [Google Scholar]
  42. Goodrich T, Lee H, Corn R. 42.  2004. Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids. Anal. Chem. 76:6173–78 [Google Scholar]
  43. Lee H, Li Y, Walker W, Corn R. 43.  2005. Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays. Anal. Chem. 77:5096–100 [Google Scholar]
  44. Buriak J. 44.  2002. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102:1271–308 [Google Scholar]
  45. Bansal A, Li X, Lauermann I, Lewis N, Weinber W. 45.  1996. Alkylation of Si surfaces using a two-step halogenation/Grignard route. J. Am. Chem. Soc. 118:7225–26 [Google Scholar]
  46. Hamers R. 46.  2008. Formation and characterization of organic monolayers on semiconductor surfaces. Annu. Rev. Anal. Chem. 1:707–36 [Google Scholar]
  47. Bent S. 47.  2002. Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surf. Sci. 500:879–903 [Google Scholar]
  48. Schoenfisch M, Pemberton J. 48.  1998. Air stability of alkanethiol self-assembled monolayers on silver and gold surfaces. J. Am. Chem. Soc. 120:4502–13 [Google Scholar]
  49. Horn A, Russell D, Shorthouse L, Simpson T. 49.  1996. Ageing of alkanethiol self-assembled monolayers. J. Chem. Soc. Faraday Trans. 92:4759–62 [Google Scholar]
  50. Hutt D, Leggett G. 50.  1996. Influence of adsorbate ordering on rates of UV photooxidation of self-assembled monolayers. J. Phys. Chem. 100:6657–62 [Google Scholar]
  51. Yang G, Amro N, Starkewolfe Z, Liu G. 51.  2004. Molecular-level approach to inhibit degradations of alkanethiol self-assembled monolayers in aqueous media. Langmuir 20:3995–4003 [Google Scholar]
  52. Baker S, Tse K, Hindin E, Nichols B, Clare T, Hamers R. 52.  2005. Covalent functionalization for biomolecular recognition on vertically aligned carbon nanofibers. Chem. Mater. 17:4971–78 [Google Scholar]
  53. Lee C, Baker S, Marcus M, Yang W, Eriksson M, Hamers R. 53.  2004. Electrically addressable biomolecular functionalization of carbon nanotube and carbon nanofiber electrodes. Nano Lett. 4:1713–16 [Google Scholar]
  54. Dekanski A, Stevanovic J, Stevanovic R, Nikolic B, Jovanovic V. 54.  2001. Glassy carbon electrodes: 1. Characterization and electrochemical activation. Carbon 39:1195–205 [Google Scholar]
  55. Butler J, Sumant A. 55.  2008. The CVD of nanodiamond materials. Chem. Vap. Deposition 14:145–60 [Google Scholar]
  56. Robertson J. 56.  2002. Diamond-like amorphous carbon. Mater. Sci. Eng. R 37:129–281 [Google Scholar]
  57. Peng X, Barber Z, Clyne T. 57.  2001. Surface roughness of diamond-like carbon films prepared using various techniques. Surf. Coat. Technol. 138:23–32 [Google Scholar]
  58. Sun B, Colavita PE, Kim H, Lockett M, Marcus MS. 58.  et al. 2006. Covalent photochemical functionalization of amorphous carbon thin films for integrated real-time biosensing. Langmuir 22:9598–605 [Google Scholar]
  59. Lockett M, Smith L. 59.  2009. Fabrication and characterization of DNA arrays prepared on carbon-on-metal substrates. Anal. Chem. 81:6429–37 [Google Scholar]
  60. Lockett M, Weibel S, Phillips M, Shortreed M, Sun B. 60.  et al. 2008. Carbon-on-metal films for surface plasmon resonance detection of DNA arrays. J. Am. Chem. Soc. 130:8611–13 [Google Scholar]
  61. Nichols B, Butler J, Russell J, Hamers R. 61.  2005. Photochemical functionalization of hydrogen-terminated diamond surfaces: A structural and mechanistic study. J. Phys. Chem. B 109:20938–47 [Google Scholar]
  62. Wang X, Landis E, Franking R, Hamers R. 62.  2010. Surface chemistry for stable and smart molecular and biomolecular interfaces via photochemical grafting of alkenes. Acc. Chem. Res. 43:1205–15 [Google Scholar]
  63. Colavita P, Sun B, Wang X, Hamers R. 63.  2009. Influence of surface termination and electronic structure on the photochemical grafting of alkenes to carbon surfaces. J. Phys. Chem. C 113:1526–35 [Google Scholar]
  64. Szunerits S, Boukherroub R. 64.  2008. Different strategies for functionalization of diamond surfaces. J. Solid State Electrochem. 12:1205–18 [Google Scholar]
  65. Barriere F, Downard A. 65.  2008. Covalent modification of graphitic carbons substrates by non-electrochemical methods. J. Solid State Electrochem. 12:1231–44 [Google Scholar]
  66. Szunerits S, Nebel C, Hamers R. 66.  2014. Surface functionalization and biological applications of CVD diamond. MRS Bull. 39:517–24 [Google Scholar]
  67. Lockett M, Smith L. 67.  2009. Attaching molecules to chlorinated and brominated amorphous carbon substrates via Grignard reactions. Langmuir 25:3340–43 [Google Scholar]
  68. Gooding J. 68.  2008. Advances in interfacial design sensors: aryl diazonium salts for electrochemical biosensors and for modifying carbon and metal electrodes. Electroanalysis 20:573–82 [Google Scholar]
  69. Clare T, Clare B, Nichols B, Abbott N, Hamers R. 69.  2005. Functional monolayers for improved resistance to protein adsorption: Oligo(etnylene glycol)-modified silicon and diamond surfaces. Langmuir 2005:14 [Google Scholar]
  70. Lockett M, Smith L. 70.  2010. The formation and stability of alkylthiol monolayers on carbon substrates. J. Phys. Chem. C 114:12635–41 [Google Scholar]
  71. Debela A, Ortiz M, Beni V, O'Sullivan C. 71.  2014. Facile electrochemical hydrogenation and chlorination of glassy carbon to produce highly reactive and uniform substrates for stable anchoring of thiolated molecules. Chem. Eur. J. 20:7646–54 [Google Scholar]
  72. Jayasundara D, Cullen R, Colavita P. 72.  2013. In situ and real time characterization of spontaneous grafting of aryldiazonium salts at carbon surfaces. Chem. Mater. 25:1144–52 [Google Scholar]
  73. Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi M. 73.  2011. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules, and nanoparticles to surfaces. Chem. Soc. Rev. 40:4143–66 [Google Scholar]
  74. McCreery R. 74.  2008. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108:2646–87 [Google Scholar]
  75. Strother T, Knickerbocker T, Russell J, Butler J, Smith L, Hamers R. 75.  2002. Photochemical functionalization of diamond films. Langmuir 18:968–71 [Google Scholar]
  76. Wang X, Colavita P, Streifer J, Butler J, Hamers R. 76.  2010. Photochemical grafting of alkenes onto carbon surfaces: identifying the roles of electrons and holes. J. Phys. Chem. C 114:4067–74 [Google Scholar]
  77. Colavita P, Sun B, Tse K, Hamers R. 77.  2007. Photochemical grafting of n-alkenes onto carbon surfaces: the role of photoelectron ejection. J. Am. Chem. Soc. 129:13554–65 [Google Scholar]
  78. Chen S, Phillips M, Cerrina F, Smith L. 78.  2009. Controlling oligonucleotide surface density in light-directed array fabrication. Langmuir 25:6570–75 [Google Scholar]
  79. Lockett M, Carlisle J, Le D, Smith L. 79.  2009. Acyl chloride-modified amorphous carbon substrates for the attachment of alcohol-, thiol-, and amine-containing molecules. Langmuir 25:5120–26 [Google Scholar]
  80. Lockett M, Shortreed M, Smith L. 80.  2008. Aldehyde-terminated amorphous carbon substrates for the fabrication of biomolecule arrays. Langmuir 24:9198–203 [Google Scholar]
  81. Lockett M, Smith L. 81.  2010. Halogenation of carbon substrates for increased reactivity with alkenes. Langmuir 26:16642–46 [Google Scholar]
  82. Dubois L, Nuzzo R. 82.  1992. Synthesis, structure, and properties of model organic surfaces. Annu. Rev. Phys. Chem. 43:437–63 [Google Scholar]
  83. Mrksich M. 83.  2008. Mass spectrometry of self-assembled monolayers: a new tool for molecular surface science. ACS Nano 2:7–18 [Google Scholar]
  84. Claridge S, Liao W, Thomas J, Zhao Y, Cao H. 84.  et al. 2013. From the bottom up: dimensional control and characterization in molecular monolayers. Chem. Soc. Rev. 42:2725–45 [Google Scholar]
  85. Wen Y, Liu Y, Guo Y, Yu G, Hu W. 85.  2011. Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. Chem. Rev. 111:3358–406 [Google Scholar]
  86. Knickerbocker T, Strother T, Schwartz M, Russell J, Butler J. 86.  et al. 2003. DNA-modified diamond surfaces. Langmuir 19:1938–42 [Google Scholar]
  87. Sun B, Colavita P, Kim H, Lockett M, Marcus M. 87.  et al. 2006. Covalent photochemical functionalization of amorphous carbon thin films for integrated real-time biosensing. Langmuir 22:9598–605 [Google Scholar]
  88. Stavis C, Clare T, Butler J, Radadia A, Carr R. 88.  et al. 2011. Surface functionalization of thin-film diamond for highly stable and selective biological interfaces. Proc. Natl. Acad. Sci. USA 180:983–88 [Google Scholar]
  89. Yang W, Hamers R. 89.  2004. Fabrication and characterization of a biologically sensitive field-effect transistor using a nanocrystalline diamond film. Appl. Phys. Lett. 17:4971–78 [Google Scholar]
  90. Brockman J, Frutos A, Corn R. 90.  1999. A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging. J. Am. Chem. Soc. 121:8044–51 [Google Scholar]
  91. Carey F, Sundberg R. 91.  2007. Cycloaddition of carbonyl compounds and alkenes. Advanced Organic Chemistry, Part A: Structure and Mechanisms1116–24 New York: Springer [Google Scholar]
  92. Chen S, Smith L. 92.  2009. Photopatterned thiol surfaces for biomolecule immobilization. Langmuir 25:12275–82 [Google Scholar]
  93. Mandir J, Lockett M, Phillips M, Allawi H, Lyamichev V, Smith L. 93.  2009. Rapid determination of RNA accessible sites by surface plasmon resonance detection of hybridization to DNA arrays. Anal. Chem. 81:8949–56 [Google Scholar]
  94. Wu C, Lockett M, Smith L. 94.  2012. RNA-mediated gene assembly from DNA arrays. Angew. Chem. Int. Ed. Engl. 51:4628–32 [Google Scholar]
  95. Peterson A, Heaton R, Georgiadis R. 95.  2001. The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29:5163–68 [Google Scholar]
  96. Rao A, Grainger D. 96.  2014. Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomater. Sci. 2:436–71 [Google Scholar]
  97. Gao Y, Wolf L, Georgiadis R. 97.  2006. Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison. Nucleic Acids Res. 34:3370–77 [Google Scholar]
  98. Lockett M, Phillips M, Jarecki J, Peelen D, Smith L. 98.  2008. A tetrafluorophenyl activated ester self-assembled monolayer for the immobilization of amine-modified oligonucleotides. Langmuir 24:69–75 [Google Scholar]
  99. Heinrich K, Wolfer J, Hong D, LeBlanc M, Sussman M. 99.  2012. DNA millichips as a low-cost platform for gene expression analysis. Plant Physiol. 159:548–57 [Google Scholar]
  100. Hall J, Eis P, Law M, Reynaldo L, Prudent J. 100.  et al. 2000. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification method. Proc. Natl. Acad. Sci. USA 97:8272–77 [Google Scholar]
  101. Cai W, Peck J, van der Weide D, Hamers R. 101.  2004. Direct electrical detection of hybridization at DNA-modified silicon surfaces. Biosens. Bioelectron. 19:1013–19 [Google Scholar]
  102. Weeks K, Mauger D. 102.  2011. Exploring RNA structural codes with SHAPE chemistry. Acc. Chem. Res. 44:1280–91 [Google Scholar]
  103. Rinnenthal J, Buck J, Ferner J, Wacker A, Furtig B, Schwalbe H. 103.  2011. Mapping the landscape of RNA dynamics with NMR spectroscopy. Acc. Chem. Res. 44:1292–301 [Google Scholar]
  104. Zuker M. 104.  1989. Of finding all suboptimal foldings of an RNA molecule. Science 244:48–52 [Google Scholar]
  105. Zuker M. 105.  2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406–15 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040146
Loading
/content/journals/10.1146/annurev-anchem-071114-040146
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error