Glycosylation on proteins adds complexity and versatility to these biologically vital macromolecules. To unveil the structure-function relationship of glycoproteins, glycopeptide-centric analysis using mass spectrometry (MS) has become a method of choice because the glycan is preserved on the glycosylation site and site-specific glycosylation profiles of proteins can be readily determined. However, glycopeptide analysis is still challenging given that glycopeptides are usually low in abundance and relatively difficult to detect and the resulting data require expertise to analyze. Viewing the urgent need to address these challenges, emerging methods and techniques are being developed with the goal of analyzing glycopeptides in a sensitive, comprehensive, and high-throughput manner. In this review, we discuss recent advances in glycoprotein and glycopeptide analysis, with topics covering sample preparation, analytical separation, MS and tandem MS techniques, as well as data interpretation and automation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Cummings RD, Pierce JM. 1.  2014. The challenge and promise of glycomics. Chem. Biol. 21:1–15 [Google Scholar]
  2. Ohtsubo K, Marth JD. 2.  2006. Glycosylation in cellular mechanisms of health and disease. Cell 126:855–67 [Google Scholar]
  3. Aebi M. 3.  2013. N-linked protein glycosylation in the ER. Biochim. Biophys. Acta 1833:2430–37 [Google Scholar]
  4. Khoury GA, Baliban RC, Floudas CA. 4.  2011. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep. 1:1–5 [Google Scholar]
  5. Haltiwanger RS, Lowe JB. 5.  2004. Role of glycosylation in development. Annu. Rev. Biochem. 73:491–537 [Google Scholar]
  6. Novotny MV, Alley WR. 6.  2013. Recent trends in analytical and structural glycobiology. Curr. Opin. Chem. Biol. 17:832–40 [Google Scholar]
  7. Dodds ED. 7.  2012. Gas-phase dissociation of glycosylated peptide ions. Mass Spectrom. Rev. 31:666–82 [Google Scholar]
  8. Wolfert MA, Boons GJ. 8.  2013. Adaptive immune activation: Glycosylation does matter. Nat. Chem. Biol. 9:776–84 [Google Scholar]
  9. Christiansen MN, Chik J, Lee L, Anugraham M, Abrahams JL, Packer NH. 9.  2014. Cell surface protein glycosylation in cancer. Proteomics 14:525–46 [Google Scholar]
  10. Bailey UM, Jamaluddin MF, Schulz BL. 10.  2012. Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins. J. Proteome Res. 11:5376–83 [Google Scholar]
  11. Beck A, Sanglier-Cianferani S, Van Dorsselaer A. 11.  2012. Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal. Chem. 84:4637–46 [Google Scholar]
  12. Apweiler R, Hermjakob H, Sharon N. 12.  1999. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 14734–8 [Google Scholar]
  13. Matsui T, Takita E, Sato T, Kinjo S, Aizawa M. 13.  et al. 2011. N-glycosylation at noncanonical Asn-X-Cys sequences in plant cells. Glycobiology 21:994–99 [Google Scholar]
  14. Zauner G, Kozak RP, Gardner RA, Fernandes DL, Deelder AM, Wuhrer M. 14.  2012. Protein O-glycosylation analysis. Biol. Chem. 393:687–708 [Google Scholar]
  15. Jensen PH, Kolarich D, Packer NH. 15.  2010. Mucin-type O-glycosylation—putting the pieces together. FEBS J. 277:81–94 [Google Scholar]
  16. Yi W, Clark PM, Mason DE, Keenan MC, Hill C. 16.  et al. 2012. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337:975–80 [Google Scholar]
  17. Zachara NE, Molina H, Wong KY, Pandey A, Hart GW. 17.  2011. The dynamic stress-induced “O-GlcNAc-ome” highlights functions for O-GlcNAc in regulating DNA damage/repair and other cellular pathways. Amino Acids 40:793–808 [Google Scholar]
  18. Alley WR, Novotny MV. 18.  2013. Structural glycomic analyses at high sensitivity: a decade of progress. Annu. Rev. Anal. Chem. 6:237–65 [Google Scholar]
  19. Leymarie N, Zaia J. 19.  2012. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal. Chem. 84:3040–48 [Google Scholar]
  20. Rakus JF, Mahal LK. 20.  2011. New technologies for glycomic analysis: toward a systematic understanding of the glycome. Annu. Rev. Anal. Chem. 4:367–92 [Google Scholar]
  21. Suzuki S. 21.  2013. Recent developments in liquid chromatography and capillary electrophoresis for the analysis of glycoprotein glycans. Anal. Sci. 29:1117–28 [Google Scholar]
  22. Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. 22.  2014. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86:196–212 [Google Scholar]
  23. Ongay S, Boichenko A, Govorukhina N, Bischoff R. 23.  2012. Glycopeptide enrichment and separation for protein glycosylation analysis. J. Sep. Sci. 35:2341–72 [Google Scholar]
  24. Alley WR, Mann BF, Novotny MV. 24.  2013. High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem. Rev. 113:2668–732 [Google Scholar]
  25. Ruiz-May E, Hucko S, Howe KJ, Zhang S, Sherwood RW. 25.  et al. 2014. A comparative study of lectin affinity based plant N-glycoproteome profiling using tomato fruit as a model. Mol. Cell Proteomics 13:566–79 [Google Scholar]
  26. Gbormittah FO, Haab BB, Partyka K, Garcia-Ott C, Hancapie M, Hancock WS. 26.  2014. Characterization of glycoproteins in pancreatic cyst fluid using a high-performance multiple lectin affinity chromatography platform. J. Proteome Res. 13:289–99 [Google Scholar]
  27. Kullolli M, Hancock WS, Hincapie M. 27.  2010. Automated platform for fractionation of human plasma glycoproteome in clinical proteomics. Anal. Chem. 82:115–20 [Google Scholar]
  28. Plavina T, Wakshull E, Hancock WS, Hincapie M. 28.  2007. Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J. Proteome Res. 6:662–71 [Google Scholar]
  29. Darula Z, Medzihradszky KF. 29.  2009. Affinity enrichment and characterization of mucin core-1 type glycopeptides from bovine serum. Mol. Cell Proteomics 8:2515–26 [Google Scholar]
  30. Darula Z, Sherman J, Medzihradszky KF. 30.  2012. How to dig deeper? Improved enrichment methods for mucin core-1 type glycopeptides. Mol. Cell Proteomics 11:1–10 [Google Scholar]
  31. Drake PM, Schiling B, Niles RK, Prakobphol A, Li BS. 31.  et al. 2012. Lectin chromatography/mass spectrometry discovery workflow identifies putative biomarkers of aggressive breast cancers. J. Proteome Res. 11:2508–20 [Google Scholar]
  32. Drake PM, Schilling B, Niles RK, Braten M, Johansen E. 32.  et al. 2011. A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma. Anal. Biochem. 408:71–85 [Google Scholar]
  33. Golka K, Wiese A. 33.  2004. Carbohydrate-deficient transferrin (CDT): a biomarker for long-term alcohol consumption. J. Toxicol. Env. Health B 7:319–37 [Google Scholar]
  34. Heywood WE, Mills P, Grunewald S, Worthington V, Jaeken J. 34.  et al. 2013. A new method for the rapid diagnosis of protein N-linked congenital disorders of glycosylation. J. Proteome Res. 12:3471–79 [Google Scholar]
  35. Barroso A, Gimenez E, Benavente F, Barbosa J, Sanz-Nebot V. 35.  2013. Analysis of human transferrin glycopeptides by capillary electrophoresis and capillary liquid chromatography-mass spectrometry. Application to diagnosis of alcohol dependence. Anal. Chim. Acta 804:167–75 [Google Scholar]
  36. Chen CC, Su WC, Huang BY, Chen YJ, Tai HC, Obena RP. 36.  2014. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 139:688–704 [Google Scholar]
  37. Buszewski B, Noga S. 37.  2012. Hydrophilic interaction liquid chromatography (HILIC): a powerful separation technique. Anal. Bioanal. Chem. 402:231–47 [Google Scholar]
  38. Bodnar ED, Perreault H. 38.  2013. Qualitative and quantitative assessment on the use of magnetic nanoparticles for glycopeptide enrichment. Anal. Chem. 85:10895–903 [Google Scholar]
  39. Di Palma S, Boersema PJ, Heck AJR, Mohammed S. 39.  2011. Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC and ZIC-cHILIC) provide high resolution separation and increase sensitivity in proteome analysis. Anal. Chem. 83:3440–47 [Google Scholar]
  40. Boersema PJ, Mohammed S, Heck AJR. 40.  2008. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal. Bioanal. Chem. 391:151–59 [Google Scholar]
  41. Zauner G, Deelder AM, Wuhrer M. 41.  2011. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 32:3456–66 [Google Scholar]
  42. Li HY, Liu Z. 42.  2012. Recent advances in monolithic column-based boronate-affinity chromatography. TrAC 37:148–61 [Google Scholar]
  43. Wang YL, Liu MB, Xie LQ, Fang CY, Xiong HM, Lu HJ. 43.  2014. Highly efficient enrichment method for glycopeptide analyses: using specific and nonspecific nanoparticles synergistically. Anal. Chem. 86:2057–64 [Google Scholar]
  44. Chen R, Jiang XN, Sun DG, Han GH, Wang FJ. 44.  et al. 2009. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome Res. 8:651–61 [Google Scholar]
  45. Klement E, Lipinszki Z, Kupihar Z, Udvardy A, Medzihradszky KF. 45.  2010. Enrichment of O-GlcNAc modified proteins by the periodate oxidation-hydrazide resin capture approach. J. Proteome Res. 9:2200–6 [Google Scholar]
  46. Rebecchi KR, Go EP, Xu L, Woodin CL, Mure M, Desaire H. 46.  2011. A general protease digestion procedure for optimal protein sequence coverage and post-translational modifications analysis of recombinant glycoproteins: application to the characterization of human lysyl oxidase-like 2 glycosylation. Anal. Chem. 83:8484–91 [Google Scholar]
  47. Manri N, Satake H, Kaneko A, Hirabayashi A, Baba T, Sakamoto T. 47.  2013. Glycopeptide identification using liquid-chromatography-compatible hot electron capture dissociation in a radio-frequency-quadrupole ion trap. Anal. Chem. 85:2056–63 [Google Scholar]
  48. Gimenez E, Ramos-Hernan R, Benavente F, Barbosa J, Sanz-Nebot V. 48.  2012. Analysis of recombinant human erythropoietin glycopeptides by capillary electrophoresis electrospray-time of flight-mass spectrometry. Anal. Chim. Acta 709:81–90 [Google Scholar]
  49. Ma JF, Zhang LH, Liang Z, Shan YC, Zhang YK. 49.  2011. Immobilized enzyme reactors in proteomics. TrAC 30:691–702 [Google Scholar]
  50. Wang CF, Gao MX, Zhang P, Zhang XM. 50.  2014. Efficient proteolysis of glycoprotein using a hydrophilic immobilized enzyme reactor coupled with MALDI-QIT-TOF-MS detection and mu HPLC analysis. Chromatographia 77:413–18 [Google Scholar]
  51. Ghosh D, Beavis RC, Wilkins JA. 51.  2008. The identification and characterization of membranome components. J. Proteome Res. 7:1572–83 [Google Scholar]
  52. Nwosu CC, Huang JC, Aldredge DL, Strum JS, Hua S. 52.  et al. 2013. In-gel nonspecific proteolysis for elucidating glycoproteins: a method for targeted protein-specific glycosylation analysis in complex protein mixtures. Anal. Chem. 85:956–63 [Google Scholar]
  53. Go EP, Hewawasam G, Liao HX, Chen HY, Ping LH. 53.  et al. 2011. Characterization of glycosylation profiles of HIV-1 transmitted/founder envelopes by mass spectrometry. J. Virol. 85:8270–84 [Google Scholar]
  54. Tarentino AL, Plummer TH. 54.  1994. Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 230:44–57 [Google Scholar]
  55. Desaire H. 55.  2013. Glycopeptide analysis, recent developments and applications. Mol. Cell Proteomics 12:893–901 [Google Scholar]
  56. Wang H, Wong CH, Chin A, Taguchi A, Taylor A. 56.  et al. 2011. Integrated mass spectrometry-based analysis of plasma glycoproteins and their glycan modifications. Nat. Protoc. 6:253–69 [Google Scholar]
  57. Parker BL, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR. 57.  et al. 2013. Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J. Proteome Res. 12:5791–800 [Google Scholar]
  58. West C, Elfakir C, Lafosse M. 58.  2010. Porous graphitic carbon: a versatile stationary phase for liquid chromatography. J. Chromatogr. A 1217:3201–16 [Google Scholar]
  59. Nwosu CC, Seipert RR, Strum JS, Hua SS, An HJ. 59.  et al. 2011. Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures. J. Proteome Res. 10:2612–24 [Google Scholar]
  60. Hua S, Nwosu CC, Strum JS, Seipert RR, An HJ. 60.  et al. 2012. Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal. Bioanal. Chem. 403:1291–302 [Google Scholar]
  61. Ou JJ, Lin H, Zhang ZB, Huang G, Dong J, Zou HF. 61.  2013. Recent advances in preparation and application of hybrid organic-silica monolithic capillary columns. Electrophoresis 34:126–40 [Google Scholar]
  62. Yue GH, Luo QZ, Zhang J, Wu SL, Karger BL. 62.  2007. Ultratrace LC/MS proteomic analysis using 10-μm-i.d. porous layer open tubular poly(styrene-divinylbenzene) capillary columns. Anal. Chem. 79:938–46 [Google Scholar]
  63. Luo QZ, Rejtar T, Wu SL, Karger BL. 63.  2009. Hydrophilic interaction 10 μm ID porous layer open tubular columns for ultratrace glycan analysis by liquid chromatography–mass spectrometry. J. Chromatogr. A 12161223–31 [Google Scholar]
  64. Wang DD, Hincapie M, Rejtar T, Karger BL. 64.  2011. Ultrasensitive characterization of site-specific glycosylation of affinity-purified haptoglobin from lung cancer patient plasma using 10 μm i.d. porous layer open tubular liquid chromatography-linear ion trap collision-induced dissociation/electron transfer dissociation mass spectrometry. Anal. Chem. 83:2029–37 [Google Scholar]
  65. Malerod H, Rogeberg M, Tanaka N, Greibrokk T, Lundanes E. 65.  2013. Large volume injection of aqueous peptide samples on a monolithic silica based zwitterionic-hydrophilic interaction liquid chromatography system for characterization of posttranslational modifications. J. Chromatogr. A 1317:129–37 [Google Scholar]
  66. Wuhrer M, Catalina MI, Deelder AM, Hokke CH. 66.  2007. Glycoproteomics based on tandem mass spectrometry of glycopeptides. J. Chromatogr. B 849:115–28 [Google Scholar]
  67. Goldberg D, Bern M, Parry S, Sutton-Smith M, Panico M. 67.  et al. 2007. Automated N-glycopeptide identification using a combination of single- and tandem-MS. J. Proteome Res. 6:3995–4005 [Google Scholar]
  68. Desaire H, Hua D. 68.  2009. When can glycopeptides be assigned based solely on high-resolution mass spectrometry data?. Int. J. Mass Spectrom. 287:21–26 [Google Scholar]
  69. Dalpathado DS, Desaire H. 69.  2008. Glycopeptide analysis by mass spectrometry. Analyst 133:731–38 [Google Scholar]
  70. El-Aneed A, Cohen A, Banoub J. 70.  2009. Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl. Spectrosc. Rev. 44:210–30 [Google Scholar]
  71. Wuhrer M, de Boer AR, Deelder AM. 71.  2009. Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28:192–206 [Google Scholar]
  72. Watanabe M, Terasawa K, Kaneshiro K, Uchimura H, Yamamoto R. 72.  et al. 2013. Improvement of mass spectrometry analysis of glycoproteins by MALDI-MS using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid. Anal. Bioanal. Chem. 405:4289–93 [Google Scholar]
  73. Bakovic MP, Selman MHJ, Hoffmann M, Rudan I, Campbell H. 73.  et al. 2013. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J. Proteome Res. 12:821–31 [Google Scholar]
  74. Seipert RR, Dodds ED, Clowers BH, Beecroft SM, German JB, Lebrilla CB. 74.  2008. Factors that influence fragmentation behavior of N-linked glycopeptide ions. Anal. Chem. 80:3684–92 [Google Scholar]
  75. Pan S, Chen R, Aebersold R, Brentnall TA. 75.  2011. Mass spectrometry based glycoproteomics: from a proteomics perspective. Mol. Cell Proteomics 10:1–14 [Google Scholar]
  76. Huddleston MJ, Bean MF, Carr SA. 76.  1993. Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal. Chem. 65:877–84 [Google Scholar]
  77. Pompach P, Chandler KB, Lan R, Edwards N, Goldman R. 77.  2012. Semi-automated identification of N-glycopeptides by hydrophilic interaction chromatography, nano-reverse-phase LC-MS/MS, and glycan database search. J. Proteome Res. 11:1728–40 [Google Scholar]
  78. Sandra K, Devreese B, Van Beeumen J, Stals I, Claeyssens M. 78.  2004. The Q-trap mass spectrometer, a novel tool in the study of protein glycosylation. J. Am. Soc. Mass Spectrom. 15:413–23 [Google Scholar]
  79. Whelan SA, Lu M, He JB, Yan WH, Saxton RE. 79.  et al. 2009. Mass spectrometry (LC-MS/MS) site-mapping of N-glycosylated membrane proteins for breast cancer biomarkers. J. Proteome Res. 8:4151–60 [Google Scholar]
  80. Zhu Z, Go E, Desaire H. 80.  2014. Absolute quantitation of glycosylation site occupancy using isotopically labeled standards and LC-MS. J. Am. Soc. Mass Spectrom. 25:1012–17 [Google Scholar]
  81. Kolli V, Dodds ED. 81.  2014. Energy-resolved collision-induced dissociation pathways of model N-linked glycopeptides: implications for capturing glycan connectivity and peptide sequence in a single experiment. Analyst 139:2144–53 [Google Scholar]
  82. Vekey K, Ozohanics O, Toth E, Jeko A, Revesz A. 82.  et al. 2013. Fragmentation characteristics of glycopeptides. Int. J. Mass Spectrom. 345:71–79 [Google Scholar]
  83. Singh C, Zampronio CG, Creese AJ, Cooper HJ. 83.  2012. Higher energy collision dissociation (HCD) product ion-triggered electron transfer dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J. Proteome Res. 11:4517–25 [Google Scholar]
  84. Hart-Smith G, Raftery MJ. 84.  2012. Detection and characterization of low abundance glycopeptides via higher-energy C-trap dissociation and Orbitrap mass analysis. J. Am. Soc. Mass Spectrom. 23:124–40 [Google Scholar]
  85. Segu ZM, Mechref Y. 85.  2010. Characterizing protein glycosylation sites through higher-energy C-trap dissociation. Rapid Commun. Mass Spectrom. 24:1217–25 [Google Scholar]
  86. Bakhtiar R, Guan ZQ. 86.  2005. Electron capture dissociation mass spectrometry in characterization of post-translational modifications. Biochem. Biophys. Res. Commun. 334:1–8 [Google Scholar]
  87. Kim MS, Pandey A. 87.  2012. Electron transfer dissociation mass spectrometry in proteomics. Proteomics 12:530–42 [Google Scholar]
  88. Yin XK, Bern M, Xing QR, Ho J, Viner R, Mayr M. 88.  2013. Glycoproteomic analysis of the secretome of human endothelial cells. Mol. Cell Proteomics 12:956–78 [Google Scholar]
  89. Mechref Y. 89.  2012. Use of CID/ETD mass spectrometry to analyze glycopeptides. Curr. Protoc. Protein Sci. 68:1–11 [Google Scholar]
  90. Halim A, Ruetschi U, Larson G, Nilsson J. 90.  2013. LC-MS/MS characterization of O-glycosylation sites and glycan structures of human cerebrospinal fluid glycoproteins. J. Proteome Res. 12:573–84 [Google Scholar]
  91. Go EP, Liao HX, Alam SM, Hua D, Haynes BF, Desaire H. 91.  2013. Characterization of host-cell specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J. Proteome Res. 12:1223–34 [Google Scholar]
  92. Cooper HJ, Hakansson K, Marshall AG. 92.  2005. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 24:201–22 [Google Scholar]
  93. Fornelli L, Schmid AW, Grasso L, Vogel H, Tsybin YO. 93.  2011. Deamidation and transamidation of substance P by tissue transglutaminase revealed by electron-capture dissociation Fourier transform mass spectrometry. Chem.-Eur. J. 17:486–97 [Google Scholar]
  94. Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA. 94.  et al. 2012. Naturally occurring structural isomers in serum IgA1 O-glycosylation. J. Proteome Res. 11:692–702 [Google Scholar]
  95. Trinidad JC, Schoepfer R, Burlingame AL, Medzihradszky KF. 95.  2013. N- and O-glycosylation in the murine synaptosome. Mol. Cell Proteomics 12:3474–88 [Google Scholar]
  96. Alley WR, Mechref Y, Novotny MV. 96.  2009. Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun. Mass Spectrom. 23:161–70 [Google Scholar]
  97. Zhu Z, Hua D, Clark DF, Go EP, Desaire H. 97.  2013. GlycoPep Detector: a tool for assigning mass spectrometry data of N-linked glycopeptides on the basis of their electron transfer dissociation spectra. Anal. Chem. 85:5023–32 [Google Scholar]
  98. Williams JP, Pringle S, Richardson K, Gethings L, Vissers JPC. 98.  et al. 2013. Characterisation of glycoproteins using a quadrupole time-of-flight mass spectrometer configured for electron transfer dissociation. Rapid Commun. Mass Spectrom. 27:2383–90 [Google Scholar]
  99. Adamson JT, Hakansson K. 99.  2006. Infrared multiphoton dissociation and electron capture dissociation of high-mannose type glycopeptides. J. Proteome Res. 5:493–501 [Google Scholar]
  100. Hakansson K, Chalmers MJ, Quinn JP, McFarland MA, Hendrickson CL, Marshall AG. 100.  2003. Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. Anal. Chem. 75:3256–62 [Google Scholar]
  101. Madsen JA, Boutz DR, Brodbelt JS. 101.  2010. Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows. J. Proteome Res. 9:4205–14 [Google Scholar]
  102. Madsen JA, Ko BJ, Xu H, Iwashkiw JA, Robotham SA. 102.  et al. 2013. Concurrent automated sequencing of the glycan and peptide portions of O-linked glycopeptide anions by ultraviolet photodissociation mass spectrometry. Anal. Chem. 85:9253–61 [Google Scholar]
  103. Zhang L, Reilly JP. 103.  2009. Extracting both peptide sequence and glycan structural information by 157 nm photodissociation of N-linked glycopeptides. J. Proteome Res. 8:734–42 [Google Scholar]
  104. Zhong YY, Hyung SJ, Ruotolo BT. 104.  2012. Ion mobility-mass spectrometry for structural proteomics. Expert Rev. Proteomics 9:47–58 [Google Scholar]
  105. Damen CWN, Chen WB, Chakraborty AB, van Oosterhout M, Mazzeo JR. 105.  et al. 2009. Electrospray ionization quadrupole ion mobility time-of-flight mass spectrometry as a tool to distinguish the lot-to-lot heterogeneity in N-glycosylation profile of the therapeutic monoclonal antibody trastuzumab. J. Am. Soc. Mass Spectrom. 20:2021–33 [Google Scholar]
  106. Creese AJ, Cooper HJ. 106.  2012. Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal. Chem. 84:2597–601 [Google Scholar]
  107. Woodin CL, Maxon M, Desaire H. 107.  2013. Software for automated interpretation of mass spectrometry data from glycans and glycopeptides. Analyst 138:2793–803 [Google Scholar]
  108. Li F, Glinskii OV, Glinsky VV. 108.  2013. Glycobioinformatics: current strategies and tools for data mining in MS-based glycoproteomics. Proteomics 13:341–54 [Google Scholar]
  109. Wu Y, Mechref Y, Klouckova I, Mayampurath A, Novotny MV, Tang HX. 109.  2010. Mapping site-specific protein N-glycosylations through liquid chromatography/mass spectrometry and targeted tandem mass spectrometry. Rapid Commun. Mass Spectrom. 24:965–72 [Google Scholar]
  110. Wu SW, Liang SY, Pu TH, Chang FY, Khoo KH. 110.  2013. Sweet-Heart: an integrated suite of enabling computational tools for automated MS2/MS3 sequencing and identification of glycopeptides. J. Proteomics 84:1–16 [Google Scholar]
  111. Chandler KB, Pompach P, Goldman R, Edwards N. 111.  2013. Exploring site-specific N-glycosylation microheterogeneity of haptoglobin using glycopeptide CID tandem mass spectra and glycan database search. J. Proteome Res. 12:3652–66 [Google Scholar]
  112. Woodin CL, Hua D, Maxon M, Rebecchi KR, Go EP, Desaire H. 112.  2012. GlycoPep grader: a web-based utility for assigning the composition of N-linked glycopeptides. Anal. Chem. 84:4821–29 [Google Scholar]
  113. Strum JS, Nwosu CC, Hua S, Kronewitter SR, Seipert RR. 113.  et al. 2013. Automated assignments of N- and O-site specific glycosylation with extensive glycan heterogeneity of glycoprotein mixtures. Anal. Chem. 85:5666–75 [Google Scholar]
  114. Cooper CA, Gasteiger E, Packer NH. 114.  2001. GlycoMod: a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics 1:340–49 [Google Scholar]
  115. Darula Z, Chalkley RJ, Baker P, Burlingame AL, Medzihradszky KF. 115.  2010. Mass spectrometric analysis, automated identification and complete annotation of O-linked glycopeptides. Eur. J. Mass Spectrom. 16:421–28 [Google Scholar]
  116. Darula Z, Chalkley RJ, Lynn A, Baker PR, Medzihradszky KF. 116.  2011. Improved identification of O-linked glycopeptides from ETD data with optimized scoring for different charge states and cleavage specificities. Amino Acids 41:321–28 [Google Scholar]
  117. Zhu Z, Su X, Clark DF, Go EP, Desaire H. 117.  2013. Characterizing O-linked glycopeptides by electron transfer dissociation: fragmentation rules and applications in data analysis. Anal. Chem. 85:8403–11 [Google Scholar]
  118. Mayampurath A, Yu CY, Song EW, Balan J, Mechref Y, Tang HX. 118.  2014. Computational framework for identification of intact glycopeptides in complex samples. Anal. Chem. 86:453–63 [Google Scholar]
  119. North SJ, Hitchen PG, Haslam SM, Dell A. 119.  2009. Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr. Opin. Struct. Biol. 19:498–506 [Google Scholar]
  120. Burlingame AL. 120.  1996. Characterization of protein glycosylation by mass spectrometry. Curr. Opin. Biotechnol. 7:4–10 [Google Scholar]
  121. Myers SA, Daou S, Affar EB, Burlingame A. 121.  2013. Electron transfer dissociation (ETD): the mass spectrometric breakthrough essential for O-GlcNAc protein site assignments—a study of the O-GlcNAcylated protein Host Cell Factor C1. Proteomics 13:982–91 [Google Scholar]
  122. Mayampurath AM, Wu Y, Segu ZM, Mechref Y, Tang HX. 122.  2011. Improving confidence in detection and characterization of protein N-glycosylation sites and microheterogeneity. Rapid Commun. Mass Spectrom. 25:2007–19 [Google Scholar]
  123. Schedin-Weiss S, Winblad B, Tjernberg LO. 123.  2014. The role of protein glycosylation in Alzheimer disease. FEBS J. 281:46–62 [Google Scholar]
  124. Sun SS, Wang QZ, Zhao F, Chen WT, Li Z. 124.  2011. Glycosylation site alteration in the evolution of influenza A (H1N1) viruses. PLOS ONE 6:1–9 [Google Scholar]
  125. Go EP, Irungu J, Zhang Y, Dalpathado DS, Liao HX. 125.  et al. 2008. Glycosylation site-specific analysis of HIV envelope proteins (JR-FL and CON-S) reveals major differences in glycosylation site occupancy, glycoform profiles, and antigenic epitopes' accessibility. J. Proteome Res. 7:1660–74 [Google Scholar]
  126. Wuhrer M, Porcelijn L, Kapur R, Koeleman CAM, Deelder AM. 126.  et al. 2009. Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J. Proteome Res. 8:450–56 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error