This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. GBI Research 2011. Therapeutic proteins market to 2017: high demand for monoclonal antibodies will drive the market GBI Research, New York, NY. http://www.gbiresearch.com/report-store/market-reports/archive/therapeutic-proteins-market-to-2016-high-demand-for-monoclonal-antibodies-and-erythropoietins-will-drive-the-market [Google Scholar]
  2. Ghosh R. 2.  2002. Protein separation using membrane chromatography: opportunities and challenges. J. Chromatogr. A 952:13–27 [Google Scholar]
  3. Low D, O'Leary R, Pujar NS. 3.  2007. Future of antibody purification. J. Chromatogr. B 848:48–63 [Google Scholar]
  4. Bhut BV, Wickramasinghe SR, Husson SM. 4.  2008. Preparation of high-capacity, weak anion-exchange membranes for protein separations using surface-initiated atom transfer radical polymerization. J. Membr. Sci. 325:176–83 [Google Scholar]
  5. Conley AJ, Joensuu JJ, Richman A, Menassa R. 5.  2011. Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. Plant Biotechnol. J. 9:419–33 [Google Scholar]
  6. Idiris A, Tohda H, Kumagai H, Takegawa K. 6.  2010. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl. Microbiol. Biotechnol. 86:403–17 [Google Scholar]
  7. Boi C. 7.  2007. Membrane adsorbers as purification tools for monoclonal antibody purification. J. Chromatogr. B 848:19–27 [Google Scholar]
  8. Saxena A, Tripathi BP, Kumar M, Shahi VK. 8.  2009. Membrane-based techniques for the separation and purification of proteins: an overview. Adv. Colloid Interface Sci. 145:1–22 [Google Scholar]
  9. Yang Q, Adrus N, Tomicki F, Ulbricht M. 9.  2011. Composites of functional polymeric hydrogels and porous membranes. J. Mater. Chem. 21:2783–811 [Google Scholar]
  10. Weaver J, Husson SM, Murphy L, Wickramasinghe SR. 10.  2013. Anion exchange membrane adsorbers for flow-through polishing steps: Part I. Clearance of minute virus of mice. Biotechnol. Bioeng. 110:491–99 [Google Scholar]
  11. Monster A, Villain L, Scheper T, Beutel S. 11.  2013. One-step-purification of penicillin G amidase from cell lysate using ion-exchange membrane adsorbers. J. Membr. Sci. 444:359–64 [Google Scholar]
  12. Bhut BV, Christensen KA, Husson SM. 12.  2010. Membrane chromatography: protein purification from E. coli lysate using newly designed and commercial anion-exchange stationary phases. J. Chromatogr. A 1217:4946–57 [Google Scholar]
  13. Sun L, Dai JH, Baker GL, Bruening ML. 13.  2006. High-capacity, protein-binding membranes based on polymer brushes grown in porous substrates. Chem. Mater. 18:4033–39 [Google Scholar]
  14. Kawakita H, Masunaga H, Nomura K, Uezu K, Akiba I, Tsuneda S. 14.  2007. Adsorption of bovine serum albumin to a polymer brush prepared by atom-transfer radical polymerization in a porous inorganic membrane. J. Porous Mater. 14:387–91 [Google Scholar]
  15. Orr V, Zhong LY, Moo-Young M, Chou CP. 15.  2013. Recent advances in bioprocessing application of membrane chromatography. Biotechnol. Adv. 31:450–65 [Google Scholar]
  16. Milner ST. 16.  1991. Polymer brushes. Science 251:905–14 [Google Scholar]
  17. Huang WX, Skanth G, Baker GL, Bruening ML. 17.  2001. Surface-initiated thermal radical polymerization on gold. Langmuir 17:1731–36 [Google Scholar]
  18. Jain P, Baker GL, Bruening ML. 18.  2009. Applications of polymer brushes in protein analysis and purification. Annu. Rev. Anal. Chem. 2:387–408 [Google Scholar]
  19. Chung ID, Britt P, Xie D, Harth E, Mays J. 19.  2005. Synthesis of amino acid-based polymers via atom transfer radical polymerization in aqueous media at ambient temperature. Chem. Commun. 2005:1046–48 [Google Scholar]
  20. Tsarevsky NV, Pintauer T, Matyjaszewski K. 20.  2004. Deactivation efficiency and degree of control over polymerization in ATRP in protic solvents. Macromolecules 37:9768–78 [Google Scholar]
  21. Kim JB, Huang WX, Miller MD, Baker GL, Bruening ML. 21.  2003. Kinetics of surface-initiated atom transfer radical polymerization. J. Polym. Sci. Pol. Chem. 41:386–94 [Google Scholar]
  22. Matyjaszewski K, Xia JH. 22.  2001. Atom transfer radical polymerization. Chem. Rev. 101:2921–90 [Google Scholar]
  23. Jain P, Dai J, Grajales S, Saha S, Baker GL, Bruening ML. 23.  2007. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates. Langmuir 23:11360–65 [Google Scholar]
  24. Anuraj N, Bhattacharjee S, Geiger JH, Baker GL, Bruening ML. 24.  2012. An all-aqueous route to polymer brush-modified membranes with remarkable permeabilites and protein capture rates. J. Membr. Sci. 389:117–25 [Google Scholar]
  25. Jain P, Sun L, Dai JH, Baker GL, Bruening ML. 25.  2007. High-capacity purification of his-tagged proteins by affinity membranes containing functionalized polymer brushes. Biomacromolecules 8:3102–7 [Google Scholar]
  26. Bhut BV, Husson SM. 26.  2009. Dramatic performance improvement of weak anion-exchange membranes for chromatographic bioseparations. J. Membr. Sci. 337:215–23 [Google Scholar]
  27. Bhut BV, Weaver J, Carter AR, Wickramasinghe SR, Husson SM. 27.  2011. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations. Biotechnol. Bioeng. 108:2645–53 [Google Scholar]
  28. Schwark S, Ulbricht M. 28.  2012. Toward protein-selective membrane adsorbers: a novel surface-selective photo-grafting method. Eur. Polym. J. 48:1914–22 [Google Scholar]
  29. Tomicki F, Krix D, Nienhaus H, Ulbricht M. 29.  2011. Stimuli-responsive track-etched membranes via surface-initiated controlled radical polymerization: influence of grafting density and pore size. J. Membr. Sci. 377:124–33 [Google Scholar]
  30. Bao ZY, Bruening ML, Baker GL. 30.  2006. Control of the density of polymer brushes prepared by surface-initiated atom transfer radical polymerization. Macromolecules 39:5251–58 [Google Scholar]
  31. Yang Q, Kaul C, Ulbricht M. 31.  2010. Anti-nonspecific protein adsorption properties of biomimetic glycocalyx-like glycopolymer layers: effects of glycopolymer chain density and protein size. Langmuir 26:5746–52 [Google Scholar]
  32. Franke A, Forrer N, Butte A, Cvijetic B, Morbidelli M. 32.  et al. 2010. Role of the ligand density in cation exchange materials for the purification of proteins. J. Chromatogr. A 1217:2216–25 [Google Scholar]
  33. Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL. 33.  2008. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24:7663–73 [Google Scholar]
  34. Gribova V, Auzely-Velty R, Picart C. 34.  2012. Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem. Mater. 24:854–69 [Google Scholar]
  35. Salloum DS, Schlenoff JB. 35.  2004. Protein adsorption modalities on polyelectrolyte multilayers. Biomacromolecules 5:1089–96 [Google Scholar]
  36. Secrist KE, Nolte AJ. 36.  2011. Humidity swelling/deswelling hysteresis in a polyelectrolyte multilayer film. Macromolecules 44:2859–65 [Google Scholar]
  37. Choi J, Rubner MF. 37.  2005. Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 38:116–24 [Google Scholar]
  38. Bieker P, Schönhoff M. 38.  2010. Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH. Macromolecules 43:5052–59 [Google Scholar]
  39. Harris JJ, Bruening ML. 39.  2000. Electrochemical and in situ ellipsometric investigation of the permeability and stability of layered polyelectrolyte films. Langmuir 16:2006–13 [Google Scholar]
  40. Mendelsohn JD, Yang SY, Hiller J, Hochbaum AI, Rubner MF. 40.  2003. Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. Biomacromolecules 4:96–106 [Google Scholar]
  41. Volodkin D, Skirtach A, Mohwald H. 41.  2011. LbL films as reservoirs for bioactive molecules. Bioactive Surfaces HG Borner, JF Lutz 135–61 Berlin: Springer [Google Scholar]
  42. Ma YD, Dong JL, Bhattacharjee S, Wijeratne S, Bruening ML, Baker GL. 42.  2013. Increased protein sorption in poly(acrylic acid)-containing films through incorporation of comb-like polymers and film adsorption at low pH and high ionic strength. Langmuir 29:2946–54 [Google Scholar]
  43. Bhattacharjee S, Dong JL, Ma YD, Hovde S, Geiger JH. 43.  et al. 2012. Formation of high-capacity protein-adsorbing membranes through simple adsorption of poly(acrylic acid)-containing films at low pH. Langmuir 28:6885–92 [Google Scholar]
  44. Wang J, Faber R, Ulbricht M. 44.  2009. Influence of pore structure and architecture of photo-grafted functional layers on separation performance of cellulose-based macroporous membrane adsorbers. J. Chromatogr. A 1216:6490–501 [Google Scholar]
  45. Yusof AHM, Ulbricht M. 45.  2008. Polypropylene-based membrane adsorbers via photo-initiated graft copolymerization: optimizing separation performance by preparation conditions. J. Membr. Sci. 311:294–305 [Google Scholar]
  46. Chenette HCS, Robinson JR, Hobley E, Husson SM. 46.  2012. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes. J. Membr. Sci. 423:43–52 [Google Scholar]
  47. Gaberc-Porekar V, Menart V. 47.  2005. Potential for using histidine tags in purification of proteins at large scale. Chem. Eng. Technol. 28:1306–14 [Google Scholar]
  48. Jain P, Vyas MK, Geiger JH, Baker GL, Bruening ML. 48.  2010. Protein purification with polymeric affinity membranes containing functionalized poly(acid) brushes. Biomacromolecules 11:1019–26 [Google Scholar]
  49. 49. QIAGEN 2015. Ni-NTA superflow cartridges http://www.qiagen.com/search/ni-nta-superflow-cartridges#technicalspecification [Google Scholar]
  50. Ning W, Wijeratne S, Dong J, Bruening ML. 50.  2015. Immobilization of carboxymethylated polyethylenimine–metal-ion complexes in porous membranes to selectively capture His-tagged protein. ACS Appl. Mater. Interfaces 7:2575–84 [Google Scholar]
  51. Bertozzi CR, Kiessling LL. 51.  2001. Chemical glycobiology. Science 291:2357–64 [Google Scholar]
  52. Sacchettini JC, Baum LG, Brewer CF. 52.  2001. Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40:3009–15 [Google Scholar]
  53. Kiessling LL, Gestwicki JE, Strong LE. 53.  2006. Synthetic multivalent ligands as probes of signal transduction. Angew. Chem. 45:2348–68 [Google Scholar]
  54. Holgersson J, Gustafsson A, Breimer ME. 54.  2005. Characteristics of protein-carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies. Immunol. Cell Biol. 83:694–708 [Google Scholar]
  55. Mammen M, Choi SK, Whitesides GM. 55.  1998. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. 37:2755–94 [Google Scholar]
  56. Fernandez-Alonso MD, Diaz D, Berbis MA, Marcelo F, Canada J, Jimenez-Barbero J. 56.  2012. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr. Protein Pept. Sci. 13:816–30 [Google Scholar]
  57. Nagahori N, Nishimura SI. 57.  2001. Tailored glycopolymers: controlling the carbohydrate-protein interaction based on template effect. Biomacromolecules 2:22–24 [Google Scholar]
  58. Ragoussi ME, Casado S, Ribeiro-Viana R, de la Torre G, Rojo J, Torres T. 58.  2013. Selective carbohydrate-lectin interactions in covalent graphene- and SWCNT-based molecular recognition systems. Chem. Sci. 4:4035–41 [Google Scholar]
  59. Yang Q, Hu MX, Dai ZW, Tian J, Xu ZK. 59.  2006. Fabrication of glycosylated surface on polymer membrane by UV-induced graft polymerization for lectin recognition. Langmuir 22:9345–49 [Google Scholar]
  60. Hu MX, Fang Y, Xu ZK. 60.  2014. Glycosylated membranes: a promising biomimetic material. J. Appl. Polym. Sci. 131. doi: 10.1002/app.39658 [Google Scholar]
  61. Wang ZH, Chen GJ, Lu JW, Hong LZ, Ngai T. 61.  2014. Investigation of the factors affecting the carbohydrate-lectin interaction by ITC and QCM-D. Colloid Polym. Sci. 292:391–98 [Google Scholar]
  62. Yang Q, Ulbricht M. 62.  2011. Cylindrical membrane pores with well-defined grafted linear and comblike glycopolymer layers for lectin binding. Macromolecules 44:1303–10 [Google Scholar]
  63. Wang C, Fan Y, Hu MX, Xu W, Wu J. 63.  et al. 2013. Glycosylation of the polypropylene membrane surface via thiol-yne click chemistry for lectin adsorption. Colloids Surf. B 110:105–12 [Google Scholar]
  64. Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A. 64.  et al. 2011. Molecularly imprinted polymers: present and future prospective. Int. J. Mol. Sci. 12:5908–45 [Google Scholar]
  65. Chen LX, Xu SF, Li JH. 65.  2011. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem. Soc. Rev. 40:2922–42 [Google Scholar]
  66. Yin DX, Ulbricht M. 66.  2013. Protein-selective adsorbers by molecular imprinting via a novel two-step surface grafting method. J. Mater. Chem. B 1:3209–19 [Google Scholar]
  67. Yin DX, Ulbricht M. 67.  2013. Antibody-imprinted membrane adsorber via two-step surface grafting. Biomacromolecules 14:4489–96 [Google Scholar]
  68. 68. EMD Millipore 2015. Eshmuno® A resin http://www.emdmillipore.com/US/en/products/biopharmaceutical-manufacturing/downstream-processing/chromatography/affinity-chromatography/eshmuno-a-resin/nAib.qB.EOwAAAFA0u5kiQpx,nav?cid=PS-BPS-665-P-GOOG-Eshm-unoA-1309-XX-TXT [Google Scholar]
  69. Wei YM, Ma JJ, Wang CZ. 69.  2013. Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization. J. Membr. Sci. 427:197–206 [Google Scholar]
  70. 70. Pall Corp 2015. Acrodisc® units with Mustang® Q and S membranes http://www.pall.com/main/laboratory/product.page?lid=gri78l6d [Google Scholar]
  71. Susanto H, Roihatin A, Aryanti N, Anggoro DD, Ulbricht M. 71.  2012. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation. Mater. Sci. Eng. C 32:1759–66 [Google Scholar]
  72. Roper DK, Lightfoot EN. 72.  1995. Separation of biomolecules using adsorptive membranes. J. Chromatogr. A 702:3–26 [Google Scholar]
  73. Chen J, Luo Q, Breneman CM, Cramer SM. 73.  2007. Classification of protein adsorption and recovery at low salt conditions in hydrophobic interaction chromatographic systems. J. Chromatogr. A 1139:236–46 [Google Scholar]
  74. Shang XJ, Wittbold W, Ghosh R. 74.  2013. Purification and analysis of mono-PEGylated HSA by hydrophobic interaction membrane chromatography. J. Sep. Sci. 36:3673–81 [Google Scholar]
  75. Himstedt HH, Qian XH, Weaver JR, Wickramasinghe SR. 75.  2013. Responsive membranes for hydrophobic interaction chromatography. J. Membr. Sci. 447:335–44 [Google Scholar]
  76. Charlet G, Delmas G. 76.  1981. Thermodynamic properties of polyolefin solutions at high-temperature: 1. Lower critical solubility temperatures of polyethylene, polypropylene and ethylene-propylene copolymers in hydrocarbon solvents. Polymer 22:1181–89 [Google Scholar]
  77. Ghosh R, Wang L. 77.  2006. Purification of humanized monoclonal antibody by hydrophobic interaction membrane chromatography. J. Chromatogr. A 1107:104–9 [Google Scholar]
  78. Wang J, Sproul RT, Anderson LS, Husson SM. 78.  2014. Development of multimodal membrane adsorbers for antibody purification using atom transfer radical polymerization. Polymer 55:1404–11 [Google Scholar]
  79. Tan YJ, Sui DX, Wang WH, Kuo MH, Reid GE, Bruening ML. 79.  2013. Phosphopeptide enrichment with TiO2-modified membranes and investigation of tau protein phosphorylation. Anal. Chem. 85:5699–706 [Google Scholar]
  80. Graves JD, Krebs EG. 80.  1999. Protein phosphorylation and signal transduction. Pharmacol. Ther. 82:111–21 [Google Scholar]
  81. Hunter T. 81.  2000. Signaling: 2000 and beyond. Cell 100:113–27 [Google Scholar]
  82. Schettini G, Govoni S, Racchi M, Rodriguez G. 82.  2010. Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role—relevance for Alzheimer pathology. J. Neurochem. 115:1299–308 [Google Scholar]
  83. Cohen P. 83.  2001. The role of protein phosphorylation in human health and disease. Eur. J. Biochem. 268:5001–10 [Google Scholar]
  84. Huang DM, Li YJ, Liu N, Zhang ZL, Peng ZK. 84.  et al. 2014. Identification of novel signaling components in N,N′-dinitrosopiperazine-mediated metastasis of nasopharyngeal carcinoma by quantitative phosphoproteomics. BMC Cancer 14:243 [Google Scholar]
  85. Witze ES, Old WM, Resing KA, Ahn NG. 85.  2007. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 4:798–806 [Google Scholar]
  86. Dunn JD, Reid GE, Bruening ML. 86.  2010. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 29:29–54 [Google Scholar]
  87. Cheng G, Wang ZG, Liu YL, Zhang JL, Sun DH, Ni JZ. 87.  2013. Phosphoprotein/phosphopeptide enrichment and analysis based on nanostructured materials. Prog. Chem. 25:620–32 [Google Scholar]
  88. Wang WH, Palumbo AM, Tan YJ, Reid GE, Tepe JJ, Bruening ML. 88.  2010. Identification of p65-associated phosphoproteins by mass spectrometry after on-plate phosphopeptide enrichment using polymer-oxotitanium films. J. Proteome Res. 9:3005–15 [Google Scholar]
  89. Wang WH, Dong JL, Baker GL, Bruening ML. 89.  2011. Bifunctional polymer brushes for low-bias enrichment of mono- and multi-phosphorylated peptides prior to mass spectrometry analysis. Analyst 136:3595–98 [Google Scholar]
  90. Han XM, Aslanian A, Yates JR. 90.  2008. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12:483–90 [Google Scholar]
  91. Ji J, Zhang Y, Zhou X, Kong J, Tang Y, Liu B. 91.  2008. Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors. Anal. Chem. 80:2457–63 [Google Scholar]
  92. Krenkova J, Lacher NA, Svec F. 92.  2009. Highly efficient enzyme reactors containing trypsin and endoproteinase LysC immobilized on porous polymer monolith coupled to MS suitable for analysis of antibodies. Anal. Chem. 81:2004–12 [Google Scholar]
  93. Spross J, Sinz A. 93.  2010. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry. Anal. Chem. 82:1434–43 [Google Scholar]
  94. Gao J, Xu JD, Locascio LE, Lee CS. 94.  2001. Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal. Chem. 73:2648–55 [Google Scholar]
  95. Cooper JW, Chen JZ, Li Y, Lee CS. 95.  2003. Membrane-based nanoscale proteolytic reactor enabling protein digestion, peptide separation, and protein identification using mass spectrometry. Anal. Chem. 75:1067–74 [Google Scholar]
  96. Liuni P, Rob T, Wilson DJ. 96.  2010. A microfluidic reactor for rapid, low-pressure proteolysis with on-chip electrospray ionization. Rapid Commun. Mass Spectrom. 24:315–20 [Google Scholar]
  97. Slysz GW, Schriemer DC. 97.  2005. Blending protein separation and peptide analysis through real-time proteolytic digestion. Anal. Chem. 77:1572–79 [Google Scholar]
  98. Slysz GW, Lewis DF, Schriemer DC. 98.  2006. Detection and identification of sub-nanogram levels of protein in a nanoLC-trypsin-MS system. J. Proteome Res. 5:1959–66 [Google Scholar]
  99. Xu F, Wang WH, Tan YJ, Bruening ML. 99.  2010. Facile trypsin immobilization in polymeric membranes for rapid, efficient protein digestion. Anal. Chem. 82:10045–51 [Google Scholar]
  100. Buck FF, Vithayathil AJ, Nord FF, Bier M. 100.  1962. On the mechanism of enzyme action. LXXIII. Studies on trypsins from beef, sheep and pig pancreas. Arch. Biochem. Biophys. 97:417–24 [Google Scholar]
  101. Tan YJ, Wang WH, Zheng Y, Dong JL, Stefano G. 101.  et al. 2012. Limited proteolysis via millisecond digestions in protease-modified membranes. Anal. Chem. 84:8357–63 [Google Scholar]
  102. Hackl EV. 102.  2014. Limited proteolysis of natively unfolded protein 4E-BP1 in the presence of trifluoroethanol. Biopolymers 101:591–602 [Google Scholar]
  103. Musumeci MA, Faridmoayer A, Watanabe Y, Feldman MF. 103.  2014. Evaluating the role of conserved amino acids in bacterial O-oligosaccharyltransferases by in vivo, in vitro and limited proteolysis assays. Glycobiology 24:39–50 [Google Scholar]
  104. Saltzman MR, Young SA, Kump LR, Gill BC, Lyons TW, Runnegar B. 104.  2011. Pulse of atmospheric oxygen during the late Cambrian. Proc. Natl. Acad. Sci. USA 108:3876–81 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error