1932

Abstract

We discuss the evolution of OrbitrapTM mass spectrometry (MS) from its birth in the late 1990s to its current role as one of the most prominent techniques for MS. The Orbitrap mass analyzer is the first high-performance mass analyzer that employs trapping of ions in electrostatic fields. Tight integration with the ion injection process enables the high-resolution, mass accuracy, and sensitivity that have become essential for addressing analytical needs in numerous areas of research, as well as in routine analysis. We examine three major families of instruments (related to the LTQ Orbitrap, Q Exactive, and Orbitrap Fusion mass spectrometers) in the context of their historical development over the past ten eventful years. We discuss as well future trends and perspectives of Orbitrap MS. We illustrate the compelling potential of Orbitrap-based mass spectrometers as (ultra) high-resolution platforms, not only for high-end proteomic applications, but also for routine targeted analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040325
2015-07-22
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040325.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040325&mimeType=html&fmt=ahah

Literature Cited

  1. Kingdon KH. 1.  1923. A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phys. Rev. 21:408–18 [Google Scholar]
  2. Perry RH, Cooks RG, Noll RJ. 2.  2008. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev. 27:661–99 [Google Scholar]
  3. Korsunskii MK, Basakutsa VA. 3.  1958. Study of the ion-optical properties of a sector-shaped electrostatic field of the difference type. Soviet Physics-Tech. Phys. 3:1396–1409 [Google Scholar]
  4. Gall LNG YK, Aleksandrov ML, Pechalina YE, Holin NA. 4.  1986. Time-of-flight mass spectrometer. USSR Invent. Cert. No. 1247973 [Google Scholar]
  5. Knight RD. 5.  1981. Storage of ions from laser-produced plasmas. Appl. Phys. Lett. 38:221–23 [Google Scholar]
  6. Makarov AA. 6.  1999. Mass spectrometer. US Patent No. 5,886,346
  7. Makarov A. 7.  2000. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72:1156–62 [Google Scholar]
  8. Knorr FJ, Ajami M, Chatfield DA. 8.  1986. Fourier transform time-of-flight mass spectrometry. Anal. Chem. 58:690–94 [Google Scholar]
  9. Syka JEP, Fies WJ. 9.  1988. Fourier transform quadrupole mass spectrometer and method. US Patent 4755670A
  10. Marshall AG, Verdun FR. 10.  1990. Fourier transforms in NMR, optical and mass spectrometry. A user's handbook. Amsterdam.. Rapid Commun. Mass Spectrom. 4:462 [Google Scholar]
  11. Hardman M, Makarov AA. 11.  2003. Interfacing the Orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75:1699–705 [Google Scholar]
  12. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. 12.  2005. The Orbitrap: a new mass spectrometer. J. Mass Spectrom. 40:430–43 [Google Scholar]
  13. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O. 13.  et al. 2006. Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal. Chem. 78:2113–20 [Google Scholar]
  14. Makarov A. 14.  2010. Theory and practice of the Orbitrap mass analyzer. Practical Aspects of Trapped Ion Mass Spectrometry IV Theory and Instrumentation, ed. March RE, Todd JFJ 251–72 Boca Raton, FL: CRC Press [Google Scholar]
  15. Schwartz JC, Senko MW, Syka JEP. 15.  2002. A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13:659–69 [Google Scholar]
  16. Clauser KR, Baker P, Burlingame A. 16.  1999. Role of accurate mass measurement (±10 ppm) in protein identification strategies employing ms or ms/ms and database searching. Anal. Chem. 71:2871–82 [Google Scholar]
  17. McAlister GC, Phanstiel D, Good DM, Berggren WT, Coon JJ. 17.  2007. Implementation of electron-transfer dissociation on a hybrid linear ion trap–Orbitrap mass spectrometer. Anal. Chem. 79:3525–34 [Google Scholar]
  18. Morris HR, Paxton T, Dell A, Langhorne J, Berg M. 18.  et al. 1996. High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun. Mass Spectrom. 10:889–96 [Google Scholar]
  19. Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. 19.  2007. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 4:709–12 [Google Scholar]
  20. Rose KL, Li A, Zalenskaya I, Zhang Y, Unni E. 20.  et al. 2008. C-terminal phosphorylation of murine testis-specific histone H1t in elongating spermatids. J. Proteome Res. 7:4070–78 [Google Scholar]
  21. Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JE. 21.  et al. 2006. The utility of ETD mass spectrometry in proteomic analysis. Biochim. Biophys. Acta 1764:1811–22 [Google Scholar]
  22. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. 22.  2004. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA 101:9528–33 [Google Scholar]
  23. Swaney DL, McAlister GC, Coon JJ. 23.  2008. Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat. Methods 5:959–64 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040325
Loading
/content/journals/10.1146/annurev-anchem-071114-040325
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error