1932

Abstract

Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography–mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: () The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or () there are PhD graduates in the workforce who can help adopt these sophisticated techniques.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071114-040335
2015-07-22
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/anchem/8/1/annurev-anchem-071114-040335.html?itemId=/content/journals/10.1146/annurev-anchem-071114-040335&mimeType=html&fmt=ahah

Literature Cited

  1. 1. Natl. Res. Counc. (US) Comm. Ident. Needs Forensic Sci. Community, Comm. Sci. Technol. Law Policy Glob. Aff., Comm. Appl. Theor. Stat 2009. Strengthening Forensic Science in the United States: A Path Forward Washington, DC: Natl. Acad. [Google Scholar]
  2. Bell S. 2.  2009. Forensic chemistry. Annu. Rev. Anal. Chem. 2:297–319 [Google Scholar]
  3. Brettell TA, Butler JM, Almirall JR. 3.  2011. Forensic science. Anal. Chem. 83:4539–56 [Google Scholar]
  4. Smith RW, McGuffin VL. 4.  2009. The need for research in forensic science. Anal. Bioanal. Chem. 394:1985–86 [Google Scholar]
  5. Mnookin JL, Cole SA, Dror IE, Fisher BAJ, Houck MM. 5.  et al. 2011. The need for a research culture in the forensic sciences. UCLA Law Rev. 58:725–79 [Google Scholar]
  6. Bono J. 6.  2011. Commentary on the need for a research culture in the forensic sciences. UCLA Law Rev. 58:781–87 [Google Scholar]
  7. Gertner N. 7.  2011. Commentary on the need for a research culture in the forensic sciences. UCLA Law Rev. 58:789–93 [Google Scholar]
  8. Margot P. 8.  2011. Commentary on the need for a research culture in the forensic sciences. UCLA Law Rev. 58:795–801 [Google Scholar]
  9. Jones AW. 9.  2007. The distribution of forensic journals, reflections on authorship practices, peer-review and role of the impact factor. Forensic Sci. Int. 165:115–28 [Google Scholar]
  10. Yang M, Kim T-Y, Hwang H-C, Yi S-K, Kim D-H. 10.  2008. Development of a palm portable mass spectrometer. J. Am. Soc. Mass. Spectrom. 19:1442–48 [Google Scholar]
  11. Contreras JA, Murray JA, Tolley SE, Oliphant JL, Tolley HD. 11.  et al. 2008. Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J. Am. Soc. Mass. Spectrom. 19:1425–34 [Google Scholar]
  12. Demirev PA, Fenselau C. 12.  2008. Mass spectrometry in biodefense. J. Mass Spectrom. 43:1441–57 [Google Scholar]
  13. Ouyang Z, Noll RJ, Cooks RG. 13.  2009. Handheld miniature ion trap mass spectrometers. Anal. Chem. 81:2421–25 [Google Scholar]
  14. Sikanen T, Franssila S, Kauppila TJ, Kostiainen R, Kotiaho T, Ketola RA. 14.  2010. Microchip technology in mass spectrometry. Mass Spectrom. Rev. 29:351–91 [Google Scholar]
  15. Takâts Z, Wiseman JM, Gologan B, Cooks RG. 15.  2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–73 [Google Scholar]
  16. Cody RB, Laramée JA, Durst HD. 16.  2005. Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77:2297–302 [Google Scholar]
  17. Green FM, Salter TL, Stokes P, Gilmore IS, O'Connor G. 17.  2010. Ambient mass spectrometry: advances and applications in forensics. Surf. Interface Anal. 42:347–57 [Google Scholar]
  18. Cooks RG, Ouyang Z, Takats Z, Wiseman JM. 18.  2006. Ambient mass spectrometry. Science 311:1566–70 [Google Scholar]
  19. Volný M, Venter A, Smith SA, Pazzi M, Cooks RG. 19.  2008. Surface effects and electrochemical cell capacitance in desorption electrospray ionization. Analyst 133:525–31 [Google Scholar]
  20. Alberici RM, Simas RC, Sanvido GB, Romão W, Lalli PM. 20.  et al. 2010. Ambient mass spectrometry: bringing MS into the “real world.”. Anal. Bioanal. Chem. 398:265–94 [Google Scholar]
  21. Hu Q, Talaty N, Noll RJ, Cooks RG. 21.  2006. Desorption electrospray ionization using an orbitrap mass spectrometer: exact mass measurements on drugs and peptides. Rapid Commun. Mass Spectrom. 20:3403–8 [Google Scholar]
  22. Bereman MS, Nyadong L, Fernandez FM, Muddiman DC. 22.  2006. Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 20:3409–11 [Google Scholar]
  23. Myung S, Wiseman JM, Valentine SJ, Takáts Z, Cooks RG, Clemmer DE. 23.  2006. Coupling desorption electrospray ionization with ion mobility/mass spectrometry for analysis of protein structure: evidence for desorption of folded and denatured states. J. Phys. Chem. B 110:5045–51 [Google Scholar]
  24. Shin Y-S, Drolet B, Mayer R, Dolence K, Basile F. 24.  2007. Desorption electrospray ionization-mass spectrometry of proteins. Anal. Chem. 79:3514–18 [Google Scholar]
  25. Leuthold LA, Mandscheff J-F, Fathi M, Giroud C, Augsburger M. 25.  et al. 2006. Desorption electrospray ionization mass spectrometry: direct toxicological screening and analysis of illicit ecstasy tablets. Rapid Commun. Mass Spectrom. 20:103–10 [Google Scholar]
  26. Fernández FM, Cody RB, Green MD, Hampton CY, McGready R. 26.  et al. 2006. Characterization of solid counterfeit drug samples by desorption electrospray ionization and direct-analysis-in-real-time coupled to time-of-flight mass spectrometry. ChemMedChem 1:702–5 [Google Scholar]
  27. Rodriguez-Cruz SE. 27.  2006. Rapid analysis of controlled substances using desorption electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 20:53–60 [Google Scholar]
  28. Takáts Z, Wiseman JM, Cooks RG. 28.  2005. Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. J. Mass Spectrom. 40:1261–75 [Google Scholar]
  29. Cotte-Rodríguez I, Cooks RG. 29.  2006. Non-proximate detection of explosives and chemical warfare agent simulants by desorption electrospray ionization mass spectrometry. Chem. Commun. 2006:2968–70 [Google Scholar]
  30. Cotte-Rodríguez I, Hernández-Soto H, Chen H, Cooks RG. 30.  2008. In situ trace detection of peroxide explosives by desorption electrospray ionization and desorption atmospheric pressure chemical ionization. Anal. Chem. 80:1512–19 [Google Scholar]
  31. Talaty N, Takáts Z, Cooks RG. 31.  2005. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization. Analyst 130:1624–33 [Google Scholar]
  32. Forbes TP, Sisco E. 32.  2014. Chemical imaging of artificial fingerprints by desorption electro-flow focusing ionization mass spectrometry. Analyst 139:2982–85 [Google Scholar]
  33. Ifa DR, Manicke NE, Dill AL, Cooks RG. 33.  2008. Latent fingerprint chemical imaging by mass spectrometry. Science 321:805 [Google Scholar]
  34. Chernetsova ES, Morlock GE, Revelsky IA. 34.  2011. DART mass spectrometry and its applications in chemical analysis. Russ. Chem. Rev. 80:235 [Google Scholar]
  35. Watson JT, Sparkmen OD. 35.  2007. Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation West Sussex, Engl: Jonn Wiley & Sons [Google Scholar]
  36. Cody RB. 36.  2009. Observation of molecular ions and analysis of nonpolar compounds with the direct analysis in real time ion source. Anal. Chem. 81:1101–7 [Google Scholar]
  37. Weston DJ. 37.  2010. Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst 135:661–68 [Google Scholar]
  38. Nilles JM, Connell TR, Stokes ST, Dupont Durst H. 38.  2010. Explosives detection using direct analysis in real time (DART) mass spectrometry. Propellants Explos. Pyrotech. 35:446–51 [Google Scholar]
  39. Steiner RR, Larson RL. 39.  2009. Validation of the direct analysis in real time source for use in forensic drug screening. J. Forensic Sci. 54:617–22 [Google Scholar]
  40. Grange AH, Sovocool GW. 40.  2011. Detection of illicit drugs on surfaces using direct analysis in real time (DART) time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 25:1271–81 [Google Scholar]
  41. Duvivier WF, van Beek TA, Pennings EJM, Nielen MWF. 41.  2014. Rapid analysis of δ-9-tetrahydrocannabinol in hair using direct analysis in real time ambient ionization Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom. 28:682–90 [Google Scholar]
  42. 42. US Fire Admin 2001. Arson in the United States Top. Fire Res. Ser Emmitsburg, MD: US Fire Admin. [Google Scholar]
  43. Brown R, Hopkins M, Cannings A, Raybould S. 43.  2005. Evaluation of the Arson Control Forum's New Projects Initiative London: Off. Deputy Prime Minister [Google Scholar]
  44. Nicol JD. 44.  1959. Police science technical abstracts and notes. J. Crim. Law Crim. 40:109–12 [Google Scholar]
  45. Zoro JA, Hadley K. 45.  1976. Organic mass spectrometry in forensic science. J. Forensic Sci. Soc. 16:103–14 [Google Scholar]
  46. 46. State of Montana v. James Burtchett Supreme Court of Montana (1974)
  47. 47. United States v. Larry J. Harvey, Clarence R. Lee, and Arnold E. Taylor US Court of Military Appeals (1971)
  48. 48. United States of America v. Hayward Leslie Brown U.S. 557 F.2d 541 (1977)
  49. Baechler S, Comment S, Delémont O. 49.  2010. Extraction and concentration of vapors from fire debris for forensic purposes: evaluation of the use of radiello passive air sampler. Talanta 82:1247–53 [Google Scholar]
  50. Choodum A, Daeid NN. 50.  2011. Development and validation of an analytical method for hydrocarbon residues using gas chromatography-mass spectrometry. Anal. Methods 3:1136–42 [Google Scholar]
  51. Doble P, Sandercock M, Du Pasquier E, Petocz P, Roux C, Dawson M. 51.  2003. Classification of premium and regular gasoline by gas chromatography/mass spectrometry, principal component analysis and artificial neural networks. Forensic Sci. Int. 132:26–39 [Google Scholar]
  52. Lu Y, Chen P, Harrington PB. 52.  2009. Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution. Anal. Bioanal. Chem. 394:2061–67 [Google Scholar]
  53. Desa WNSM, Daéid NN, Ismail D, Savage K. 53.  2010. Application of unsupervised chemometric analysis and self-organizing feature map (SOFM) for the classification of lighter fuels. Anal. Chem. 82:6395–400 [Google Scholar]
  54. Baerncopf JM, McGuffin VL, Smith RW. 54.  2011. Association of ignitable liquid residues to neat ignitable liquids in the presence of matrix interferences using chemometric procedures. J. Forensic Sci. 56:70–81 [Google Scholar]
  55. Lu W, Rankin JG, Bondra A, Trader C, Heeren A, Harrington PB. 55.  2012. Ignitable liquid identification using gas chromatography/mass spectrometry data by projected difference resolution mapping and fuzzy rule-building expert system classification. Forensic Sci. Int. 220:210–18 [Google Scholar]
  56. Sigman ME, Williams MR. 56.  2006. Covariance mapping in the analysis of ignitable liquids by gas chromatography/mass spectrometry. Anal. Chem. 78:1713–18 [Google Scholar]
  57. Sigman ME, Williams MR, Ivy RG. 57.  2007. Individualization of gasoline samples by covariance mapping and gas chromatography/mass spectrometry. Anal. Chem. 79:3462–68 [Google Scholar]
  58. Sigman ME, Williams MR, Castelbuono JA, Colca JG, Clark CD. 58.  2008. Ignitable liquid classification and identification using the summed-ion mass spectrum. Instrum. Sci. Technol. 36:375–93 [Google Scholar]
  59. Williams MR, Sigman ME, Lewis J, Pitan KM. 59.  2012. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis. Forensic Sci. Int. 222:373–86 [Google Scholar]
  60. Turner DA, Goodpaster JV. 60.  2009. The effects of microbial degradation on ignitable liquids. Anal. Bioanal. Chem. 394:363–71 [Google Scholar]
  61. Turner DA, Goodpaster JV. 61.  2011. The effect of microbial degradation on the chromatographic profiles of tiki torch fuel, lamp oil, and turpentine. J. Forensic Sci. 56:984–87 [Google Scholar]
  62. Turner DA, Goodpaster JV. 62.  2012. Comparing the effects of weathering and microbial degradation on gasoline using principal components analysis. J. Forensic Sci. 57:64–69 [Google Scholar]
  63. Turner DA, Goodpaster JV. 63.  2013. The effects of season and soil type on microbial degradation of gasoline residues from incendiary devices. Anal. Bioanal. Chem. 405:1593–99 [Google Scholar]
  64. Bjorøy M, Hall PB, Moe RP. 64.  1994. Variation in the isotopic composition of single components in the C4–C20 fraction of oils and condensates. Org. Geochem. 21:761–76 [Google Scholar]
  65. Masterson WD, Dzou Leon IP, Holba AG, Fincannon AL, Ellis L. 65.  2001. Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. Org. Geochem. 32:411–41 [Google Scholar]
  66. Mazeas L, Budzinski H, Raymond N. 66.  2002. Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation. Org. Geochem. 33:1259–72 [Google Scholar]
  67. Steinfeld JI, Wormhoudt J. 67.  1998. Explosives detection: a challenge for physical chemistry. Annu. Rev. Phys. Chem. 49:203–32 [Google Scholar]
  68. Badjagbo K, Sauvé S. 68.  2012. Mass spectrometry for trace analysis of explosives in water. Crit. Rev. Anal. Chem. 42:257–71 [Google Scholar]
  69. de Perre C, Corbin I, Blas M, McCord BR. 69.  2012. Separation and identification of smokeless gunpowder additives by capillary electrochromatography. J. Chromatogr. A 1267:259–65 [Google Scholar]
  70. Evans CS, Sleeman R, Luke J, Keely BJ. 70.  2002. A rapid and efficient mass spectrometric method for the analysis of explosives. Rapid Commun. Mass Spectrom. 16:1883–91 [Google Scholar]
  71. Hubert C, Schwarzenberg A, Dossmann H, Cole RB, Machuron-Mandard X, Tabet J-C. 71.  2014. Clari-fication of the 30 Da releases from the [M-H] and M−• ions of trinitrotoluene by electrospray high resolution mass spectrometry. J. Mass Spectrom. 49:327–30 [Google Scholar]
  72. Clemons K, Dake J, Sisco E, Verbeck GF IV. 72.  2013. Trace analysis of energetic materials via direct analyte-probed nanoextraction coupled to direct analysis in real time mass spectrometry. Forensic Sci. Int. 231:98–101 [Google Scholar]
  73. Ledbetter NL, Walton BL, Davila P, Hoffmann WD, Ernest RN, Verbeck GF. 73.  2010. Nanomanipulation-coupled nanospray mass spectrometry applied to the extraction and analysis of trace analytes found on fibers. J. Forensic Sci. 55:1218–21 [Google Scholar]
  74. Rowell F, Seviour J, Lim AY, Elumbaring-Salazar CG, Loke J, Ma J. 74.  2012. Detection of nitro-organic and peroxide explosives in latent fingermarks by DART- and SALDI-TOF-mass spectrometry. Forensic Sci. Int. 221:84–91 [Google Scholar]
  75. Benson SJ, Lennard CJ, Maynard P, Hill DM, Andrew AS, Roux C. 75.  2009. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS): discrimination of ammonium nitrate sources. Sci. Justice 49:73–80 [Google Scholar]
  76. Benson SJ, Lennard CJ, Maynard P, Hill DM, Andrew AS, Roux C. 76.  2009. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS): preliminary study on TATP and PETN. Sci. Justice 49:81–86 [Google Scholar]
  77. Williams TA, Riddle M, Morgan SL, Brewer WE. 77.  1999. Rapid gas chromatographic analysis of drugs of forensic interest. J. Chromatogr. Sci. 37:210–14 [Google Scholar]
  78. Overton EB, Carney KR, Roques N, Dharmasena HP. 78.  2001. Fast GC instrumentation and analysis for field applications. Field Anal. Chem. Technol. 5:97–105 [Google Scholar]
  79. Strano-Rossi S, Bermejo AM, de la Torre X, Botrè F. 79.  2011. Fast GC-MS method for the simultaneous screening of THC-COOH, cocaine, opiates and analogues including buprenorphine and fentanyl, and their metabolites in urine. Anal. Bioanal. Chem. 399:1623–30 [Google Scholar]
  80. Zhao YY, Wu SP, Liu S, Zhang Y, Lin RC. 80.  2014. Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chem. Biol. Interact. 220C:181–92 [Google Scholar]
  81. Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N. 81.  2009. ‘Spice’ and other herbal blends: harmless incense or cannabinoid designer drugs?. J. Mass Spectrom. 44:832–37 [Google Scholar]
  82. Lindigkeit R, Boehme A, Eiserloh I, Luebbecke M, Wiggermann M. 82.  et al. 2009. Spice: a never ending story?. Forensic Sci. Int. 191:58–63 [Google Scholar]
  83. Wagner KD, Armenta RF, Roth AM, Maxwell JC, Cuevas-Mota J, Garfein RS. 83.  2014. Use of synthetic cathinones and cannabimimetics among injection drug users in San Diego, California. Drug Alcohol Depend. 141:99–106 [Google Scholar]
  84. Kauppila TJ, Talaty N, Kuuranne T, Kotiaho T, Kostiainen R, Cooks RG. 84.  2007. Rapid analysis of metabolites and drugs of abuse from urine samples by desorption electrospray ionization-mass spectrometry. Analyst 132:868–75 [Google Scholar]
  85. Musah RA, Domin MA, Walling MA, Shepard JRE. 85.  2012. Rapid identification of synthetic cannabinoids in herbal samples via direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 26:1109–14 [Google Scholar]
  86. Dunham SJB, Hooker PD, Hyde RM. 86.  2012. Identification, extraction and quantification of the synthetic cannabinoid JWH-018 from commercially available herbal marijuana alternatives. Forensic Sci. Int. 223:241–44 [Google Scholar]
  87. Lesiak AD, Musah RA, Domin MA, Shepard JRE. 87.  2014. DART-MS as a preliminary screening method for “herbal incense”: chemical analysis of synthetic cannabinoids. J. Forensic Sci. 59:337–43 [Google Scholar]
  88. Gottardo R, Chiarini A, Dal Prà I, Seri C, Rimondo C. 88.  et al. 2012. Direct screening of herbal blends for new synthetic cannabinoids by MALDI-TOF MS. J. Mass Spectrom. 47:141–46 [Google Scholar]
  89. ElSohly MA, Gul W, Wanas AS, Radwan MM. 89.  2014. Synthetic cannabinoids: analysis and metabolites. Life Sci. 97:78–90 [Google Scholar]
  90. Cai Y, Liu Y, Helmy R, Chen H. 90.  2014. Coupling of ultrafast LC with mass spectrometry by DESI. J. Am. Soc. Mass. Spectrom. 25:1820–23 [Google Scholar]
  91. Deimler RE, Razunguzwa TT, Reschke BR, Walsh CM, Powell MJ, Jackson GP. 91.  2014. Direct analysis of drugs in forensic applications using laser ablation electrospray ionization-tandem mass spectrometry (LAESI-MS/MS). Anal. Methods 6:4810–17 [Google Scholar]
  92. Musah RA, Domin MA, Cody RB, Lesiak AD, John Dane A, Shepard JRE. 92.  2012. Direct analysis in real time mass spectrometry with collision-induced dissociation for structural analysis of synthetic cannabinoids. Rapid Commun. Mass Spectrom. 26:2335–42 [Google Scholar]
  93. Kempson IM, Lombi E. 93.  2011. Hair analysis as a biomonitor for toxicology, disease and health status. Chem. Soc. Rev. 40:3915–40 [Google Scholar]
  94. Musshoff F, Madea B. 94.  2007. Analytical pitfalls in hair testing. Anal. Bioanal. Chem. 388:1475–94 [Google Scholar]
  95. Barroso M, Gallardo E, Vieira DN, Queiroz JA, Lopez-Rivadulla M. 95.  2011. Bioanalytical procedures and recent developments in the determination of opiates/opioids in human biological samples. Anal. Bioanal. Chem. 400:1665–90 [Google Scholar]
  96. Barroso M, Moreno I, da Fonseca B, Queiroz JA, Gallardo E. 96.  2012. Role of microextraction sampling procedures in forensic toxicology. Bioanalysis 4:1805–26 [Google Scholar]
  97. Rodushkin I, Engstrom E, Baxter DC. 97.  2013. Isotopic analyses by ICP-MS in clinical samples. Anal. Bioanal. Chem. 405:2785–97 [Google Scholar]
  98. Fisichella M, Morini L, Sempio C, Groppi A. 98.  2014. Validation of a multi-analyte LC-MS/MS method for screening and quantification of 87 psychoactive drugs and their metabolites in hair. Anal. Bioanal. Chem. 406:3497–506 [Google Scholar]
  99. Vogliardi S, Favretto D, Frison G, Ferrara SD, Seraglia R, Traldi P. 99.  2009. A fast screening MALDI method for the detection of cocaine and its metabolites in hair. J. Mass Spectrom. 44:18–24 [Google Scholar]
  100. Vogliardi S, Favretto D, Frison G, Maietti S, Viel G. 100.  et al. 2010. Validation of a fast screening method for the detection of cocaine in hair by MALDI-MS. Anal. Bioanal. Chem. 396:2435–40 [Google Scholar]
  101. Cuypers E, Flinders B, Bosman IJ, Lusthof KJ, Van Asten AC, Tytgat J, Heeren RMA. 101.  2014. Hydrogen peroxide reactions on cocaine in hair using imaging mass spectrometry. Forensic Sci. Int 242:103–110 [Google Scholar]
  102. Waki ML, Onoue K, Takahashi T, Goto K, Saito Y. 102.  et al. 2011. Investigation by imaging mass spectrometry of biomarker candidates for aging in the hair cortex. PLOS ONE 6:e26721 [Google Scholar]
  103. Nakanishi T, Ito M, Ueda K, Wada S, Fujioka S. 103.  et al. 2012. Clinical applications of MALDI imaging using sliced sections of formalin-fixed paraffin-embedded tissues and longitudinal sliced hairs. Rinsho Byori 60:125–30 [Google Scholar]
  104. Hopfgartner G, Varesio E. 104.  2012. The life sciences mass spectrometry research unit. Chimia 66:335–38 [Google Scholar]
  105. Benson S, Lennard C, Maynard P, Roux C. 105.  2006. Forensic applications of isotope ratio mass spectrometry: a review. Forensic Sci. Int. 157:1–22 [Google Scholar]
  106. Daeid NN, Buchanan HAS, Savage KA, Fraser JG, Cresswell SL. 106.  2010. Recent advances in the application of stable isotope ratio analysis in forensic chemistry. Aust. J. Chem. 63:3–7 [Google Scholar]
  107. Muccio Z, Jackson G. 107.  2009. Isotope ratio mass spectrometry. Analyst 134:213–22 [Google Scholar]
  108. Gentile N, Besson L, Pazos D, Delemont O, Esseiva P. 108.  2011. On the use of IRMS in forensic science: proposals for a methodological approach. Forensic Sci. Int. 212:260–71 [Google Scholar]
  109. Meier-Augenstein W. 109.  2010. Stable Isotope Forensics: An Introduction to the Forensic Application of Stable Isotope Analysis Hoboken, NJ: Wiley [Google Scholar]
  110. Ehleringer JR, Casale JF, Lott MJ, Ford VL. 110.  2000. Tracing the geographical origin of cocaine. Nature 408:311–12 [Google Scholar]
  111. Casale JF, Ehleringer JR, Morello DR, Lott MJ. 111.  2005. Isotopic fractionation of carbon and nitrogen during the illicit processing of cocaine and heroin in South America. J. Forensic Sci. 50:1315–21 [Google Scholar]
  112. Shibuya EK, Sarkis JES, Neto ON, Moreira MZ, Victoria RL. 112.  2006. Sourcing Brazilian marijuana by applying IRMS analysis to seized samples. Forensic Sci. Int. 160:35–43 [Google Scholar]
  113. Sewenig S, Fichtner S, Holdermann T, Fritschi G, Neumann H. 113.  2007. Determination of δ13CV-PDB and δ15NAIR values of cocaine from a big seizure in Germany by stable isotope ratio mass spectrometry. Isotopes Environ. Health Stud. 43:275–80 [Google Scholar]
  114. Saudan C, Augsburger M, Mangin P, Saugy M. 114.  2007. Carbon isotopic ratio analysis by gas chromatography/combustion/isotope ratio mass spectrometry for the detection of gamma-hydroxybutyric acid (GHB) administration to humans. Rapid Commun. Mass Spectrom. 21:3956–62 [Google Scholar]
  115. West J, Hurley J, Ehleringer J. 115.  2009. Stable isotope ratios of marijuana. I. Carbon and nitrogen stable isotopes describe growth conditions. J. Forensic Sci. 54:84–89 [Google Scholar]
  116. Booth AL, Wooller MJ, Howe T, Haubenstock N. 116.  2010. Tracing geographic and temporal trafficking patterns for marijuana in Alaska using stable isotopes (C, N, O and H). Forensic Sci. Int. 202:45–53 [Google Scholar]
  117. Hurley JM, West JB, Ehleringer JR. 117.  2010. Stable isotope models to predict geographic origin and cultivation conditions of marijuana. Sci. Justice 50:86–93 [Google Scholar]
  118. Marclay F, Pazos D, Delemont O, Esseiva P, Saudan C. 118.  2010. Potential of IRMS technology for tracing gamma-butyrolactone (GBL). Forensic Sci. Int. 198:46–52 [Google Scholar]
  119. Iwata YT, Kuwayama K, Tsujikawa K, Miyaguchi H, Kanamori T, Inoue H. 119.  2010. Seized methamphetamine samples with unique profiles of stable nitrogen isotopic composition documented by stable isotope ratio mass spectrometry. Forensic Toxicol. 28:119–23 [Google Scholar]
  120. Muccio Z, Wockel C, An Y, Jackson GP. 120.  2012. Comparison of bulk and compound-specific δ13C isotope ratio analyses for the discrimination between cannabis samples. J. Forensic Sci. 57:757–64 [Google Scholar]
  121. Gentile N, Siegwolf RTW, Delemont O. 121.  2009. Study of isotopic variations in black powder: reflections on the use of stable isotopes in forensic science for source inference. Rapid Commun. Mass Spectrom. 23:2559–67 [Google Scholar]
  122. Aranda R, Stern LA, Dietz ME, McCormick MC, Barrow JA, Mothershead RF II. 122.  2011. Forensic utility of isotope ratio analysis of the explosive urea nitrate and its precursors. Forensic Sci. Int. 206:143–49 [Google Scholar]
  123. O'Sullivan G, Kalin RM. 123.  2008. Investigation of the range of carbon and hydrogen isotopes within a global set of gasolines. Environ. Forensics 9:166–76 [Google Scholar]
  124. Li Y, Xiong Y, Yang W, Xie Y, Li S, Sun Y. 124.  2009. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills. Mar. Pollut. Bull. 58:114–17 [Google Scholar]
  125. Heo SY, Shin WJ, Lee SW, Bong YS, Lee KS. 125.  2012. Using stable isotope analysis to discriminate gasoline on the basis of its origin. Rapid Commun. Mass Spectrom. 26:517–22 [Google Scholar]
  126. Schwartz Z, An Y, Konstantynova KI, Jackson GP. 126.  2013. Analysis of household ignitable liquids and their post-combustion weathered residues using compound-specific gas chromatography-combustion-isotope ratio mass spectrometry. Forensic Sci. Int. 233:365–73 [Google Scholar]
  127. Farmer NL, Meier-Augenstein W, Kalin RM. 127.  2005. Stable isotope analysis of safety matches using isotope ratio mass spectrometry: a forensic case study. Rapid Commun. Mass Spectrom. 19:3182–86 [Google Scholar]
  128. Farmer N, Ruffell A. 128.  2007. Forensic analysis of wooden safety matches: a case study. Sci. Justice 47:88–98 [Google Scholar]
  129. Farmer N, Meier-Augenstein W, Lucy D. 129.  2009. Stable isotope analysis of white paints and likelihood ratios. Sci. Justice 49:114–19 [Google Scholar]
  130. Daeid NN, Meier-Augenstein W, Kemp HF. 130.  2011. Investigating the provenance of un-dyed spun cotton fibre using multi-isotope profiles and chemometric analysis. Rapid Commun. Mass Spectrom. 25:1812–16 [Google Scholar]
  131. Meier-Augenstein W, Kemp HF, Schenk ER, Almirall JR. 131.  2014. Discrimination of unprocessed cotton on the basis of geographic origin using multi-element stable isotope signatures. Rapid Commun. Mass Spectrom. 28:545–52 [Google Scholar]
  132. Fraser I, Meier-Augenstein W, Kalin RM. 132.  2006. The role of stable isotopes in human identification: a longitudinal study into the variability of isotopic signals in human hair and nails. Rapid Commun. Mass Spectrom. 20:1109–16 [Google Scholar]
  133. Fraser I, Meier-Augenstein W. 133.  2007. Stable 2H isotope analysis of modern-day human hair and nails can aid forensic human identification. Rapid Commun. Mass Spectrom. 21:3279–85 [Google Scholar]
  134. Meier-Augenstein W, Fraser I. 134.  2008. Forensic isotope analysis leads to identification of a mutilated murder victim. Sci. Justice 48:153–59 [Google Scholar]
  135. Meier-Augenstein W, Kemp HF. 135.  2009. Stable isotope analysis: hair and nails. Wiley Encyclopedia of Forensic Science Hoboken, NJ: John Wiley & Sons [Google Scholar]
  136. Meier-Augenstein W, Chartrand MM, Kemp HF, St-Jean G. 136.  2011. An inter-laboratory comparative study into sample preparation for both reproducible and repeatable forensic 2H isotope analysis of human hair by continuous flow isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 25:3331–38 [Google Scholar]
  137. Holobinko A, Meier-Augenstein W, Kemp HF, Prowse T, Ford SM. 137.  2011. 2H stable isotope analysis of human tooth enamel: a new tool for forensic human provenancing?. Rapid Commun. Mass Spectrom. 25:910–16 [Google Scholar]
  138. Moran JJ, Newburn MK, Alexander ML, Sams RL, Kelly JF, Kreuzer HW. 138.  2011. Laser ablation isotope ratio mass spectrometry for enhanced sensitivity and spatial resolution in stable isotope analysis. Rapid Commun. Mass Spectrom. 25:1282–90 [Google Scholar]
  139. Meier-Augenstein W, Hobson KA, Wassenaar LI. 139.  2013. Critique: measuring hydrogen stable isotope abundance of proteins to infer origins of wildlife, food and people. Bioanalysis 5:751–67 [Google Scholar]
  140. Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE. 140.  2008. Hydrogen and oxygen isotope ratios in human hair are related to geography. PNAS 105:2788–93 [Google Scholar]
  141. Thompson AH, Chesson LA, Podlesak DW, Bowen GJ, Cerling TE, Ehleringer JR. 141.  2010. Stable isotope analysis of modern human hair collected from Asia (China, India, Mongolia, and Pakistan). Am. J. Phys. Anthropol. 141:440–51 [Google Scholar]
  142. Kennedy CD, Bowen GJ, Ehleringer JR. 142.  2011. Temporal variation of oxygen isotope ratios (δ18O) in drinking water: implications for specifying location of origin with human scalp hair. Forensic Sci. Int. 208:156–66 [Google Scholar]
  143. Valenzuela LO, Chesson LA, O'Grady SP, Cerling TE, Ehleringer JR. 143.  2011. Spatial distributions of carbon, nitrogen and sulfur isotope ratios in human hair across the central United States. Rapid Commun. Mass Spectrom. 25:861–68 [Google Scholar]
  144. Podlesak DW, Bowen GJ, O'Grady S, Cerling TE, Ehleringer JR. 144.  2012. δ2H and δ18O of human body water: a GIS model to distinguish residents from non-residents in the contiguous USA. Isotopes Environ. Health Stud. 48:259–79 [Google Scholar]
  145. Valenzuela LO, Chesson LA, Bowen GJ, Cerling TE, Ehleringer JR. 145.  2012. Dietary heterogeneity among western industrialized countries reflected in the stable isotope ratios of human hair. PLOS ONE 7:e34234 [Google Scholar]
  146. O'Grady SP, Valenzuela LO, Remien CH, Enright LE, Jorgensen MJ. 146.  et al. 2012. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates. Am. J. Primatol. 74:651–60 [Google Scholar]
  147. Jackson GP, An Y, Konstantynova KI, Rashaid AHB. 147.  2014. Biometrics from the carbon isotope ratio analysis of amino acids in human hair. Sci. Justice 55:43–50 [Google Scholar]
  148. Coleman M, Meier-Augenstein W. 148.  2014. Ignoring IUPAC guidelines for measurement and reporting of stable isotope abundance values affects us all. Rapid Commun. Mass Spectrom. 28:1953–55 [Google Scholar]
  149. Butler JM, Li J, Shaler TA, Monforte JA, Becker CH. 149.  1998. Reliable genotyping of short tandem repeat loci without an allelic ladder using time-of-flight mass spectrometry. Int. J. Legal Med. 112:45–49 [Google Scholar]
  150. Li J, Butler JM, Tan YP, Lin H, Royer S. 150.  et al. 1999. Single nucleotide polymorphism determination using primer extension and time-of-flight mass spectrometry. Electrophoresis 20:1258–65 [Google Scholar]
  151. Johansen P, Andersen JD, Børsting C, Morling N. 151.  2013. Evaluation of the iPLEX® Sample ID Plus Panel designed for the Sequenom MassARRAY® system. A SNP typing assay developed for human identification and sample tracking based on the SNPforID panel. Forensic Sci. Int. Genet. 7:482–87 [Google Scholar]
  152. Green DE. 152.  1972. Automated detection of abused drugs by direct mass fragmentography. Proc. West. Pharmacol. Soc. 15:74–77 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071114-040335
Loading
/content/journals/10.1146/annurev-anchem-071114-040335
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error