Progress in nanotechnology is enabled by and dependent on the availability of measurement methods with spatial resolution commensurate with nanomaterials' length scales. Chemical imaging techniques, such as scattering scanning near-field optical microscopy (s-SNOM) and photothermal-induced resonance (PTIR), have provided scientists with means of extracting rich chemical and structural information with nanoscale resolution. This review presents some basics of infrared spectroscopy and microscopy, followed by detailed descriptions of s-SNOM and PTIR working principles. Nanoscale spectra are compared with far-field macroscale spectra, which are widely used for chemical identification. Selected examples illustrate either technical aspects of the measurements or applications in materials science. Central to this review is the ability to record nanoscale infrared spectra because, although chemical maps enable immediate visualization, the spectra provide information to interpret the images and characterize the sample. The growing breadth of nanomaterials and biological applications suggest rapid growth for this field.

[Erratum, Closure]

An erratum has been published for this article:
Infrared Imaging and Spectroscopy Beyond the Diffraction Limit

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. 1.  2005. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105:1171–96 [Google Scholar]
  2. Henzie J, Lee J, Lee MH, Hasan W, Odom TW. 2.  2009. Nanofabrication of plasmonic structures. Annu. Rev. Phys. Chem. 60:147–65 [Google Scholar]
  3. Murray CB, Norris DJ, Bawendi MG. 3.  1993. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–15 [Google Scholar]
  4. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P. 4.  2005. Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 249:1870–901 [Google Scholar]
  5. Yaghi OM, O'Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. 5.  2003. Reticular synthesis and the design of new materials. Nature 423:705–14 [Google Scholar]
  6. Lee C, Wei XD, Kysar JW, Hone J. 6.  2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–88 [Google Scholar]
  7. Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A. 7.  et al. 2003. Nanoscale thermal transport. J. Appl. Phys. 93:793–818 [Google Scholar]
  8. Zhang LJ, Webster TJ. 8.  2009. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80 [Google Scholar]
  9. Centrone A, Penzo E, Sharma M, Myerson JW, Jackson AM. 9.  et al. 2008. The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles. PNAS 105:9886–91 [Google Scholar]
  10. El-Sayed MA. 10.  2001. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34:257–64 [Google Scholar]
  11. Huber AJ, Wittborn J, Hillenbrand R. 11.  2010. Infrared spectroscopic near-field mapping of single nanotransistors. Nanotechnology 21:235702 [Google Scholar]
  12. Nicholson PG, Castro FA. 12.  2010. Organic photovoltaics: principles and techniques for nanometre scale characterization. Nanotechnology 21:492001 [Google Scholar]
  13. Fernandez DC, Bhargava R, Hewitt SM, Levin IW. 13.  2005. Infrared spectroscopic imaging for histopathologic recognition. Nat. Biotechnol. 23:469–74 [Google Scholar]
  14. Park JH, von Maltzahn G, Ong LL, Centrone A, Hatton TA. 14.  et al. 2010. Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv. Mater. 22:880–85 [Google Scholar]
  15. Centrone A, Hu Y, Jackson AM, Zerbi G, Stellacci F. 15.  2007. Phase separation on mixed-monolayer-protected metal nanoparticles: a study by infrared spectroscopy and scanning tunneling microscopy. Small 3:814–17 [Google Scholar]
  16. Centrone A, Brambilla L, Renouard T, Gherghel L, Mathis C. 16.  et al. 2005. Structure of new carbonaceous materials: the role of vibrational spectroscopy. Carbon 43:1593–609 [Google Scholar]
  17. Petibois C, Piccinini M, Guidi MC, Marcelli A. 17.  2010. Facing the challenge of biosample imaging by FTIR with a synchrotron radiation source. J. Synchrotron Radiat. 17:1–11 [Google Scholar]
  18. Nasse MJ, Walsh MJ, Mattson EC, Reininger R, Kajdacsy-Balla A. 18.  et al. 2011. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat. Methods 8:413–16 [Google Scholar]
  19. Binnig G, Quate CF, Gerber C. 19.  1986. Atomic force microscope. Phys. Rev. Lett. 56:930–33 [Google Scholar]
  20. Sahin O, Magonov S, Su C, Quate CF, Solgaard O. 20.  2007. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nanotechnol. 2:507–14 [Google Scholar]
  21. Hurley DC, Shen K, Jennett NM, Turner JA. 21.  2003. Atomic force acoustic microscopy methods to determine thin-film elastic properties. J. Appl. Phys. 94:2347–54 [Google Scholar]
  22. Herruzo ET, Perrino AP, Garcia R. 22.  2014. Fast nanomechanical spectroscopy of soft matter. Nat. Commun. 5:3126 [Google Scholar]
  23. Oliver RA. 23.  2008. Advances in AFM for the electrical characterization of semiconductors. Rep. Prog. Phys. 71:076501 [Google Scholar]
  24. Majumdar A. 24.  1999. Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29:505–85 [Google Scholar]
  25. Buzin AI, Kamasa P, Pyda M, Wunderlich B. 25.  2002. Application of a Wollaston wired probe for quantitative thermal analysis. Thermochim. Acta 381:9–18 [Google Scholar]
  26. Knoll B, Keilmann F. 26.  1999. Near-field probing of vibrational absorption for chemical microscopy. Nature 399:134–37 [Google Scholar]
  27. Knoll B, Keilmann F. 27.  2000. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182:321–28 [Google Scholar]
  28. Dazzi A, Prazeres R, Glotin E, Ortega JM. 28.  2005. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30:2388–90 [Google Scholar]
  29. Dazzi A, Prazeres R, Glotin F, Ortega JM. 29.  2007. Analysis of nano-chemical mapping performed by an AFM-based (“AFMIR”) acousto-optic technique. Ultramicroscopy 107:1194–200 [Google Scholar]
  30. Lahiri B, Holland G, Centrone A. 30.  2013. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small 9:439–45 [Google Scholar]
  31. Zhang M, Andreev GO, Fei Z, McLeod AS, Dominguez G. 31.  et al. 2012. Near-field spectroscopy of silicon dioxide thin films. Phys. Rev. B 85:075419 [Google Scholar]
  32. Xu XJG, Tanur AE, Walker GC. 32.  2013. Phase controlled homodyne infrared near-field microscopy and spectroscopy reveal inhomogeneity within and among individual boron nitride nanotubes. J. Phys. Chem. A 117:3348–54 [Google Scholar]
  33. Craig IM, Taubman MS, Lea AS, Phillips MC, Josberger EE, Raschke MB. 33.  2013. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade laser. Opt. Express 21:30401–14 [Google Scholar]
  34. Huth F, Govyadinov A, Amarie S, Nuansing W, Keilmann F, Hillenbrand R. 34.  2012. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12:3973–78 [Google Scholar]
  35. Govyadinov AA, Amenabar I, Huth F, Carney PS, Hillenbrand R. 35.  2013. Quantitative measurement of local infrared absorption and dielectric function with tip-enhanced near-field microscopy. J. Phys. Chem. Lett. 4:1526–31 [Google Scholar]
  36. Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl WW, Keilmann F. 36.  2012. Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J. Nanotechnol. 3:312–23 [Google Scholar]
  37. Bechtel HA, Muller EA, Olmon RL, Martin MC, Raschke MB. 37.  2014. Ultrabroadband infrared nanospectroscopic imaging. PNAS 111:7191–96 [Google Scholar]
  38. Hermann P, Hoehl A, Patoka P, Huth F, Ruhl E, Ulm G. 38.  2013. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation. Opt. Express 21:2913–19 [Google Scholar]
  39. Hermann P, Hoehl A, Ulrich G, Fleischmann C, Hermelink A. 39.  et al. 2014. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy. Opt. Express 22:17948–58 [Google Scholar]
  40. Lu F, Belkin MA. 40.  2011. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Opt. Express 19:19942–47 [Google Scholar]
  41. Lu F, Jin MZ, Belkin MA. 41.  2014. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photonics 8:307–12 [Google Scholar]
  42. Wilson EB, Decius JC, Cross PC. 42.  1955. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra New York: Dover [Google Scholar]
  43. Centrone A, Brambilla L, Zerbi G. 43.  2005. Adsorption of H2 on carbon-based materials: a Raman spectroscopy study. Phys. Rev. B 71:245406 [Google Scholar]
  44. Agosti E, Rivola M, Hernandez V, Del Zoppo M, Zerbi G. 44.  1999. Electronic and dynamical effects from the unusual features of the Raman spectra of oligo and polythiophenes. Synth. Met. 100:101–12 [Google Scholar]
  45. Laibinis PE, Nuzzo RG, Whitesides GM. 45.  1992. Structure of monolayers formed by coadsorption of 2 normal-alkanethiols of different chain lengths on gold and its relation to wetting. J. Phys. Chem. 96:5097–105 [Google Scholar]
  46. Porter MD, Bright TB, Allara DL, Chidsey CED. 46.  1987. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109:3559–68 [Google Scholar]
  47. Graf RT, Koenig JL, Ishida H. 47.  1985. Optical-constant determination of thin polymer films in the infrared. Appl. Spectrosc. 39:405–8 [Google Scholar]
  48. Levin IW, Bhargava R. 48.  2005. Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition. Annu. Rev. Phys. Chem. 56:429–74 [Google Scholar]
  49. Kazarian SG, Chan KLA. 49.  2010. Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Appl. Spectrosc. 64:135A–52A [Google Scholar]
  50. Bhargava R. 50.  2012. Infrared spectroscopic imaging: the next generation. Appl. Spectrosc. 66:1091–120 [Google Scholar]
  51. Bellisola G, Sorio C. 51.  2012. Infrared spectroscopy and microscopy in cancer research and diagnosis. Am. J. Cancer Res. 2:1–21 [Google Scholar]
  52. Reddy RK, Walsh MJ, Schulmerich MV, Carney PS, Bhargava R. 52.  2013. High-definition infrared spectroscopic imaging. Appl. Spectrosc. 67:93–105 [Google Scholar]
  53. Phillips MC, Ho N. 53.  2008. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array. Opt. Express 16:1836–45 [Google Scholar]
  54. Bassan P, Weida MJ, Rowlette J, Gardner P. 54.  2014. Large scale infrared imaging of tissue micro arrays (TMAS) using a tunable quantum cascade laser (QCL) based microscope. Analyst 139:3856–59 [Google Scholar]
  55. Martin MC, Dabat-Blondeau C, Unger M, Sedlmair J, Parkinson DY. 55.  et al. 2013. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Nat. Methods 10:861–64 [Google Scholar]
  56. Davis BJ, Carney PS, Bhargava R. 56.  2010. Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples. Anal. Chem. 82:3487–99 [Google Scholar]
  57. Pohl DW, Denk W, Lanz M. 57.  1984. Optical stethoscopy: image recording with resolution λ/20. Appl. Phys. Lett. 44:651–53 [Google Scholar]
  58. Lewis A, Isaacson M, Harootunian A, Muray A. 58.  1984. Development of a 500-Å spatial-resolution light-microscope: I. Light is efficiently transmitted through λ/16 diameter apertures. Ultramicroscopy 13:227–31 [Google Scholar]
  59. Michaels CA, Stranick SJ, Richter LJ, Cavanagh RR. 59.  2000. Scanning near-field infrared microscopy and spectroscopy with a broadband laser source. J. Appl. Phys. 88:4832–39 [Google Scholar]
  60. Bethe HA. 60.  1944. Theory of diffraction by small holes. Phys. Rev. 66:163–82 [Google Scholar]
  61. Olmon RL, Krenz PM, Jones AC, Boreman GD, Raschke MB. 61.  2008. Near-field imaging of optical antenna modes in the mid-infrared. Opt. Express 16:20295–305 [Google Scholar]
  62. Alonso-Gonzalez P, Schnell M, Sarriugarte P, Sobhani H, Wu CH. 62.  et al. 2011. Real-space mapping of Fano interference in plasmonic metamolecules. Nano Lett. 11:3922–26 [Google Scholar]
  63. Yoxall E, Navarro-Cia M, Rahmani M, Maier SA, Phillips CC. 63.  2013. Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers. Appl. Phys. Lett. 103:213110 [Google Scholar]
  64. Grefe SE, Leiva D, Mastel S, Dhuey SD, Cabrini S. 64.  et al. 2013. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas. Phys. Chem. Chem. Phys. 15:18944–50 [Google Scholar]
  65. Awad E, Abdel-Rahman M, Zia MF. 65.  2014. Checkerboard nanoplasmonic gold structure for long-wave infrared absorption enhancement. Photonics J. IEEE 6:1–7 [Google Scholar]
  66. Neubrech F, Pucci A, Cornelius TW, Karim S, Garcia-Etxarri A, Aizpurua J. 66.  2008. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101:157403 [Google Scholar]
  67. Zentgraf T, Dorfmuller J, Rockstuhl C, Etrich C, Vogelgesang R. 67.  et al. 2008. Amplitude- and phase-resolved optical near fields of split-ring-resonatur-based metamaterials. Opt. Lett. 33:848–50 [Google Scholar]
  68. Stiegler JM, Tena-Zaera R, Idigoras O, Chuvilin A, Hillenbrand R. 68.  2012. Correlative infrared-electron nanoscopy reveals the local structure-conductivity relationship in zinc oxide nanowires. Nat. Commun. 3:1131 [Google Scholar]
  69. Stiegler JM, Huber AJ, Diedenhofen SL, Rivas JG, Algra RE. 69.  et al. 2010. Nanoscale free-carrier profiling of individual semiconductor nanowires by infrared near-field nanoscopy. Nano Lett. 10:1387–92 [Google Scholar]
  70. Xu XG, Ghamsari BG, Jiang J-H, Gilburd L, Andreev GO. 70.  et al. 2014. One-dimensional surface phonon polaritons in boron nitride nanotubes. Nat. Commun. 5:4782 [Google Scholar]
  71. Xu XJG, Raschke MB. 71.  2013. Near-field infrared vibrational dynamics and tip-enhanced decoherence. Nano Lett. 13:1588–95 [Google Scholar]
  72. Westermeier C, Cernescu A, Amarie S, Liewald C, Keilmann F, Nickel B. 72.  2014. Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging. Nat. Commun. 5:4101 [Google Scholar]
  73. 73.  Deleted in proof
  74. Dominguez G, McLeod AS, Gainsforth Z, Kelly P, Bechtel HA. 74.  et al. 2014. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples. Nat. Commun. 5:5445 [Google Scholar]
  75. Fei Z, Rodin AS, Gannett W, Dai S, Regan W. 75.  et al. 2013. Electronic and plasmonic phenomena at graphene grain boundaries. Nat. Nanotechnol. 8:821–25 [Google Scholar]
  76. Chen JN, Nesterov ML, Nikitin AY, Thongrattanasiri S, Alonso-Gonzalez P. 76.  et al. 2013. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC. Nano Lett. 13:6210–15 [Google Scholar]
  77. Chen J, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F. 77.  et al. 2012. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487:77–81 [Google Scholar]
  78. Dai S, Fei Z, Ma Q, Rodin AS, Wagner M. 78.  et al. 2014. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343:1125–29 [Google Scholar]
  79. Brehm M, Taubner T, Hillenbrand R, Keilmann F. 79.  2006. Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. Nano Lett. 6:1307–10 [Google Scholar]
  80. Berweger S, Nguyen DM, Muller EA, Bechtel HA, Perkins TT, Raschke MB. 80.  2013. Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135:18292–95 [Google Scholar]
  81. Amenabar I, Poly S, Nuansing W, Hubrich EH, Govyadinov AA. 81.  et al. 2013. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4:2890 [Google Scholar]
  82. Keilmann F, Hillenbrand R. 82.  2004. Near-field microscopy by elastic light scattering from a tip. Philos. Trans. R. Soc. Lond. A 362:787–805 [Google Scholar]
  83. Atkin JM, Berweger S, Jones AC, Raschke MB. 83.  2012. Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Adv. Phys. 61:745–842 [Google Scholar]
  84. Schmidt DA, Kopf I, Brundermann E. 84.  2012. A matter of scale: from far-field microscopy to near-field nanoscopy. Laser Photonics Rev. 6:296–332 [Google Scholar]
  85. Griffiths PR, Miseo EV. 85.  2014. Infrared mapping below the diffraction limit. Infrared and Raman Spectroscopic Imaging R Salzer, HW Siesler 513–40 Weinheim: Wiley-VCH, 2nd ed.. [Google Scholar]
  86. Cvitkovic A, Ocelic N, Hillenbrand R. 86.  2007. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15:8550–65 [Google Scholar]
  87. Xu XJG, Rang M, Craig IM, Raschke MB. 87.  2012. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. J. Phys. Chem. Lett. 3:1836–41 [Google Scholar]
  88. Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R. 88.  et al. 2013. Resonant antenna probes for tip-enhanced infrared near-field microscopy. Nano Lett. 13:1065–72 [Google Scholar]
  89. Aizpurua J, Taubner T, Garcia de Abajo FJ, Brehm M, Hillenbrand R. 89.  2008. Substrate-enhanced infrared near-field spectroscopy. Opt. Express 16:1529–45 [Google Scholar]
  90. De Angelis F, Das G, Candeloro P, Patrini M, Galli M. 90.  et al. 2010. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 5:67–72 [Google Scholar]
  91. Ropers C, Neacsu CC, Elsaesser T, Albrecht M, Raschke MB, Lienau C. 91.  2007. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7:2784–88 [Google Scholar]
  92. Neacsu CC, Berweger S, Olmon RL, Saraf LV, Ropers C, Raschke MB. 92.  2010. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett. 10:592–96 [Google Scholar]
  93. Gomez L, Bachelot R, Bouhelier A, Wiederrecht GP, Chang SH. 93.  et al. 2006. Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches. J. Opt. Soc. Am. B 23:823–33 [Google Scholar]
  94. Ocelic N, Huber A, Hillenbrand R. 94.  2006. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89:101124 [Google Scholar]
  95. Vogelgesang R, Dmitriev A. 95.  2010. Real-space imaging of nanoplasmonic resonances. Analyst 135:1175–81 [Google Scholar]
  96. Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ. 96.  2008. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 37:898–911 [Google Scholar]
  97. Lahiri B, Holland G, Aksyuk V, Centrone A. 97.  2013. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Lett. 13:3218–24 [Google Scholar]
  98. Huth F, Schnell M, Wittborn J, Ocelic N, Hillenbrand R. 98.  2011. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 10:352–56 [Google Scholar]
  99. Taubner T, Keilmann F, Hillenbrand R. 99.  2005. Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy. Opt. Express 13:8893–99 [Google Scholar]
  100. Engelhardt AP, Hauer B, Taubner T. 100.  2013. Visibility of weak contrasts in subsurface scattering near-field microscopy. Ultramicroscopy 126:40–43 [Google Scholar]
  101. Zhang LM, Andreev GO, Fei Z, McLeod AS, Dominguez G. 101.  et al. 2012. Near-field spectroscopy of silicon dioxide thin films. Phys. Rev. B 85:075419 [Google Scholar]
  102. Mastel S, Govyadinov AA, de Oliveira TVAG, Amenabar I, Hillenbrand R. 102.  2015. Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references. Appl. Phys. Lett. 106:023113 [Google Scholar]
  103. Dazzi A, Prazeres R, Glotin F, Ortega JM, Al-Sawaftah M, de Frutos M. 103.  2008. Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy 108:635–41 [Google Scholar]
  104. Mayet C, Dazzi A, Prazeres R, Ortega JM, Jaillard D. 104.  2010. In situ identification and imaging of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst 135:2540–45 [Google Scholar]
  105. Mayet C, Deniset-Besseau A, Prazeres R, Ortega JM, Dazzi A. 105.  2013. Analysis of bacterial polyhydroxybutyrate production by multimodal nanoimaging. Biotechnol. Adv. 31:369–74 [Google Scholar]
  106. Deniset-Besseau A, Prater CB, Virolle MJ, Dazzi A. 106.  2014. Monitoring TriAcylGlycerols accumulation by atomic force microscopy based infrared spectroscopy in Streptomyces species for biodiesel applications. J. Phys. Chem. Lett. 5:654–58 [Google Scholar]
  107. Mayet C, Dazzi A, Prazeres R, Allot E, Glotin E, Ortega JM. 107.  2008. Sub-100 nm IR spectromicroscopy of living cells. Opt. Lett. 33:1611–13 [Google Scholar]
  108. Policar C, Waern JB, Plamont MA, Clede S, Mayet C. 108.  et al. 2011. Subcellular IR imaging of a metal-carbonyl moiety using photothermally induced resonance. Angew. Chem. Int. Ed. 50:860–64 [Google Scholar]
  109. Kennedy E, Al-Majmaie R, Al-Rubeai M, Zerulla D, Rice JH. 109.  2013. Nanoscale infrared absorption imaging permits non-destructive intracellular photosensitizer localization for subcellular uptake analysis. RSC Adv. 3:13789–95 [Google Scholar]
  110. Kennedy E, Al-Majmaie R, Al-Rubeai M, Zerulla D, Rice JH. 110.  2013. Quantifying nanoscale biochemical heterogeneity in human epithelial cancer cells using combined AFM and PTIR absorption nanoimaging. J. Biophotonics 8:133–41 [Google Scholar]
  111. Marcott C, Lo M, Kjoller K, Fiat F, Baghdadli N. 111.  et al. 2014. Localization of human hair structural lipids using nanoscale infrared spectroscopy and imaging. Appl. Spectrosc. 68:564–69 [Google Scholar]
  112. Muller T, Ruggeri FS, Kulik AJ, Shimanovich U, Mason TO. 112.  et al. 2014. Nanoscale spatially resolved infrared spectra from single microdroplets. Lab Chip 14:1315–19 [Google Scholar]
  113. Hill GA, Rice JH, Meech SR, Craig DQM, Kuo P. 113.  et al. 2009. Submicrometer infrared surface imaging using a scanning-probe microscope and an optical parametric oscillator laser. Opt. Lett. 34:431–33 [Google Scholar]
  114. Kjoller K, Felts JR, Cook D, Prater CB, King WP. 114.  2010. High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle. Nanotechnology 21:185705 [Google Scholar]
  115. Marcott C, Lo M, Kjoller K, Prater C, Noda I. 115.  2011. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy. Appl. Spectrosc. 65:1145–50 [Google Scholar]
  116. Felts JR, Kjoller K, Lo M, Prater CB, King WP. 116.  2012. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. ACS Nano 6:8015–21 [Google Scholar]
  117. Van Eerdenbrugh B, Lo M, Kjoller K, Marcott C, Taylor LS. 117.  2012. Nanoscale mid-infrared evaluation of the miscibility behavior of blends of dextran or maltodextrin with poly(vinylpyrrolidone). Mol. Pharm. 9:1459–69 [Google Scholar]
  118. Katzenmeyer AM, Aksyuk V, Centrone A. 118.  2013. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique. Anal. Chem. 85:1972–79 [Google Scholar]
  119. Felts JR, Cho H, Yu MF, Bergman LA, Vakakis AF, King WP. 119.  2013. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Rev. Sci. Instrum. 84:023709 [Google Scholar]
  120. Cho H, Felts JR, Yu MF, Bergman LA, Vakakis AF, King WP. 120.  2013. Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification. Nanotechnology 24:444007 [Google Scholar]
  121. Ghosh S, Remita H, Ramos L, Dazzi A, Deniset-Besseau A. 121.  et al. 2014. Pedot nanostructures synthesized in hexagonal mesophases. New J. Chem. 38:1106–15 [Google Scholar]
  122. Van Eerdenbrugh B, Lo M, Kjoller K, Marcott C, Taylor LS. 122.  2012. Nanoscale mid-infrared imaging of phase separation in a drug-polymer blend. J. Pharm. Sci. 101:2066–73 [Google Scholar]
  123. Harrison AJ, Bilgili EA, Beaudoin SP, Taylor LS. 123.  2013. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals. Anal. Chem. 85:11449–55 [Google Scholar]
  124. Sauvage S, Driss A, Reveret F, Boucaud P, Dazzi A. 124.  et al. 2011. Homogeneous broadening of the S to P transition in InGaAs/GaAs quantum dots measured by infrared absorption imaging with nanoscale resolution. Phys. Rev. B 83:035302 [Google Scholar]
  125. Felts JR, Law S, Roberts CM, Podolskiy V, Wasserman DM, King WP. 125.  2013. Near-field infrared absorption of plasmonic semiconductor microparticles studied using atomic force microscope infrared spectroscopy. Appl. Phys. Lett. 102:152110 [Google Scholar]
  126. Katzenmeyer AM, Chae J, Kasica R, Holland G, Lahiri B, Centrone A. 126.  2014. Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique. Adv. Opt. Mater. 2:718–22 [Google Scholar]
  127. Aksyuk V, Lahiri B, Holland G, Centrone A. 127.  2015. Near-field asymmetries in plasmonic resonators. Nanoscale 7:3634–44 [Google Scholar]
  128. Katzenmeyer AM, Canivet J, Holland G, Farrusseng D, Centrone A. 128.  2014. Assessing chemical heterogeneity at the nanoscale in mixed-ligand metal-organic frameworks with the PTIR technique. Angew. Chem. Int. Ed. 53:2852–56 [Google Scholar]
  129. Dong R, Fang Y, Chae J, Dai J, Xiao Z. 129.  et al. 2015. High gain and low driving-voltage photodetectors enabled by organolead triiodide perovskites. Adv. Mater. 27:1912–18 [Google Scholar]
  130. Katzenmeyer AM, Holland G, Kjoller K, Centrone A. 130.  2015. Visible through mid-infrared absorption spectroscopy with 20 nm spatial resolution. Anal. Chem. 87:3154–59 [Google Scholar]
  131. Dazzi A, Glotin F, Carminati R. 131.  2010. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 107:124519 [Google Scholar]
  132. Dazzi A. 132.  2009. Photothermal induced resonance. Application to infrared spectromicroscopy. Thermal Nanosystems and Nanomaterials S Volz 469–503 Berlin: Springer [Google Scholar]
  133. Harrick NJ. 133.  1967. Internal Reflection Spectroscopy New York: Interscience [Google Scholar]
  134. Hosono H. 134.  1991. Fourier-transform infrared attenuated total reflection spectra of ion-implanted silica glasses. J. Appl. Phys. 69:8079–82 [Google Scholar]
  135. Lahiri B, Holland G, Centrone A. 135.  2013. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small 9:1876–76 [Google Scholar]
  136. Valvano JW, Cochran JR, Diller KR. 136.  1985. Thermal-conductivity and diffusivity of biomaterials measured with self-heated thermistors. Int. J. Thermophys. 6:301–11 [Google Scholar]
  137. Dazzi A, Prater CB, Hu QC, Chase DB, Rabolt JF, Marcott C. 137.  2012. AFMIR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 66:1365–84 [Google Scholar]
  138. Atwater HA, Polman A. 138.  2010. Plasmonics for improved photovoltaic devices. Nat. Mater. 9:205–13 [Google Scholar]
  139. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK. 139.  et al. 2008. Nanostructured plasmonic sensors. Chem. Rev. 108:494–521 [Google Scholar]
  140. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B. 140.  et al. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:13549–54 [Google Scholar]
  141. Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG. 141.  et al. 2009. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. PNAS 106:19227–32 [Google Scholar]
  142. Wu CH, Khanikaev AB, Adato R, Arju N, Yanik AA. 142.  et al. 2012. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11:69–75 [Google Scholar]
  143. Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI. 143.  2007. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99:147401 [Google Scholar]
  144. Luk'yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P. 144.  et al. 2010. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9:707–15 [Google Scholar]
  145. Lahiri B, Khokhar AZ, De La Rue RM, McMeekin SG, Johnson NP. 145.  2009. Asymmetric split ring resonators for optical sensing of organic materials. Opt. Express 17:1107–15 [Google Scholar]
  146. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J. 146.  et al. 2002. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–72 [Google Scholar]
  147. Centrone A, Harada T, Speakman S, Hatton TA. 147.  2010. Facile synthesis of vanadium metal-organic frameworks and their magnetic properties. Small 6:1598–602 [Google Scholar]
  148. Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J. 148.  et al. 2010. Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–50 [Google Scholar]
  149. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. 149.  2009. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38:1450–59 [Google Scholar]
  150. Alaerts L, Maes M, Giebeler L, Jacobs PA, Martens JA. 150.  et al. 2008. Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53. J. Am. Chem. Soc. 130:14170–78 [Google Scholar]
  151. Talin AA, Centrone A, Ford AC, Foster ME, Stavila V. 151.  et al. 2014. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 343:66–69 [Google Scholar]
  152. Volkringer C, Meddouri M, Loiseau T, Guillou N, Marrot J. 152.  et al. 2008. The Kagomé topology of the gallium and indium metal-organic framework types with a MIL-68 structure: synthesis, XRD, solid-state NMR characterizations, and hydrogen adsorption. Inorg. Chem. 47:11892–901 [Google Scholar]
  153. Toprak MS, Stiewe C, Platzek D, Williams S, Bertini L. 153.  et al. 2004. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv. Funct. Mater. 14:1189–96 [Google Scholar]
  154. Nan CW, Birringer R, Clarke DR, Gleiter H. 154.  1997. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81:6692–99 [Google Scholar]
  155. Pollack GL. 155.  1969. Kapitza resistance. Rev. Mod. Phys. 41:48 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error