Cells as the building blocks of life determine the basic functions and properties of a living organism. Understanding the structure and components of a cell aids in the elucidation of its biological functions. Moreover, knowledge of the similarities and differences between diseased and healthy cells is essential to understanding pathological mechanisms, identifying diagnostic markers, and designing therapeutic molecules. However, monitoring the structures and activities of a living cell remains a challenging task in bioanalytical and life science research. To meet the requirements of this task, aptamers, as “chemical antibodies,” have become increasingly powerful tools for cellular analysis. This article reviews recent advances in the development of nucleic acid aptamers in the areas of cell membrane analysis, cell detection and isolation, real-time monitoring of cell secretion, and intracellular delivery and analysis with living cell models. Limitations of aptamers and possible solutions are also discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Balch WE, Morimoto RI, Dillin A, Kelly JW. 1.  2008. Adapting proteostasis for disease intervention. Science 319:916–19 [Google Scholar]
  2. Ellington AD, Szostak JW. 2.  1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–22 [Google Scholar]
  3. Tuerk C, Gold L. 3.  1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–10 [Google Scholar]
  4. Cerchia L, de Franciscis V. 4.  2010. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 28:517–25 [Google Scholar]
  5. Jenison RD, Gill SC, Pardi A, Polisky B. 5.  1994. High-resolution molecular discrimination by RNA. Science 263:1425–29 [Google Scholar]
  6. Haller AA, Sarnow P. 6.  1997. In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules. Proc. Natl. Acad. Sci. USA 94:8521–26 [Google Scholar]
  7. Sassanfar M, Szostak JW. 7.  1993. An RNA motif that binds ATP. Nature 364:550–53 [Google Scholar]
  8. Mannironi C, DiNardo A, Fruscoloni P, Tocchini-Valentini GP. 8.  1997. In vitro selection of dopamine RNA ligands. Biochemistry 36:9726–34 [Google Scholar]
  9. Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M. 9.  1996. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 24:1029–36 [Google Scholar]
  10. Morris KN, Jensen KB, Julin CM, Weil M, Gold L. 10.  1998. High affinity ligands from in vitro selection: complex targets. Proc. Natl. Acad. Sci. USA 95:2902–7 [Google Scholar]
  11. Blank M, Weinschenk T, Priemer M, Schluesener H. 11.  2001. Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels: selective targeting of endothelial regulatory protein pigpen. J. Biol. Chem. 276:16464–68 [Google Scholar]
  12. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L. 12.  2003. A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA 100:15416–21 [Google Scholar]
  13. Wang CL, Zhang M, Yang GA, Zhang DJ, Ding HM. 13.  et al. 2003. Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J. Biotechnol. 102:15–22 [Google Scholar]
  14. Mallikaratchy P, Stahelin RV, Cao Z, Cho W, Tan W. 14.  2006. Selection of DNA ligands for protein kinase C-delta. Chem. Commun. 2006:3229–31 [Google Scholar]
  15. Tang ZW, Shangguan D, Wang KM, Shi H, Sefah K. 15.  et al. 2007. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem. 79:4900–7 [Google Scholar]
  16. Chen HW, Medley CD, Sefah K, Shangguan D, Tang Z. 16.  et al. 2008. Molecular recognition of small-cell lung cancer cells using aptamers. Chem. Med. Chem. 3:991–1001 [Google Scholar]
  17. Sefah K, Tang ZW, Shangguan DH, Chen H, Lopez-Colon D. 17.  et al. 2009. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 23:235–44 [Google Scholar]
  18. Tang Z, Parekh P, Turner P, Moyer RW, Tan W. 18.  2009. Generating aptamers for recognition of virus-infected cells. Clin. Chem. 55:813–22 [Google Scholar]
  19. Zhao Z, Xu L, Shi X, Tan W, Fang X, Shangguan D. 19.  2009. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 134:1808–14 [Google Scholar]
  20. Zhou J, Swiderski P, Li H, Zhang J, Neff CP. 20.  et al. 2009. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res. 37:3094–109 [Google Scholar]
  21. Parekh P, Tang Z, Turner PC, Moyer RW, Tan W. 21.  2010. Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal. Chem. 82:8642–49 [Google Scholar]
  22. Sefah K, Meng L, Lopez-Colon D, Jimenez E, Liu C, Tan W. 22.  2010. DNA aptamers as molecular probes for colorectal cancer study. PLoS One 5:e14269 [Google Scholar]
  23. Van Simaeys D, Lopez-Colon D, Sefah K, Sutphen R, Jimenez E, Tan W. 23.  2010. Study of the molecular recognition of aptamers selected through ovarian cancer cell-SELEX. PLoS One 5:e13770 [Google Scholar]
  24. Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B. 24.  et al. 2011. In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem. Neurosci. 2:175–81 [Google Scholar]
  25. Shangguan D, Li Y, Tang ZW, Cao ZHC, Chen HW. 25.  et al. 2006. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. USA 103:11838–43 [Google Scholar]
  26. Jilma-Stohlawetz P, Gilbert JC, Gorczyca ME, Knobl P, Jilma B. 26.  2011. A dose ranging phase I/II trial of the von Willebrand factor inhibiting aptamer ARC1779 in patients with congenital thrombotic thrombocytopenic purpura. Thromb. Haemost. 106:539–47 [Google Scholar]
  27. Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR. 27.  et al. 2006. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc. Natl. Acad. Sci. USA 103:2328–33 [Google Scholar]
  28. Stuart RK, Stockerl-Goldstein K, Cooper M, Devetten M, Herzig R. 28.  et al. 2009. Randomized phase II trial of the nucleolin targeting aptamer AS1411 combined with high-dose cytarabine in relapsed/refractory acute myeloid leukemia (AML). J. Clin. Oncol. 27:7019 [Google Scholar]
  29. Buff MCR, Schafer F, Wulffen B, Muller J, Potzsch B. 29.  et al. 2010. Dependence of aptamer activity on opposed terminal extensions: improvement of light-regulation efficiency. Nucleic Acids Res. 38:2111–18 [Google Scholar]
  30. Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. 30.  2006. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov. 5:123–32 [Google Scholar]
  31. Chan MY, Rusconi CP, Alexander JH, Tonkens RM, Harrington RA, Becker RC. 31.  2008. A randomized, repeat-dose, pharmacodynamic and safety study of an antidote-controlled factor IXa inhibitor. J. Thromb. Haemost. 6:789–96 [Google Scholar]
  32. Mi J, Liu YM, Rabbani ZN, Yang ZG, Urban JH. 32.  et al. 2010. In vivo selection of tumor-targeting RNA motifs. Nat. Chem. Biol. 6:22–24 [Google Scholar]
  33. Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X. 33.  et al. 2008. Identification of liver cancer-specific aptamers using whole live cells. Anal. Chem. 80:721–28 [Google Scholar]
  34. Jayasena SD.34.  1999. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45:1628–50 [Google Scholar]
  35. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. 35.  1983. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–85 [Google Scholar]
  36. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T. 36.  et al. 1989. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–12 [Google Scholar]
  37. Hermann T, Patel DJ. 37.  2000. Adaptive recognition by nucleic acid aptamers. Science 287:820–25 [Google Scholar]
  38. Feigon J, Dieckmann T, Smith FW. 38.  1996. Aptamer structures from A to zeta. Chem. Biol. 3:611–17 [Google Scholar]
  39. Zimmermann GR, Jenison RD, Wick CL, Simorre JP, Pardi A. 39.  1997. Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat. Struct. Biol. 4:644–49 [Google Scholar]
  40. Lin CH, Patel DJ. 40.  1996. Encapsulating an amino acid in a DNA fold. Nat. Struct. Biol. 3:1046–50 [Google Scholar]
  41. Jiang F, Kumar RA, Jones RA, Patel DJ. 41.  1996. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 382:183–86 [Google Scholar]
  42. Cho EJ, Lee J-W, Ellington AD. 42.  2009. Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2:241–64 [Google Scholar]
  43. O'Donoghue MB, Shi XL, Fang XH, Tan WH. 43.  2012. Single-molecule atomic force microscopy on live cells compares aptamer and antibody rupture forces. Anal. Bioanal. Chem. 402:3205–9 [Google Scholar]
  44. Keefe AD, Pai S, Ellington A. 44.  2010. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9:537–50 [Google Scholar]
  45. Mayer G.45.  2009. The chemical biology of aptamers. Angew. Chem. Int. Ed. 48:2672–89 [Google Scholar]
  46. Yang ZY, Chen F, Alvarado JB, Benner SA. 46.  2011. Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J. Am. Chem. Soc. 133:15105–12 [Google Scholar]
  47. Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM. 47.  1998. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem. 70:3419–25 [Google Scholar]
  48. Fang XH, Cao ZH, Beck T, Tan WH. 48.  2001. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Anal. Chem. 73:5752–57 [Google Scholar]
  49. Stojanovic MN, de Prada P, Landry DW. 49.  2001. Aptamer-based folding fluorescent sensor for cocaine. J. Am. Chem. Soc. 123:4928–31 [Google Scholar]
  50. Fang X, Sen A, Vicens M, Tan W. 50.  2003. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. ChemBioChem 4:829–34 [Google Scholar]
  51. Li JJ, Fang X, Tan W. 51.  2002. Molecular aptamer beacons for real-time protein recognition. Biochem. Biophys. Res. Commun. 292:31–40 [Google Scholar]
  52. Chu TC, Shieh F, Lavery LA, Levy M, Richards-Kortum R. 52.  et al. 2006. Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens. Bioelectron. 21:1859–66 [Google Scholar]
  53. Choi JH, Chen KH, Strano MS. 53.  2006. Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. J. Am. Chem. Soc. 128:15584–85 [Google Scholar]
  54. Wang WJ, Chen CL, Qian MX, Zhao XS. 54.  2008. Aptamer biosensor for protein detection using gold nanoparticles. Anal. Biochem. 373:213–19 [Google Scholar]
  55. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W. 55.  2008. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 80:1067–72 [Google Scholar]
  56. Wlotzka B, Leva S, Eschgfaller B, Burmeister J, Kleinjung F. 56.  et al. 2002. In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc. Natl. Acad. Sci. USA 99:8898–902 [Google Scholar]
  57. Foy JWD, Rittenhouse K, Modi M, Patel M. 57.  2007. Local tolerance and systemic safety of pegaptanib sodium in the dog and rabbit. J. Ocul. Pharmacol. Ther. 23:452–66 [Google Scholar]
  58. Wu CC, Yates JR. 58.  2003. The application of mass spectrometry to membrane proteomics. Nat. Biotechnol. 21:262–67 [Google Scholar]
  59. Sefah K, Shangguan D, Xiong X, O'Donoghue MB, Tan W. 59.  2010. Development of DNA aptamers using cell-SELEX. Nat. Protoc. 5:1169–85 [Google Scholar]
  60. Berezovski MV, Lechmann M, Musheev MU, Mak TW, Krylov SN. 60.  2008. Aptamer-facilitated biomarker discovery (AptaBiD). J. Am. Chem. Soc. 130:9137–43 [Google Scholar]
  61. Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K. 61.  et al. 2008. Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J. Proteome Res. 7:2133–39 [Google Scholar]
  62. Mallikaratchy P, Tang ZW, Kwame S, Meng L, Shangguan DH, Tan WH. 62.  2007. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells. Mol. Cell. Proteomics 6:2230–38 [Google Scholar]
  63. Shangguan D, Cao ZC, Li Y, Tan W. 63.  2007. Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. Clin. Chem. 53:1153–55 [Google Scholar]
  64. Chen Y, Munteanu A, Huang Y, Phillips J, Zhu Z. 64.  et al. 2009. Mapping receptor density on live cells by using fluorescence correlation spectroscopy. Chemistry 15:5327–36 [Google Scholar]
  65. Chen Y, O'Donoghue MB, Huang YF, Kang H, Phillips JA. 65.  et al. 2010. A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J. Am. Chem. Soc. 132:16559–70 [Google Scholar]
  66. Burgess DJ.66.  2011. Cancer genetics: initially complex, always heterogeneous. Nat. Rev. Cancer 11:153 [Google Scholar]
  67. Liss M, Petersen B, Wolf H, Prohaska E. 67.  2002. An aptamer-based quartz crystal protein biosensor. Anal. Chem. 74:4488–95 [Google Scholar]
  68. Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M. 68.  2004. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens. Bioelectron. 20:1149–56 [Google Scholar]
  69. Schlensog MD, Gronewold TMA, Tewes M, Famulok M, Quandt E. 69.  2004. A Love-wave biosensor using nucleic acids as ligands. Sens. Actuators B 101:308–15 [Google Scholar]
  70. Xu DK, Xu DW, Yu XB, Liu ZH, He W, Ma ZQ. 70.  2005. Label-free electrochemical detection for aptamer-based array electrodes. Anal. Chem. 77:5107–13 [Google Scholar]
  71. Ferapontova EE, Olsen EM, Gothelf KV. 71.  2008. An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J. Am. Chem. Soc. 130:4256–58 [Google Scholar]
  72. Lu Y, Li X, Zhang L, Yu P, Su L, Mao L. 72.  2008. Aptamer-based electrochemical sensors with aptamer–complementary DNA oligonucleotides as probe. Anal. Chem. 80:1883–90 [Google Scholar]
  73. Pan CF, Guo ML, Nie Z, Xiao XL, Yao SZ. 73.  2009. Aptamer-based electrochemical sensor for label-free recognition and detection of cancer cells. Electroanalysis 21:1321–26 [Google Scholar]
  74. Lee M, Walt DR. 74.  2000. A fiber-optic microarray biosensor using aptamers as receptors. Anal. Biochem. 282:142–46 [Google Scholar]
  75. McCauley TG, Hamaguchi N, Stanton M. 75.  2003. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal. Biochem. 319:244–50 [Google Scholar]
  76. Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS. 76.  et al. 2004. Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal. Chem. 76:4066–75 [Google Scholar]
  77. Lopez-Colon D, Jimenez E, You M, Gulbakan B, Tan W. 77.  2011. Aptamers: turning the spotlight on cells. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3:328–40 [Google Scholar]
  78. Song JZ, Lv FT, Yang GM, Liu LB, Yang Q, Wang S. 78.  2012. Aptamer-based polymerase chain reaction for ultrasensitive cell detection. Chem. Commun. 48:7465–67 [Google Scholar]
  79. Zhao JJ, Zhang LL, Chen CF, Jiang JH, Yu RQ. 79.  2012. A novel sensing platform using aptamer and RNA polymerase-based amplification for detection of cancer cells. Analytica Chimica Acta 745:106–11 [Google Scholar]
  80. Li Y, Zeng Y, Ji XT, Li X, Ren R. 80.  2012. Cascade signal amplification for sensitive detection of cancer cell based on self-assembly of DNA scaffold and rolling circle amplification. Sens. Actuators B 171:361–66 [Google Scholar]
  81. Zhu G, Zhang S, Song E, Zheng J, Hu R. 81.  et al. 2013. Building fluorescent DNA nanodevices on target living cell surfaces. Angew. Chem. Int. Ed. 52:5490–96 [Google Scholar]
  82. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W. 82.  2008. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 80:1067–72 [Google Scholar]
  83. Liu GD, Mao X, Phillips JA, Xu H, Tan WH, Zeng LW. 83.  2009. Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal. Chem. 81:10013–18 [Google Scholar]
  84. Huang Y-F, Chang H-T, Tan W. 84.  2008. Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal. Chem. 80:567–72 [Google Scholar]
  85. Estevez MC, O'Donoghue MB, Chen X, Tan W. 85.  2009. Highly fluorescent dye-doped silica nanoparticles increase flow cytometry sensitivity for cancer cell monitoring. Nano Res. 2:448–61 [Google Scholar]
  86. Chen X, Estevez MC, Zhu Z, Huang YF, Chen Y. 86.  et al. 2009. Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal. Chem. 81:7009–14 [Google Scholar]
  87. Yin JJ, He XX, Wang KM, Qing ZH, Wu X. 87.  et al. 2012. One-step engineering of silver nanoclusters-aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 4:110–12 [Google Scholar]
  88. Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z. 88.  et al. 2008. Aptamer switch probe based on intramolecular displacement. J. Am. Chem. Soc. 130:11268–69 [Google Scholar]
  89. Shi H, He XX, Wang KM, Wu X, Ye XS. 89.  et al. 2011. Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc. Natl. Acad. Sci. USA 108:3900–5 [Google Scholar]
  90. Cao LL, Cheng LW, Zhang ZY, Wang Y, Zhang XX. 90.  et al. 2012. Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip. Lab Chip 12:4864–69 [Google Scholar]
  91. Ding C, Ge Y, Zhang S. 91.  2010. Electrochemical and electrochemiluminescence determination of cancer cells based on aptamers and magnetic beads. Chemistry 16:10707–14 [Google Scholar]
  92. Li CX, Lin JA, Guo YS, Zhang SS. 92.  2011. A novel electrochemiluminescent reagent of cyclometalated iridium complex-based DNA biosensor and its application in cancer cell detection. Chem. Commun. 47:4442–44 [Google Scholar]
  93. Zhong H, Zhang QL, Zhang SS. 93.  2011. High-intensity fluorescence imaging and sensitive electrochemical detection of cancer cells by using an extracellular supramolecular reticular DNA-quantum dot sheath. Chemistry 17:8388–94 [Google Scholar]
  94. Jie G, Wang L, Yuan J, Zhang S. 94.  2011. Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS-quantum dot nanoclusters. Anal. Chem. 83:3873–80 [Google Scholar]
  95. Feng LY, Chen Y, Ren JS, Qu XG. 95.  2011. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–37 [Google Scholar]
  96. Wei W, Li DF, Pan XH, Liu SQ. 96.  2012. Electrochemiluminescent detection of Mucin 1 protein and MCF-7 cancer cells based on the resonance energy transfer. Analyst 137:2101–6 [Google Scholar]
  97. Wu P, Gao Y, Zhang H, Cai CX. 97.  2012. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal. Chem. 84:7692–99 [Google Scholar]
  98. Bamrungsap S, Chen T, Shukoor MI, Chen Z, Sefah K. 98.  et al. 2012. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 6:3974–81 [Google Scholar]
  99. Herr JK, Smith JE, Medley CD, Shangguan DH, Tan WH. 99.  2006. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78:2918–24 [Google Scholar]
  100. Smith JE, Medley CD, Tang Z, Shangguan D, Lofton C, Tan W. 100.  2007. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal. Chem. 79:3075–82 [Google Scholar]
  101. Medley CD, Bamrungsap S, Tan W, Smith JE. 101.  2011. Aptamer-conjugated nanoparticles for cancer cell detection. Anal. Chem. 83:727–34 [Google Scholar]
  102. Phillips JA, Xu Y, Xia Z, Fan ZH, Tan W. 102.  2009. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal. Chem. 81:1033–39 [Google Scholar]
  103. Xu Y, Phillips JA, Yan J, Li Q, Fan ZH, Tan W. 103.  2009. Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. Anal. Chem. 81:7436–42 [Google Scholar]
  104. Sheng WA, Chen T, Katnath R, Xiong XL, Tan WH, Fan ZH. 104.  2012. Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 84:4199–206 [Google Scholar]
  105. Chen QS, Wu J, Zhang YD, Lin Z, Lin JM. 105.  2012. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 12:5180–85 [Google Scholar]
  106. Zhao W, Cui CH, Bose S, Guo D, Shen C. 106.  et al. 2012. Bioinspired multivalent DNA network for capture and release of cells. Proc. Natl. Acad. Sci. USA 109:19626–31 [Google Scholar]
  107. Liu W, Wei HB, Lin Z, Mao SF, Lin JM. 107.  2011. Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels. Biosens. Bioelectron. 28:438–42 [Google Scholar]
  108. Zhu J, Nguyen T, Pei RJ, Stojanovic M, Lin Q. 108.  2012. Specific capture and temperature-mediated release of cells in an aptamer-based microfluidic device. Lab Chip 12:3504–13 [Google Scholar]
  109. Wan Y, Liu YL, Allen PB, Asghar W, Mahmood MAI. 109.  et al. 2012. Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab Chip 12:4693–701 [Google Scholar]
  110. Cha TG, Baker BA, Sauffer MD, Salgado J, Jaroch D. 110.  et al. 2011. Optical nanosensor architecture for cell-signaling molecules using DNA aptamer-coated carbon nanotubes. ACS Nano 5:4236–44 [Google Scholar]
  111. Liu Y, Yan J, Howland MC, Kwa T, Revzin A. 111.  2011. Micropatterned aptasensors for continuous monitoring of cytokine release from human leukocytes. Anal. Chem. 83:8286–92 [Google Scholar]
  112. Liu Y, Kwa T, Revzin A. 112.  2012. Simultaneous detection of cell-secreted TNF-α and IFN-γ using micropatterned aptamer-modified electrodes. Biomaterials 33:7347–55 [Google Scholar]
  113. Wu CS, Du LP, Zou L, Zhao LH, Wang P. 113.  2012. An ATP sensitive light addressable biosensor for extracellular monitoring of single taste receptor cell. Biomed. Microdevices 14:1047–53 [Google Scholar]
  114. Tokunaga T, Namiki S, Yamada K, Imaishi T, Nonaka H. 114.  et al. 2012. Cell surface-anchored fluorescent aptamer sensor enables imaging of chemical transmitter dynamics. J. Am. Chem. Soc. 134:9561–64 [Google Scholar]
  115. Zhao WA, Schafer S, Choi J, Yamanaka YJ, Lombardi ML. 115.  et al. 2011. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 6:524–31 [Google Scholar]
  116. Xing H, Wong NY, Xiang Y, Lu Y. 116.  2012. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr. Opin. Chem. Biol. 16:429–35 [Google Scholar]
  117. Giannetti A, Tombelli S, Baldini F. 117.  2013. Oligonucleotide optical switches for intracellular sensing. Anal. Bioanal. Chem. 405:6181–96 [Google Scholar]
  118. Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA. 118.  2009. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 9:3258–61 [Google Scholar]
  119. Wu C, Chen T, Han D, You M, Peng L. 119.  et al. 2013. Engineering of switchable aptamer micelle flares for molecular imaging in living cells. ACS Nano 7:5724–31 [Google Scholar]
  120. Wang Y, Li Z, Hu D, Lin C-T, Li J, Lin Y. 120.  2010. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132:9274–76 [Google Scholar]
  121. Wang Y, Li Z, Weber TJ, Hu D, Lin C-T. 121.  et al. 2013. In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal. Chem. 85:6775–82 [Google Scholar]
  122. Tan XH, Chen T, Xiong XL, Mao Y, Zhu GZ. 122.  et al. 2012. Semiquantification of ATP in live cells using nonspecific desorption of DNA from graphene oxide as the internal reference. Anal. Chem. 84:8622–27 [Google Scholar]
  123. Paige JS, Wu KY, Jaffrey SR. 123.  2011. RNA mimics of green fluorescent protein. Science 333:642–46 [Google Scholar]
  124. Paige JS, Nguyen-Duc T, Song W, Jaffrey SR. 124.  2012. Fluorescence imaging of cellular metabolites with RNA. Science 335:1194 [Google Scholar]
  125. Xiao Z, Shangguan D, Cao Z, Fang X, Tan W. 125.  2008. Cell-specific internalization study of an aptamer from whole cell selection. Chemistry 14:1769–75 [Google Scholar]
  126. Zhang K, Sefah K, Tang L, Zhao Z, Zhu G. 126.  et al. 2012. A novel aptamer developed for breast cancer cell internalization. Chem. Med. Chem. 7:79–84 [Google Scholar]
  127. Chen LQ, Xiao SJ, Hu PP, Peng L, Ma J. 127.  et al. 2012. Aptamer-mediated nanoparticle-based protein labeling platform for intracellular imaging and tracking endocytosis dynamics. Anal. Chem. 84:3099–110 [Google Scholar]
  128. Kim JK, Choi KJ, Lee M, Jo M, Kim S. 128.  2008. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials 33:207–17 [Google Scholar]
  129. Stewart MW, Grippon S, Kirkpatrick P. 129.  2012. Aflibercept. Nat. Rev. Drug Discov. 11:269–70 [Google Scholar]
  130. Vaught JD, Bock C, Carter J, Fitzwater T, Otis M. 130.  et al. 2010. Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 132:4141–51 [Google Scholar]
  131. Gold L, Ayers D, Bertino J, Bock C, Bock A. 131.  et al. 2010. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5:e15004 [Google Scholar]
  132. Shangguan D, Tang Z, Mallikaratchy P, Xiao Z, Tan W. 132.  2007. Optimization and modifications of aptamers selected from live cancer cell lines. ChemBioChem 8:603–6 [Google Scholar]
  133. Wu CCN, Castro JE, Motta M, Cottam HB, Kyburz D. 133.  et al. 2003. Selection of oligonucleotide aptamers with enhanced uptake and activation of human leukemia B cells. Hum. Gene Ther. 14:849–60 [Google Scholar]
  134. Raddatz MSL, Dolf A, Endl E, Knolle P, Famulok M, Mayer G. 134.  2008. Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew. Chem. Int. Ed. 47:5190–93 [Google Scholar]
  135. Meng L, Yang L, Zhao X, Zhang L, Zhu H. 135.  et al. 2012. Targeted delivery of chemotherapy agents using a liver cancer-specific aptamer. PLoS One 7:e33434 [Google Scholar]
  136. Van Simaeys D, Turek D, Champanhac C, Vaizer J, Sefah K. 136.  et al. 2014. Identification of cell membrane protein stress-induced-phosphoprotein 1 as a potential ovarian cancer biomarker using aptamers selected by cell systematic evolution of ligands by exponential enrichment. Anal. Chem. 86:4521–27 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error