Electrospun nanofiber mats are characterized by large surface-area-to-volume ratios, high porosities, and a diverse range of chemical functionalities. Although electrospun nanofibers have been used successfully to increase the immobilization efficiency of biorecognition elements and improve the sensitivity of biosensors, the full potential of nanofiber-based biosensing has not yet been realized. Therefore, this review presents novel electrospun nanofiber chemistries developed in fields such as tissue engineering and drug delivery that have direct application within the field of biosensing. Specifically, this review focuses on fibers that directly encapsulate biological additives that serve as immobilization matrices for biological species and that are used to create biomimetic scaffolds. Biosensors that incorporate these nanofibers are presented, along with potential future biosensing applications such as the development of cell culture and in vivo sensors.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Wang J.1.  2005. Nanomaterial-based electrochemical biosensors. Analyst 130:4421–26 [Google Scholar]
  2. Yun Y, Collins B, Dong Z, Renken C, Schulz M. 2.  et al. 2013. Nanomaterial-based electroanalytical biosensors for cancer and bone disease. Applications of Nanomaterials in Sensors and Diagnostics A Tuantranont 43–58 Berlin/Heidelberg: Springer [Google Scholar]
  3. Lee SH, Sung JH, Park TH. 3.  2012. Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann. Biomed. Eng. 40:61384–97 [Google Scholar]
  4. Matlock-Colangelo L, Baeumner AJ. 4.  2012. Recent progress in the design of nanofiber-based biosensing devices. Lab Chip 12:152612–20 [Google Scholar]
  5. Li D, Frey MW, Baeumner AJ. 5.  2006. Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. J. Membr. Sci. 279:1–2354–63 [Google Scholar]
  6. Wang D, Sun G, Xiang B, Chiou B-S. 6.  2008. Controllable biotinylated poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers to bind streptavidin–horseradish peroxidase (HRP) for potential biosensor applications. Eur. Polym. J. 44:72032–39 [Google Scholar]
  7. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. 7.  2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63:152223–53 [Google Scholar]
  8. Jin S, Dai M, Ye B, Nugen SR. 8.  2013. Development of a capillary flow microfluidic Escherichia coli biosensor with on-chip reagent delivery using water-soluble nanofibers. Microsyst. Technol. 19:2011–15 [Google Scholar]
  9. Kowalczyk T, Nowicka A, Elbaum D, Kowalewski TA. 9.  2008. Electrospinning of bovine serum albumin. Optimization and the use for production of biosensors. Biomacromolecules 9:72087–90 [Google Scholar]
  10. Lee I, Luo X, Huang J, Cui XT, Yun M. 10.  2012. Detection of cardiac biomarkers using single polyaniline nanowire-based conductometric biosensors. Biosensors 2:2205–20 [Google Scholar]
  11. Wang J.11.  2006. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21:101887–92 [Google Scholar]
  12. Herricks TE, Kim S-H, Kim J, Li D, Kwak JH. 12.  et al. 2005. Direct fabrication of enzyme-carrying polymer nanofibers by electrospinning. J. Mater Chem. 15:313241–45 [Google Scholar]
  13. Matlock-Colangelo L, Cho D, Pitner CL, Frey MW, Baeumner AJ. 13.  2012. Functionalized electrospun nanofibers as bioseparators in microfluidic systems. Lab Chip 12:91696–701 [Google Scholar]
  14. Li D, Xia Y. 14.  2004. Electrospinning of nanofibers: Reinventing the wheel?. Adv. Mater. 16:141151–70 [Google Scholar]
  15. Xie J, Hsieh Y-L. 15.  2003. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J. Mater Sci. 38:102125–33 [Google Scholar]
  16. Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S. 16.  2006. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(ε-caprolactone) nanofibers for sustained release. Biomacromolecules 7:41049–57 [Google Scholar]
  17. Wimpenny I, Hampson K, Yang Y, Ashammakhi N, Forsyth NR. 17.  2010. One-step recovery of marrow stromal cells on nanofibers. Tissue Eng. C 16:3503–9 [Google Scholar]
  18. Shin M, Yoshimoto H, Vacanti JP. 18.  2004. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 10:1–233–41 [Google Scholar]
  19. El-Aassar MR, Al-Deyab SS, Kenawy E-R. 19.  2013. Covalent immobilization of β-galactosidase onto electrospun nanofibers of poly (AN-co-MMA) copolymer. J. Appl. Polym. Sci. 127:31873–84 [Google Scholar]
  20. Shin YJ, Kameoka J. 20.  2012. Amperometric cholesterol biosensor using layer-by-layer adsorption technique onto electrospun polyaniline nanofibers. J. Ind. Eng. Chem. 18:1193–97 [Google Scholar]
  21. Wu J, Yin F. 21.  2013. Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film. J. Electroanal. Chem. 694:1–5 [Google Scholar]
  22. Zhang M, Wang Z, Wang Z, Feng S, Xu H. 22.  et al. 2011. Immobilization of anti-CD31 antibody on electrospun poly(ε-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Colloids Surf. B 85:132–39 [Google Scholar]
  23. Xie J, Ma B, Michael PL, Shuler FD. 23.  2012. Fabrication of nanofiber scaffolds with gradations in fiber organization and their potential applications. Macromol. Biosci. 12:101336–41 [Google Scholar]
  24. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. 24.  2006. Electrospun nanofibers: solving global issues. Mater Today 9:340–50 [Google Scholar]
  25. Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH. 25.  2004. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:7–81289–97 [Google Scholar]
  26. Wang S, Zhang Y, Wang H, Yin G, Dong Z. 26.  2009. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold. Biomacromolecules 10:82240–44 [Google Scholar]
  27. Huang J, Virji S, Weiller BH, Kaner RB. 27.  2003. Polyaniline nanofibers: facile synthesis and chemical sensors. J. Am. Chem. Soc. 125:2314–15 [Google Scholar]
  28. Feng C, Khulbe KC, Matsuura T. 28.  2010. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 115:2756–76 [Google Scholar]
  29. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. 29.  2001. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:1261–72 [Google Scholar]
  30. Li D, Frey MW, Vynias D, Baeumner AJ. 30.  2007. Availability of biotin incorporated in electrospun PLA fibers for streptavidin binding. Polymer 48:216340–47 [Google Scholar]
  31. Dror Y, Ziv T, Makarov V, Wolf H, Admon A, Zussman E. 31.  2008. Nanofibers made of globular proteins. Biomacromolecules 9:102749–54 [Google Scholar]
  32. Barnes CP, Smith MJ, Bowlin GL, Sell SA, Tang T. 32.  et al. 2006. Feasibility of electrospinning the globular proteins hemoglobin and myoglobin. J. Eng. Fibers Fabrics 1:216–29 [Google Scholar]
  33. Valmikinathan CM, Defroda S, Yu X. 33.  2009. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules 10:51084–89 [Google Scholar]
  34. Ding Y, Wang Y, Li B, Lei Y. 34.  2010. Electrospun hemoglobin microbelts based biosensor for sensitive detection of hydrogen peroxide and nitrite. Biosens. Bioelectron. 25:92009–15 [Google Scholar]
  35. Liu C-Y, Hu J-M. 35.  2009. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens. Bioelectron. 24:72149–54 [Google Scholar]
  36. Shen L, Huang R, Hu N. 36.  2002. Myoglobin in polyacrylamide hydrogel films: direct electrochemistry and electrochemical catalysis. Talanta 56:61131–39 [Google Scholar]
  37. Zhao G-C, Zhang L, Wei X-W, Yang Z-S. 37.  2003. Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochem. Commun. 5:9825–29 [Google Scholar]
  38. Dai M, Jin S, Nugen SR. 38.  2012. Water-soluble electrospun nanofibers as a method for on-chip reagent storage. Biosensors 2:4388–95 [Google Scholar]
  39. Wang S-G, Jiang X, Chen P-C, Yu A-G, Huang X-J. 39.  2012. Preparation of coaxial-electrospun poly[bis(p-methylphenoxy)]phosphazene nanofiber membrane for enzyme immobilization. Int. J. Mol. Sci. 13:1114136–48 [Google Scholar]
  40. Hou S, Zhao L, Shen Q, Yu J, Ng C. 40.  et al. 2013. Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew. Chem. Int. Ed. 52:123379–83 [Google Scholar]
  41. Senecal A, Magnone J, Marek P, Senecal K. 41.  2008. Development of functional nanofibrous membrane assemblies towards biological sensing. React. Funct. Polym. 68:101429–34 [Google Scholar]
  42. Awokoya K, Moronkola B, Chigome S, Ondigo D, Tshentu Z, Torto N. 42.  2013. Molecularly imprinted electrospun nanofibers for adsorption of nickel-5,10,15,20-tetraphenylporphine (NTPP) in organic media. J. Polym. Res. 20:61–9 [Google Scholar]
  43. Chronakis IS, Jakob A, Hagström B, Ye L. 43.  2006. Encapsulation and selective recognition of molecularly imprinted theophylline and 17β-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 22:218960–65 [Google Scholar]
  44. Spégel P, Schweitz L, Nilsson S. 44.  2002. Molecularly imprinted polymers. Anal. Bioanal. Chem. 372:137–38 [Google Scholar]
  45. Tonglairoum P, Chaijaroenluk W, Rojanarata T, Ngawhirunpat T, Akkaramongkolporn P, Opanasopit P. 45.  2013. Development and characterization of propranolol selective molecular imprinted polymer composite electrospun nanofiber membrane. Pharm. Sci. Tech. 14:2838–46 [Google Scholar]
  46. Sueyoshi Y, Utsunomiya A, Yoshikawa M, Robertson GP, Guiver MD. 46.  2012. Chiral separation with molecularly imprinted polysulfone-aldehyde derivatized nanofiber membranes. J. Membr. Sci. 401–402:89–96 [Google Scholar]
  47. Mizushima H, Yoshikawa M, Li N, Robertson GP, Guiver MD. 47.  2012. Electrospun nanofiber membranes from polysulfones with chiral selector aimed for optical resolution. Eur. Polym. J. 48:101717–25 [Google Scholar]
  48. Liu J, Lu Y. 48.  2006. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 1:1246–52 [Google Scholar]
  49. Zhao Q, Li XF, Le XC. 49.  2008. Aptamer-modified monolithic capillary chromatography for protein separation and detection. Anal. Chem. 80:103915–20 [Google Scholar]
  50. Oktem HA, Bayramoglu G, Ozalp VC, Arica MY. 50.  2007. Single-step purification of recombinant Thermus aquaticus DNA polymerase using DNA-aptamer immobilized novel affinity magnetic beads. Biotechnol. Prog. 23:1146–54 [Google Scholar]
  51. Kim JH, Hwang ET, Kang K, Tatavarty R, Gu MB. 51.  2011. Aptamers-on-nanofiber as novel hybrid capturing moiety. J. Mater Chem. 21:4819203–6 [Google Scholar]
  52. Rodriguez MC, Kawde A-N, Wang J. 52.  2005. Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem. Commun.4267–69 [Google Scholar]
  53. Lee SJ, Tatavarty R, Gu MB. 53.  2012. Electrospun polystyrene–poly(styrene-co-maleic anhydride) nanofiber as a new aptasensor platform. Biosens. Bioelectron. 38:1302–7 [Google Scholar]
  54. Wang X, Wang X, Wang X, Chen F, Zhu K. 54.  et al. 2013. Novel electrochemical biosensor based on functional composite nanofibers for sensitive detection of p53 tumor suppressor gene. Anal. Chim. Acta 765:63–69 [Google Scholar]
  55. Lu T, Chen X, Shi Q, Wang Y, Zhang P, Jing X. 55.  2008. The immobilization of proteins on biodegradable fibers via biotin–streptavidin bridges. Acta Biomater. 4:61770–77 [Google Scholar]
  56. Katti DS, Robinson KW, Ko FK, Laurencin CT. 56.  2004. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J. Biomed. Mater. Res. B 70:2286–96 [Google Scholar]
  57. Zeng J, Xu X, Chen X, Liang Q, Bian X. 57.  et al. 2003. Biodegradable electrospun fibers for drug delivery. J. Control. Release 92:3227–31 [Google Scholar]
  58. Kim K, Luu YK, Chang C, Fang D, Hsiao BS. 58.  et al. 2004. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Control. Release 98:147–56 [Google Scholar]
  59. Hong Y, Fujimoto K, Hashizume R, Guan J, Stankus JJ. 59.  et al. 2008. Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning. Biomacromolecules 9:41200–7 [Google Scholar]
  60. Taepaiboon P, Rungsardthong U, Supaphol P. 60.  2006. Drug-loaded electrospun mats of poly(vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology 17:92317–29 [Google Scholar]
  61. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ. 61.  2008. The influence of electrospun aligned poly(ε-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29:192899–906 [Google Scholar]
  62. Xu C, Inai R, Kotaki M, Ramakrishna S. 62.  2004. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10:7–81160–68 [Google Scholar]
  63. Mo X, Xu C, Kotaki M, Ramakrishna S. 63.  2004. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 25:101883–90 [Google Scholar]
  64. Lee SJ, Yoo JJ, Lim GJ, Atala A, Stitzel J. 64.  2007. In vitro evaluation of electrospun nanofiber scaffolds for vascular graft application. J. Biomed. Mater Res. A 83:4999–1008 [Google Scholar]
  65. Yoshimoto H, Shin YM, Terai H, Vacanti JP. 65.  2003. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:122077–82 [Google Scholar]
  66. Wu L, Ding J. 66.  2004. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:275821–30 [Google Scholar]
  67. Choi S-W, Moon S-K, Chu J-Y, Lee H-W, Park T-J, Kim J-H. 67.  2012. Alginate hydrogel embedding poly(D,L-lactide-co-glycolide) porous scaffold disks for cartilage tissue engineering. Macromol. Res. 20:5447–52 [Google Scholar]
  68. Inui A, Kokubu T, Mifune Y, Sakata R, Nishimoto H. 68.  et al. 2012. Regeneration of rotator cuff tear using electrospun poly(D,L-lactide-co-glycolide) scaffolds in a rabbit model. Arthrosc. J. Arthrosc. Relat. Surg. 28:121790–99 [Google Scholar]
  69. Xin X, Hussain M, Mao JJ. 69.  2007. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:2316–25 [Google Scholar]
  70. Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. 70.  2010. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 31:144113–20 [Google Scholar]
  71. Reinholt SJ, Sonnenfeldt A, Naik A, Frey MW, Baeumner AJ. 71.  2014. Developing new materials for paper-based diagnostics using electrospun nanofibers. Anal. Bioanal. Chem. 406:3297–304 [Google Scholar]
  72. Jeong SH, Lee DW, Kim S, Kim J, Ku B. 72.  2012. A study of electrochemical biosensor for analysis of three-dimensional (3D) cell culture. Biosens. Bioelectron. 35:1128–33 [Google Scholar]
  73. Pasche S, Wenger B, Ischer R, Giazzon M, Angeloni S, Voirin G. 73.  2010. Integrated optical biosensor for in-line monitoring of cell cultures. Biosens. Bioelectron. 26:41478–85 [Google Scholar]
  74. Schober A, Fernekorn U, Lübbers B, Hampl J, Weise F. 74.  et al. 2011. Applied nano bio systems with microfluidics and biosensors for three-dimensional cell culture. Mater Werkst. 42:2139–46 [Google Scholar]
  75. Ziegler C.75.  2000. Cell-based biosensors. Fresenius J. Anal. Chem. 366:552–59 [Google Scholar]
  76. Wilson GS, Hu Y. 76.  2000. Enzyme-based biosensors for in vivo measurements. Chem. Rev. 100:72693–704 [Google Scholar]
  77. Wilson GS, Gifford R. 77.  2005. Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20:122388–403 [Google Scholar]
  78. Wilson GS, Ammam M. 78.  2007. In vivo biosensors. FEBS J. 274:215452–61 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error