1932

Abstract

The development of nanopore fabrication methods during the past decade has led to the resurgence of resistive-pulse analysis of nanoparticles. The newly developed resistive-pulse methods enable researchers to simultaneously study properties of a single nanoparticle and statistics of a large ensemble of nanoparticles. This review covers the basic theory and recent advances in applying resistive-pulse analysis and extends to more complex transport motion (e.g., stochastic thermal motion of a single nanoparticle) and unusual electrical responses (e.g., resistive-pulse response sensitive to surface charge), followed by a brief summary of numerical simulations performed in this field. We emphasize the forces within a nanopore governing translocation of low-aspect-ratio, nondeformable particles but conclude by also considering soft materials such as liposomes and microgels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020107
2014-06-12
2024-09-09
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-anchem-071213-020107
Loading
/content/journals/10.1146/annurev-anchem-071213-020107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error