Imaging of plasmonic nanoparticles (PNP) with optical microscopy has aroused considerable attention in recent years. The unique localized surface plasmon resonance (LSPR) from metal nanoparticles facilitates the transduction of a chemical or physical stimulus into optical signals in a highly efficient way. It is therefore possible to perform chemical or biological assays at the single object level with the help of standard optical microscopes. Because the source of background noise from different samples is different, distinct imaging modalities have been developed to discern the signals of interest in complex surroundings. With these convenient yet powerful techniques, great improvements in chemical and biological assays have been demonstrated, and many interesting phenomena and dynamic processes have also been elucidated. Further development and application of optical imaging methods for plasmonic probes should lead to many exciting results in chemistry and biology in the future.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Stephens DJ.1.  2003. Light microscopy techniques for live cell imaging. Science 300:561682–86 [Google Scholar]
  2. Weijer CJ.2.  2003. Visualizing signals moving in cells. Science 300:561696–100 [Google Scholar]
  3. Moerner WE.3.  2007. New directions in single-molecule imaging and analysis. Proc. Natl. Acad. Sci. USA 104:3112596–602 [Google Scholar]
  4. Wilt BA, Burns LD, Wei Ho ET, Ghosh KK, Mukamel EA, Schnitzer MJ. 4.  2009. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32:1435–506 [Google Scholar]
  5. Toomre D, Bewersdorf J. 5.  2010. A new wave of cellular imaging. Annu. Rev. Cell Dev. Biol. 26:1285–314 [Google Scholar]
  6. Tønnesen J, Nägerl UV. 6.  2013. Superresolution imaging for neuroscience. Exp. Neurol. 242:33–40 [Google Scholar]
  7. Ha T, Ting AY, Liang J, Caldwell WB, Deniz AA. 7.  et al. 1999. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc. Natl. Acad. Sci. USA 96:3893–98 [Google Scholar]
  8. Moerner WE.8.  2002. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106:5910–27 [Google Scholar]
  9. Schuler B, Lipman EA, Eaton WA. 9.  2002. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:6908743–47 [Google Scholar]
  10. Barbara PF, Gesquiere AJ, Park S-J, Lee YJ. 10.  2005. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38:7602–10 [Google Scholar]
  11. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. 11.  2008. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5:9763–75 [Google Scholar]
  12. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. 12.  2006. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110:147238–48 [Google Scholar]
  13. Celebrano M, Kukura P, Renn A, Sandoghdar V. 13.  2011. Single-molecule imaging by optical absorption. Nat. Photon. 5:295–98 [Google Scholar]
  14. Chan WC, Nie S. 14.  1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:53852016–18 [Google Scholar]
  15. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. 15.  1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281:53852013–16 [Google Scholar]
  16. Chan W-H, Shiao N-H. 16.  2008. Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol. Sin. 29:2259–66 [Google Scholar]
  17. Derfus AM, Chan WC, Bhatia SN. 17.  2004. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4:111–18 [Google Scholar]
  18. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF. 18.  et al. 2004. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4:112163–69 [Google Scholar]
  19. Kirchner C, Liedl T, Kudera S, Pellegrino T, Muñoz Javier A. 19.  et al. 2005. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5:2331–38 [Google Scholar]
  20. Lohse SE, Murphy CJ. 20.  2013. The quest for shape control: a history of gold nanorod synthesis. Chem. Mater. 25:81250–61 [Google Scholar]
  21. Sun Y, Xia Y. 21.  2002. Shape-controlled synthesis of gold and silver nanoparticles. Science 298:56012176–79 [Google Scholar]
  22. Bastús NG, Comenge J, Puntes V. 22.  2011. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:1711098–105 [Google Scholar]
  23. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. 23.  2008. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41:121578–86 [Google Scholar]
  24. Jin R, Cao Y, Mirkin CA, Kelly K, Schatz GC, Zheng J. 24.  2001. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:55481901–3 [Google Scholar]
  25. Eustis S, El-Sayed MA. 25.  2006. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35:209–17 [Google Scholar]
  26. Spetzler D, York J, Daniel D, Fromme R, Lowry D, Frasch W. 26.  2006. Microsecond time scale rotation measurements of single F1-ATPase molecules. Biochemistry 45:103117–24 [Google Scholar]
  27. Jun Y-W, Sheikholeslami S, Hostetter DR, Tajon C, Craik CS, Alivisatos AP. 27.  2009. Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level. Proc. Natl. Acad. Sci. USA 106:4217735–40 [Google Scholar]
  28. Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A. 28.  2002. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157:61071–81 [Google Scholar]
  29. Rong G, Wang H, Skewis LR, Reinhard BM. 29.  2008. Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett. 8:103386–93 [Google Scholar]
  30. Rong G, Wang H, Reinhard BM. 30.  2010. Insights from a nanoparticle minuet: two-dimensional membrane profiling through silver plasmon ruler tracking. Nano Lett. 10:1230–38 [Google Scholar]
  31. Hartland GV.31.  2011. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111:63858–87 [Google Scholar]
  32. Kreibig U, Vollmer M. 32.  1995. Optical Properties of Metal Clusters New York: Springer-Verlag [Google Scholar]
  33. Mie G.33.  1908. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 25:4377–445 [Google Scholar]
  34. van Dijk MA, Tchebotareva AL, Orrit M, Lippitz M, Berciaud S. 34.  et al. 2006. Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8:303486–95 [Google Scholar]
  35. Bohren CF, Huffman DR. 35.  1998. Absorption and Scattering of Light by Small Particles Weinheim: Wiley-VCH [Google Scholar]
  36. Link S, El-Sayed MA. 36.  2003. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54:1331–66 [Google Scholar]
  37. Willets KA, Van Duyne RP. 37.  2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:1267–97 [Google Scholar]
  38. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. 38.  2008. Biosensing with plasmonic nanosensors. Nat. Mater. 7:6442–53 [Google Scholar]
  39. Zijlstra P, Orrit M. 39.  2011. Single metal nanoparticles: optical detection, spectroscopy and applications. Rep. Prog. Phys. 74:10106401 [Google Scholar]
  40. Schultz DA.40.  2003. Plasmon resonant particles for biological detection. Curr. Opin. Biotechnol. 14:113–22 [Google Scholar]
  41. McFarland AD, Van Duyne RP. 41.  2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3:81057–62 [Google Scholar]
  42. Boyd G, Yu Z, Shen Y. 42.  1986. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33:127923–36 [Google Scholar]
  43. Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA. 43.  2011. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111:63888–912 [Google Scholar]
  44. Tian Z-Q, Ren B, Wu D-Y. 44.  2002. Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 106:379463–83 [Google Scholar]
  45. Sönnichsen C, Alivisatos AP. 45.  2005. Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett. 5:2301–4 [Google Scholar]
  46. Roux A, Uyhazi K, Frost A, De Camilli P. 46.  2006. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441:7092528–31 [Google Scholar]
  47. Doherty GJ, McMahon HT. 47.  2009. Mechanisms of endocytosis. Annu. Rev. Biochem. 78:857–902 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error