It is only in the past two decades that excellent protein engineering tools have begun to meet parallel advances in materials chemistry, nanofabrication, and electronics. This is revealing scenarios from which synthetic enzymes can emerge, which were previously impossible, as well as interfaces with novel electrode materials. That means the control of the protein structure, electron transport pathway, and electrode surface can usher us into a new era of bioelectrochemistry. This article reviews the principle of electron transfer (ET) and considers how its application at the electrode, within the protein, and at a redox group is directing key advances in the understanding of protein structure to create systems that exhibit better efficiency and unique bioelectrochemistry.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dutton PL, Moser CC. 1.  2011. Engineering enzymes. Faraday Discuss. 148:443–48 [Google Scholar]
  2. De Vault D, Chance B. 2.  1966. Studies of photosynthesis using a pulsed laser: I. Temperature dependence of cytochrome oxidation rate in Chromatium. Evidence for tunneling. Biophys. J. 6:825–47 [Google Scholar]
  3. Holzenburg A, Scrutton NS. 3.  2000. Subcellular Biochemistry 35 Enzyme-Catalyzed Electron and Radical Transfer New York: Kluwer Academic/Plenum Publ./Springer
  4. Yeh P, Kuwana T. 4.  1977. Reversible electrode reaction of cytochrome c. Chem. Lett. 6:1145–48 [Google Scholar]
  5. Eddowes MJ, Hill HAO. 5.  1977. Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c. J. Chem. Soc. Chem. Commun. 1997:771b–72 [Google Scholar]
  6. Armstrong FA, Hill HAO, Walton NJ. 6.  1988. Direct electrochemistry of redox proteins. Acc. Chem. Res. 21:407–13 [Google Scholar]
  7. Marcus RA.7.  1956. Electrostatic free energy and other properties of states having nonequilibrium polarization. I. J. Chem. Phys. 24:979 [Google Scholar]
  8. Roth JP, Klinman JP. 8.  2003. Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. Proc. Natl. Acad. Sci. 100:62–67 [Google Scholar]
  9. Gray HB, Winkler JR. 9.  2003. Electron tunneling through proteins. Q. Rev. Biophys. 36:341–72 [Google Scholar]
  10. Gray HB, Malmström BG, Williams R. 10.  2000. Copper coordination in blue proteins. J. Biol. Inorg. Chem. 5:551–59 [Google Scholar]
  11. Eckermann AL, Feld DJ, Shaw JA, Meade TJ. 11.  2010. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254:1769–802 [Google Scholar]
  12. Marcus R, Sutin N. 12.  1975. Electron-transfer reactions with unusual activation parameters. Treatment of reactions accompanied by large entropy decreases. Inorg. Chem. 14:213–16 [Google Scholar]
  13. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL. 13.  1992. Nature of biological electron transfer. Nature 355:796–802 [Google Scholar]
  14. Marcus RA, Sutin N. 14.  1985. Electron transfers in chemistry and biology. Biochim. Biophys. Acta Rev. Bioenerg. 811:265–322 [Google Scholar]
  15. Wong TS, Schwaneberg U. 15.  2003. Protein engineering in bioelectrocatalysis. Curr. Opin. Biotechnol. 14:590–96 [Google Scholar]
  16. Zhang S, Wright G, Yang Y. 16.  2000. Materials and techniques for electrochemical biosensor design and construction. Biosens. Bioelectron. 15:273–82 [Google Scholar]
  17. Lambrianou A, Demin S, Hall EAH. 17.  2008. Protein engineering and electrochemical biosensors. Adv. Biochem. Eng./Biotechnol. 109:65–96 [Google Scholar]
  18. Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ. 18.  2010. Designer laccases: A vogue for high-potential fungal enzymes?. Trends Biotechnol. 28:63–72 [Google Scholar]
  19. Santhanam N, Vivanco JM, Decker SR, Reardon KF. 19.  2011. Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol. 29:480–89 [Google Scholar]
  20. Shleev S, Jarosz-Wilkolazka A, Khalunina A, Morozova O, Yaropolov A. 20.  et al. 2005. Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67:115–24 [Google Scholar]
  21. Shervedani RK, Amini A. 21.  2012. Direct electrochemistry of dopamine on gold—Agaricus bisporus laccase enzyme electrode: characterization and quantitative detection. Bioelectrochemistry 84:25–31 [Google Scholar]
  22. Reinhammar BR.22.  1972. Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim. Biophys. Acta Bioenerg. 275:245–59 [Google Scholar]
  23. Yaropolov A, Kharybin A, Emneus J, Marko-Varga G, Gorton L. 23.  1996. Electrochemical properties of some copper-containing oxidases. Bioelectrochem. Bioenerg. 40:49–57 [Google Scholar]
  24. Andréasson LE, Malmström BG, Strömberg C, Vänngård T. 24.  1973. The kinetics of the anaerobic reduction of fungal laccase B. Eur. J. Biochem. 34:434–39 [Google Scholar]
  25. Gindilis A, Zhazhina E, Baranov YA, Karyakin A, Gavrilova V, Yaropolov A. 25.  1988. Isolation and properties of laccase from the basidial fungus Coriolus hirsutus (Fr.) Quel. Biochemistry (Moscow) 53:735–39 [Google Scholar]
  26. Kumar S, Phale PS, Durani S, Wangikar PP. 26.  2003. Combined sequence and structure analysis of the fungal laccase family. Biotechnol. Bioeng. 83:386–94 [Google Scholar]
  27. Durão P, Bento I, Fernandes AT, Melo EP, Lindley PF, Martins LO. 27.  2006. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: structural, biochemical, enzymatic and stability studies. J. Biol. Inorg. Chem. 11:514–26 [Google Scholar]
  28. Kamitaka Y, Tsujimura S, Kataoka K, Sakurai T, Ikeda T, Kano K. 28.  2007. Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer-type bioelectrocatalytic reduction of dioxygen. J. Electroanal. Chem. 601:119–24 [Google Scholar]
  29. Kallio J, Auer S, Jänis J, Andberg M, Kruus K. 29.  et al. 2009. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds. J. Mol. Biol. 392:895–909 [Google Scholar]
  30. Ayala M, Pickard MA, Vazquez-Duhalt R. 30.  2008. Fungal enzymes for environmental purposes, a molecular biology challenge. J. Mol. Microbiol. Biotechnol. 15:172–80 [Google Scholar]
  31. Hecht H, Kalisz H, Hendle J, Schmid R, Schomburg D. 31.  1993. Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 Å resolution. J. Mol. Biol. 229:153–72 [Google Scholar]
  32. Betts JN, Beratan DN, Onuchic JN. 32.  1992. Mapping electron tunneling pathways: an algorithm that finds the “minimum length”/maximum coupling pathway between electron donors and acceptors in proteins. J. Am. Chem. Soc. 114:4043–46 [Google Scholar]
  33. Onuchic JN, Beratan DN, Winkler JR, Gray HB. 33.  1992. Pathway analysis of protein electron-transfer reactions. Annu. Rev. Biophys. Biomol. Struct. 21:349–77 [Google Scholar]
  34. Alvarez-Icaza M, Kalisz H, Hecht H, Aumann K-D, Schomburg D, Schmid R. 34.  1995. The design of enzyme sensors based on the enzyme structure. Biosens. Bioelectron. 10:735–42 [Google Scholar]
  35. Nakamura S, Hayashi S, Koga K. 35.  1976. Effect of periodate oxidation on the structure and properties of glucose oxidase. Biochim. Biophys. Acta Enzymol. 445:294–308 [Google Scholar]
  36. Fraser D, Zakeeruddin S, Grätzel M. 36.  1992. Mediation of glycosylated and partially-deglycosylated glucose oxidase of Aspergillus niger by a ferrocene-derivatised detergent. Biochim. Biophys. Acta Bioenerg. 1099:91–101 [Google Scholar]
  37. Kohen A, Jonsson T, Klinman JP. 37.  1997. Effects of protein glycosylation on catalysis: changes in hydrogen tunneling and enthalpy of activation in the glucose oxidase reaction. Biochemistry 36:2603–11 [Google Scholar]
  38. Demin S, Hall EA. 38.  2009. Breaking the barrier to fast electron transfer. Bioelectrochemistry 76:19–27 [Google Scholar]
  39. Gelo-Pujic M, Kim H-H, Butlin NG, Palmore GTR. 39.  1999. Electrochemical studies of a truncated laccase produced in Pichia pastoris. Appl. Environ. Microbiol. 65:5515–21 [Google Scholar]
  40. Katz E, Sheeney Haj Ichia L, Willner I. 40.  2002. Magneto-switchable electrocatalytic and bioelectrocatalytic transformations. Chemistry 8:4138–48 [Google Scholar]
  41. Sassolas A, Blum LJ, Leca-Bouvier BD. 41.  2012. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30:489–511 [Google Scholar]
  42. Ekanayake E, Preethichandra DM, Kaneto K. 42.  2007. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens. Bioelectron. 23:107–13 [Google Scholar]
  43. Sekretaryova AN, Vokhmyanina DV, Chulanova TO, Karyakina EE, Karyakin AA. 43.  2012. Reagentless biosensor based on glucose oxidase wired by the mediator freely diffusing in enzyme containing membrane. Anal. Chem. 84:1220–23 [Google Scholar]
  44. Prakash O, Talat M, Hasan SH, Pandey RK. 44.  2008. Enzymatic detection of mercuric ions in ground-water from vegetable wastes by immobilizing pumpkin (Cucumis melo) urease in calcium alginate beads. Bioresour. Technol. 99:4524–28 [Google Scholar]
  45. Luo P, Liu Y, Xie G, Xiong X, Deng S, Song F. 45.  2008. Determination of serum alcohol using a disposable biosensor. Forensic Sci. Int. 179:192–98 [Google Scholar]
  46. Arya SK, Datta M, Singh S, Malhotra BD. 46.  2007. Biosensor for total cholesterol estimation using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane self-assembled monolayer. Anal. Bioanal. Chem. 389:2235–42 [Google Scholar]
  47. Loechel C, Basran A, Basran J, Scrutton NS, Hall EA. 47.  2003. Using trimethylamine dehydrogenase in an enzyme linked amperometric electrode. Part 1. Wild-type enzyme redox mediation. Analyst 128:166–72 [Google Scholar]
  48. Loechel C, Basran A, Basran J, Scrutton NS, Hall EA. 48.  2003. Using trimethylamine dehydrogenase in an enzyme linked amperometric electrode. Part 2. Rational design engineering of a “wired” mutant. Analyst 128:889–98 [Google Scholar]
  49. Lin S, Jiang X, Wang L, Li G, Guo L. 49.  2011. Adsorption orientation of horse heart cytochrome c on a bare gold electrode hampers its electron transfer. J. Phys. Chem. C 116:637–42 [Google Scholar]
  50. Schröper F, Baumann A, Offenhäusser A, Mayer D. 50.  2010. Bidirectional immobilization of affinity-tagged cytochrome c on electrode surfaces. Chem. Commun. 46:5295–97 [Google Scholar]
  51. Davis JJ, Djuricic D, Lo KKW, Wallace ENK, Wong L-L, Hill HAO. 51.  2000. A scanning tunnelling study of immobilised cytochrome P450cam. Faraday Discuss. 116:15–22 [Google Scholar]
  52. Beissenhirtz MK, Scheller FW, Viezzoli MS, Lisdat F. 52.  2006. Engineered superoxide dismutase monomers for superoxide biosensor applications. Anal. Chem. 78:928–35 [Google Scholar]
  53. Guisan JM.53.  2006. Immobilization of Enzymes and Cells New Jersey: Springer
  54. Madoz-Gúrpide J, Abad JM, Fernandez-Recio J, Vélez M, Vazquez L. 54.  et al. 2000. Modulation of electroenzymatic NADPH oxidation through oriented immobilization of ferredoxin: NADP+ reductase onto modified gold electrodes. J. Am. Chem. Soc. 122:9808–17 [Google Scholar]
  55. Schröper F, Baumann A, Offenhäusser A, Mayer D. 55.  2012. Direct electrochemistry of novel affinity-tag immobilized recombinant horse heart cytochrome c. Biosens. Bioelectron. 34:171–77 [Google Scholar]
  56. Willner I, Katz E. 56.  2006. Bioelectronics Weinheim: Wiley
  57. Zhou Y, Zhi J, Zou Y, Zhang W, Lee S-T. 57.  2008. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Anal. Chem. 80:4141–46 [Google Scholar]
  58. Duo I, Fujishima A, Comninellis C. 58.  2003. Electron transfer kinetics on composite diamond (sp3)–graphite (sp2) electrodes. Electrochem. Commun. 5:695–700 [Google Scholar]
  59. Zhu Z, Garcia-Gancedo L, Flewitt AJ, Xie H, Moussy F, Milne WI. 59.  2012. A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12:5996–6022 [Google Scholar]
  60. Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y. 60.  et al. 2004. Electric field effect in atomically thin carbon films. Science 306:666–69 [Google Scholar]
  61. Wu J-F, Xu M-Q, Zhao G-C. 61.  2010. Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing. Electrochem. Commun. 12:175–77 [Google Scholar]
  62. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y. 62.  2009. Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25:901–5 [Google Scholar]
  63. Iijima S.63.  1991. Helical microtubules of graphitic carbon. Nature 354:56–58 [Google Scholar]
  64. Gooding JJ, Wibowo R, Liu J, Yang W, Losic D. 64.  et al. 2003. Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125:9006–7 [Google Scholar]
  65. Zhao G-C, Yin Z-Z, Zhang L, Wei X-W. 65.  2005. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2. Electrochem. Commun. 7:256–60 [Google Scholar]
  66. Wang J, Li M, Shi Z, Li N, Gu Z. 66.  2002. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 74:1993–97 [Google Scholar]
  67. Yamamoto K, Shi G, Zhou T, Xu F, Xu J. 67.  et al. 2003. Study of carbon nanotubes–HRP modified electrode and its application for novel on-line biosensors. Analyst 128:249–54 [Google Scholar]
  68. Guiseppi-Elie A, Lei C, Baughman RH. 68.  2002. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13:559 [Google Scholar]
  69. Cai C, Chen J. 69.  2004. Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Anal. Biochem. 325:285–92 [Google Scholar]
  70. Liu Y, Wang M, Zhao F, Xu Z, Dong S. 70.  2005. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens. Bioelectron. 21:984–88 [Google Scholar]
  71. Ueda A, Kato D, Kurita R, Kamata T, Inokuchi H. 71.  et al. 2011. Efficient direct electron transfer with enzyme on a nanostructured carbon film fabricated with a maskless top-down UV/ozone process. J. Am. Chem. Soc. 133:4840–46 [Google Scholar]
  72. Bromley EH, Channon K, Moutevelis E, Woolfson DN. 72.  2008. Peptide and protein building blocks for synthetic biology: from programming biomolecules to self-organized biomolecular systems. ACS Chem. Biol. 3:38–50 [Google Scholar]
  73. Grzyb J, Xu F, Weiner L, Reijerse EJ, Lubitz W et al.73.  2010. De novo design of a non-natural fold for an iron–sulfur protein: alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochim. Biophys. Acta Bioenerg. 1797:3406–13 [Google Scholar]
  74. Gibney BR, Rabanal F, Dutton PL. 74.  1997. Synthesis of novel proteins. Curr. Opin. Chem. Biol. 1:537–42 [Google Scholar]
  75. Zhao X, Pan F, Xu H, Yaseen M, Shan H. 75.  et al. 2010. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 39:3480–98 [Google Scholar]
  76. Marcus RA.76.  1965. On the theory of electron transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43:679–701 [Google Scholar]
  77. Robertson DE, Farid RS, Moser CC, Urbauer JL, Mulholland SE. 77.  et al. 1994. Design and synthesis of multi-haem proteins. Nature 368:6470425–32 [Google Scholar]
  78. Gibney BR, Mulholland SE, Rabanal F, Dutton PL. 78.  1996. Ferredoxin and ferredoxin–heme maquettes. Proc. Natl. Acad. Sci. 93:15041–46 [Google Scholar]
  79. Krishna SS, Sadreyev RI, Grishin NV. 79.  2006. A tale of two ferredoxins: sequence similarity and structural differences. BMC Struct. Biol. 6:8 [Google Scholar]
  80. Coldren CD, Hellinga HW, Caradonna JP. 80.  1997. The rational design and construction of a cuboidal iron–sulfur protein. Proc. Natl. Acad. Sci. 94:6635–40 [Google Scholar]
  81. Nanda V, Rosenblatt MM, Osyczka A, Kono H, Getahun Z. 81.  et al. 2005. De novo design of a redox-active minimal rubredoxin mimic. J. Am. Chem. Soc. 127:5804–5 [Google Scholar]
  82. Koder RL, Anderson JR, Solomon LA, Reddy KS, Moser CC, Dutton PL. 82.  2009. Design and engineering of an O2 transport protein. Nature 458:305–9 [Google Scholar]
  83. Mutz MW, McLendon GL, Wishart JF, Gaillard ER, Corin AF. 83.  1996. Conformational dependence of electron transfer across de novo designed metalloproteins. Proc. Natl. Acad. Sci. 93:9521–26 [Google Scholar]
  84. Dieckmann GR, McRorie DK, Tierney DL, Utschig LM, Singer CP. 84.  et al. 1997. De novo design of mercury-binding two- and three-helical bundles. J. Am. Chem. Soc. 119:6195–96 [Google Scholar]
  85. Lovejoy B, Choe S, Cascio D, McRorie DK, DeGrado WF, Eisenberg D. 85.  1993. Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science 259:1288–93 [Google Scholar]
  86. Okamura T-a, Ushijima Y, Omi Y, Onitsuka K. 86.  2012. Systematic investigation of relationship between strength of NH ⋅⋅⋅ S hydrogen bond and reactivity of molybdoenzyme models. Inorg. Chem. 52:381–94 [Google Scholar]
  87. Baba K, Okamura T-a, Yamamoto H, Yamamoto T, Ueyama N. 87.  2008. Zinc, cadmium, and mercury 1,2-benzenedithiolates with intramolecular NH ⋅⋅⋅ S hydrogen bonds. Inorg. Chem. 47:2837–48 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error