Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Batta G, Kovir K, Jossuth L, Szankey C. 1.  1997. Methods of structure elucidation by high-resolution NMR. Analytical Spectroscopy Library1–357 London: Elsevier [Google Scholar]
  2. Simpson JH.2.  2008. Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach San Diego, CA: Academic [Google Scholar]
  3. Cavanagh J, Fairbrother WJ, Palmer AG, Skelton NJ, Rance M. 3.  2006. Protein NMR Spectroscopy: Principles and Practice. Amsterdam: Elsevier [Google Scholar]
  4. Wüthrich K.4.  1986. NMR of Proteins and Nucleic Acids New York: Wiley [Google Scholar]
  5. Tycko R. 5.  2003. Nuclear Magnetic Resonance Probes of Molecular Dynamics Dordrecht, Ger: Springer [Google Scholar]
  6. Jeener J.6.  1971. Lecture presented at Ampere International Summer School II, Basko Polje, Yugoslavia [Google Scholar]
  7. Aue WP, Bartholdi E, Ernst RR. 7.  1976. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64:2229–46 [Google Scholar]
  8. Derome AE.8.  1987. Modern NMR Techniques for Chemistry Research Oxford, UK: Pergamon [Google Scholar]
  9. 9.  Deleted in proof
  10. Maudsley AA, Ernst RR. 10.  1977. Indirect detection of magnetic resonance by heteronuclear two-dimensional spectroscopy. Chem. Phys. Lett. 50:368–72 [Google Scholar]
  11. Müller L, Kumar A, Ernst RR. 11.  1977. Two-dimensional carbon-13 spin-echo spectroscopy. J. Magn. Reson. 25:383–90 [Google Scholar]
  12. Jeener J, Meier BH, Bachmann P, Ernst RR. 12.  1979. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 72:4546–53 [Google Scholar]
  13. Bodenhausen G, Ruben DJ. 13.  1980. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett. 69:185–89 [Google Scholar]
  14. Bax A, Griffey RH, Hawkins BL. 14.  1983. Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. Magn. Reson. 55:301–15 [Google Scholar]
  15. Bax A, Summers MF. 15.  1986. Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108:2093–94 [Google Scholar]
  16. Aue WP, Bachmann P, Wokaun A, Ernst RR. 16.  1978. Sensitivity of two-dimensional NMR spectroscopy. J. Magn. Reson. 29:523–33 [Google Scholar]
  17. Aue WP, Karhan J, Ernst RR. 17.  1976. Homonuclear broad band decoupling and two-dimensional J-resolved NMR spectroscopy. J. Chem. Phys. 64:4226–27 [Google Scholar]
  18. Ernst RR, Bodenhausen G, Wokaun A. 18.  1987. Principles of Nuclear Magnetic Resonance in One and Two Dimensions Oxford, UK: Clarendon Press [Google Scholar]
  19. Topcu G, Ulubelen A. 19.  2007. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques. J. Mol. Struct. 834:57–73 [Google Scholar]
  20. Li D, Owen NL, Perera P, Andersson C, Bohlin L. 20.  et al. 1994. Structure elucidation of three triterpenoid saponins from Alphitonia zizyphoides using 2D NMR techniques. J. Nat. Prod. 57:218–24 [Google Scholar]
  21. Koskela H.21.  2009. Quantitative 2D NMR studies. Annu. Rep. NMR Spectrosc. 66:1–31 [Google Scholar]
  22. Massou S, Nicolas C, Letisse F, Portais J-C. 22.  2007. NMR-based fluoxomics: quantitative 2D NMR methods for isotopomers analysis. Phytochemistry 68:2330–40 [Google Scholar]
  23. Englander SW, Mayne L. 23.  1992. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu. Rev. Biophys. Biomol. Struct. 21:243–65 [Google Scholar]
  24. Machonkin TE, Westler WM, Markley JL. 24.  2002. 13C{13C} 2D NMR: a novel strategy for the study of paramagnetic proteins with slow electronic relaxation rates. J. Am. Chem. Soc. 124:3204–5 [Google Scholar]
  25. Kriwacki RW, Pitner TP. 25.  1989. Current aspects of practical two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy: applications to structure elucidation. Pharm. Res. 6:531–54 [Google Scholar]
  26. Mehlkopf AF, Korbee D, Tiggelman TA, Freeman R. 26.  1984. Sources of t1 noise in two-dimensional NMR. J. Magn. Reson. 58:315–23 [Google Scholar]
  27. Morris GA.27.  1992. Systematic sources of signal irreproducibility and t1 noise in high-field NMR spectrometers. J. Magn. Reson. 100:316–28 [Google Scholar]
  28. Ross A, Salzmann M, Senn H. 28.  1997. Fast-HMQC using Ernst angle pulses: an efficient tool for screening of ligand binding to target proteins. J. Biomol. NMR 10:389–96 [Google Scholar]
  29. Schanda P, Brutscher B. 29.  2005. Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J. Am. Chem. Soc. 127:8014–15 [Google Scholar]
  30. Cai S, Seu C, Kovacs Z, Sherry AD, Chen Y. 30.  2006. Sensitivity enhancement of multidimensional NMR experiments by paramagnetic relaxation effects. J. Am. Chem. Soc. 128:13474–78 [Google Scholar]
  31. Vitorge B, Bodenhausen G, Pelupessy P. 31.  2010. Speeding up nuclear magnetic resonance spectroscopy by the use of SMAll Recovery Times—SMART NMR. J. Magn. Reson. 207:149–52 [Google Scholar]
  32. Jeannerat D.32.  2003. High resolution in heteronuclear 1H-13C NMR experiments by optimizing spectral aliasing with one-dimensional carbon data. Magn. Reson. Chem. 41:3–17 [Google Scholar]
  33. Donoho DL, Tsaig Y. 33.  2008. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE 54:4789–812 [Google Scholar]
  34. Stern AS, Donoho DL, Hoch JC. 34.  2007. NMR data processing using iterative thresholding and minimum l1-norm reconstruction. J. Magn. Reson. 188:295–300 [Google Scholar]
  35. Barkhuijsen H, De Beer R, Bovée WMMJ, Van Ormondt D. 35.  1985. Retrieval of frequencies, amplitudes, damping factors, and phases from time-domain signals using a linear least-squares procedure. J. Magn. Reson. 61:465–81 [Google Scholar]
  36. Stern AS, Li K-B, Hoch JC. 36.  2002. Modern spectrum analysis in multidimensional NMR spectroscopy: comparison of linear-prediction extrapolation and maximum-entropy reconstruction. J. Am. Chem. Soc. 124:1982–93 [Google Scholar]
  37. Hoch JC.37.  1985. Maximum entropy signal processing of two-dimensional NMR data. J. Magn. Reson. 64:436–40 [Google Scholar]
  38. Kazimierczuk K, Zawadzka A, Koźmiński W. 38.  2008. Optimization of random time domain sampling in multidimensional NMR. J. Magn. Reson. 192:123–30 [Google Scholar]
  39. Brüschweiler R, Zhang F. 39.  2004. Covariance nuclear magnetic resonance spectroscopy. J. Chem. Phys. 120:5253–60 [Google Scholar]
  40. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP. 40.  1987. Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J. Magn. Reson. 73:69–77 [Google Scholar]
  41. Kupce E, Freeman R. 41.  2005. Fast multidimensional NMR: radial sampling of evolution space. J. Magn. Reson. 173:317–21 [Google Scholar]
  42. Kamzimierczuk K, Zawadzka A, Koźmiński W, Zhukov I. 42.  2007. Lineshapes and artifacts in multidimensional Fourier Transform of arbitrary sampled NMR data sets. J. Magn. Reson. 188:344–56 [Google Scholar]
  43. Lafon O, Hu B, Amoureux J-P, Lesot P. 43.  2011. Fast and high-resolution stereochemical analysis by nonuniform sampling and covariance processing of anisotropic natural abundance 2D 2H NMR datasets. Chem. Eur. J. 17:6716–24 [Google Scholar]
  44. Kupce E, Freeman R. 44.  2003. Two-dimensional Hadamard spectroscopy. J. Magn. Reson. 162:300–10 [Google Scholar]
  45. Frydman L, Lupulescu A, Scherf T. 45.  2003. Principles and features of single-scan two-dimensional NMR spectroscopy. J. Am. Chem. Soc. 125:9204–17 [Google Scholar]
  46. Frydman L, Scherf T, Lupulescu A. 46.  2002. The acquisition of multidimensional NMR spectra within a single scan. Prod. Natl. Acad. Sci. USA 99:15858–62 [Google Scholar]
  47. Mansfield P.47.  1977. Multi-planar image formation using NMR spin echoes. J. Phys. C 10:55–58 [Google Scholar]
  48. Mansfield P.48.  1984. Spatial mapping of the chemical shift in NMR. Magn. Reson. Med. 1:370–86 [Google Scholar]
  49. Shrot Y, Frydman L. 49.  2003. Ghost-peak suppression in ultrafast two-dimensional NMR spectroscopy. J. Magn. Reson. 164:351–57 [Google Scholar]
  50. Pelupessy P.50.  2003. Adiabatic single scan two-dimensional NMR spectroscopy. J. Am. Chem. Soc. 125:12345–50 [Google Scholar]
  51. Shrot Y, Shapira B, Frydman L. 51.  2004. Ultrafast 2D NMR spectroscopy using a continuous spatial encoding of the spin interactions. J. Magn. Reson. 171:163–70 [Google Scholar]
  52. Andersen NS, Köckenberger W. 52.  2005. A simple approach for phase-modulated single-scan 2D NMR spectroscopy. Magn. Reson. Chem. 43:791–94 [Google Scholar]
  53. Tal A, Shapira B, Frydman L. 53.  2005. A continuous phase-modulated approach to spatial encoding in ultrafast 2D NMR spectroscopy. J. Magn. Reson. 176:107–14 [Google Scholar]
  54. Shapira B, Shrot Y, Frydman L. 54.  2006. Symmetric spatial encoding in ultrafast 2D NMR spectroscopy. J. Magn. Reson. 178:33–41 [Google Scholar]
  55. Shrot Y, Frydman L. 55.  2008. Spatial encoding strategies for ultrafast multidimensional nuclear magnetic resonance. J. Chem. Phys. 128:052209 [Google Scholar]
  56. Wu C, Zhao M, Cai S, Lin Y, Chen Z. 56.  2010. Ultrafast 2D COSY with constant-time phase-modulated spatial encoding. J. Magn. Reson. 204:82–90 [Google Scholar]
  57. Basus VJ, Ellis PD, Hill HDW, Waugh JS. 57.  1979. Utilization of chirp frequency modulation for heteronuclear spin decoupling. J. Magn. Reson. 35:19–37 [Google Scholar]
  58. Böhlen JM, Bodenhausen G. 58.  1992. Experimental aspects of chirp NMR spectroscopy. J. Magn. Reson. A 102:293–301 [Google Scholar]
  59. Giraudeau P, Akoka S. 59.  2007. A new detection scheme for ultrafast 2D J-resolved spectroscopy. J. Magn. Reson. 186:352–57 [Google Scholar]
  60. Gal M, Frydman L. 60.  2010. Ultrafast multidimensional NMR: principles and practice of single-scan methods. Encyclopedia of Magnetic Resonance GA Morris, JW Emsley 43–60 Chichester, UK: Wiley [Google Scholar]
  61. Tal A, Frydman L. 61.  2010. Single-scan multidimensional magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 57:241–92 [Google Scholar]
  62. Giraudeau P, Akoka S. 62.  2008. Resolution and sensitivity aspects of ultrafast 2D J-resolved 2D NMR spectra. J. Magn. Reson. 190:339–45 [Google Scholar]
  63. Giraudeau P, Akoka S. 63.  2008. Sources of sensitivity losses in ultrafast 2D NMR. J. Magn. Reson. 192:151–58 [Google Scholar]
  64. Pelupessy P, Duma L, Bodenhausen G. 64.  2008. Improving resolution in single-scan 2D spectroscopy. J. Magn. Reson. 194:169–74 [Google Scholar]
  65. Shrot Y, Frydman L. 65.  2008. The effects of molecular diffusion in ultrafast two-dimensional nuclear magnetic resonance. J. Chem. Phys. 128:164513 [Google Scholar]
  66. Mishkovsky M, Frydman L. 66.  2009. Principles and progress in ultrafast multidimensional nuclear magnetic resonance. Annu. Rev. Phys. Chem. 60:429–48 [Google Scholar]
  67. Shrot Y, Frydman L. 67.  2009. Spatial/spectral encoding of the spin interactions in ultrafast multidimensional NMR. J. Chem. Phys. 131:224516 [Google Scholar]
  68. Giraudeau P, Akoka S. 68.  2008. Sensitivity losses and line shape modifications due to molecular diffusion in continuous encoding ultrafast 2D NMR experiments. J. Magn. Reson. 195:9–16 [Google Scholar]
  69. Rouger L, Loquet D, Massou S, Akoka S, Giraudeau P. 69.  2012. Limitation of diffusion effects in ultrafast 2D NMR by encapsulation of analytes in phospholipidic vesicles. Chem. Phys. Chem. 13:4124–27 [Google Scholar]
  70. Giraudeau P, Akoka S. 70.  2010. A new gradient-controlled method for improving the spectral width of ultrafast 2D NMR experiments. J. Magn. Reson. 205:171–76 [Google Scholar]
  71. Tal A, Shapira B, Frydman L. 71.  2009. Single-scan 2D Hadamard NMR spectroscopy. Angew. Chem. Int. Ed. 48:2732–36 [Google Scholar]
  72. Shrot Y, Frydman L. 72.  2011. Compressed sensing and the reconstruction of ultrafast 2D NMR data: principles and biomolecular applications. J. Magn. Reson. 209:352–58 [Google Scholar]
  73. Mishkovsky M, Frydman L. 73.  2005. Interlaced Fourier transformation of ultrafast 2D NMR data. J. Magn. Reson. 173:344–50 [Google Scholar]
  74. Giraudeau P, Akoka S. 74.  2011. Sensitivity and lineshape improvement in ultrafast 2D NMR by optimized apodization in the spatially encoded dimension. Magn. Reson. Chem. 49:307–13 [Google Scholar]
  75. Queiroz LHK Jr, Ferreira AG, Giraudeau P. 75.  2013. Optimization and practical implementation of ultrafast 2D NMR experiments. Quim. Nova. 26:577–81 [Google Scholar]
  76. Pathan M, Charrier B, Tea I, Akoka S, Giraudeau P. 76.  2013. New practical tools for the implementation and use of ultrafast 2D NMR experiments. Magn. Reson. Chem. 51:168–75 [Google Scholar]
  77. Shapira B, Frydman L. 77.  2003. Arrayed acquisition of 2D exchange NMR spectra within a single scan experiment. J. Magn. Reson. 165:320–24 [Google Scholar]
  78. Gal M, Mishkovsky M, Frydman L. 78.  2006. Real-time monitoring of chemical transformations by ultrafast 2D NMR spectroscopy. J. Am. Chem. Soc. 128:951–56 [Google Scholar]
  79. Li W, Li J, Wu Y, Fuller N, Markus MA. 79.  2010. Mechanistic pathways in CF3COOH-mediated deacetalization reactions. J. Org. Chem. 75:1077–86 [Google Scholar]
  80. Bussy U, Giraudeau P, Silvestre V, Jaunet-Lahary T, Ferchaud-Roucher V. 80.  et al. 2013. In situ NMR spectroelectrochemistry for the structure elucidation of unstable intermediate metabolites. Anal. Bioanal. Chem. 405:5817–24 [Google Scholar]
  81. Herrera A, Fernández-Valle E, Martínez-Álvarez R, Molero D, Pardo ZD. 81.  et al. 2009. Real-time monitoring of organic reactions with two-dimensional ultrafast TOCSY NMR spectroscopy. Angew. Chem. 48:6274–77 [Google Scholar]
  82. Herrera A, Fernández-Valle E, Gutiérrez EM, Martínez-Álvarez R, Molero D. 82.  et al. 2010. 2D ultrafast HMBC: a valuable tool for monitoring organic reactions. Org. Lett. 12:144–47 [Google Scholar]
  83. Giraudeau P, Lemeunier P, Coutand M, Doux J-M, Gilbert A. 83.  et al. 2011. Ultrafast 2D NMR applied to the kinetic study of D-glucose mutarotation in aqueous solution. J. Spectrosc. Dyn. 1:2 [Google Scholar]
  84. Pardo ZD, Olsen GL, Fernández-Valle ME, Frydman L, Martínez-Álvarez R, Herrera A. 84.  2012. Monitoring mechanistic details in the synthesis of pyrimidines via real-time, ultrafast multidimensional NMR spectroscopy. J. Am. Chem. Soc. 134:2706–15 [Google Scholar]
  85. Queiroz LHK Jr, Giraudeau P, dos Santos FAB, Oliveira KT, Ferreira AG. 85.  2012. Real-time mechanistic monitoring of an acetal hydrolysis using ultrafast 2D NMR. Magn. Reson. Chem. 50:496–501 [Google Scholar]
  86. Corazza A, Rennella E, Schanda P, Mimmi MC, Cutuil T. 86.  et al. 2010. Native-unlike long-lived intermediates along the folding pathway of the amyloidogenic protein β2-microglobulin revealed by real-time two-dimensional NMR. J. Biol. Chem. 285:5827–35 [Google Scholar]
  87. Gal M, Schanda P, Brutscher B, Frydman L. 87.  2007. UltraSOFAST HMQC NMR and the repetitive acquisition of 2D protein spectra at Hz rates. J. Am. Chem. Soc. 129:1372–77 [Google Scholar]
  88. Lee M-K, Gal M, Frydman L, Varani G. 88.  2010. Real-time multidimensional NMR follows RNA folding with second resolution. Proc. Natl. Acad. Sci. USA 107:9192–97 [Google Scholar]
  89. Kwakye JK.89.  1985. Use of NMR for quantitative analysis of pharmaceuticals. Talanta 32:1069–71 [Google Scholar]
  90. Holzgrabe U.90.  2010. Quantitative NMR spectroscopy in pharmaceutical applications. Prog. Nucl. Magn. Reson. Spectrosc. 57:229–40 [Google Scholar]
  91. Lindon JC, Nicholson JK, Holmes E, Everett JR. 91.  2000. Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn. Reson. 12:289–320 [Google Scholar]
  92. Wishart DS.92.  2008. Quantitative metabolomics using NMR. TrAC Trends Anal. Chem. 27:228–37 [Google Scholar]
  93. Zhang S, Nagana Gowda GA, Asiago V, Shanaiah N, Barbas C, Raftery D. 93.  2008. Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Anal. Biochem. 383:76–84 [Google Scholar]
  94. Tenailleau E, Lancelin P, Robins RJ, Akoka S. 94.  2004. Authentication of the origin of vanillin using quantitative natural abundance 13C NMR. J. Agric. Food Chem. 52:7782–87 [Google Scholar]
  95. Grand F, George G, Akoka S. 95.  Le 2005. Natural abundance 2H-ERETIC-NMR authentication of the origin of methyl salicylate. J. Agric. Food. Chem. 53:5125–29 [Google Scholar]
  96. Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG. 96.  2008. 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat. Protoc. 3:1001–12 [Google Scholar]
  97. Le Gall G, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME. 97.  2003. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J. Agric. Food. Chem. 51:2447–56 [Google Scholar]
  98. Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. 98.  2006. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78:4430–42 [Google Scholar]
  99. Giraudeau P, Guignard N, Hillion H, Baguet E, Akoka S. 99.  2007. Optimization of homonuclear 2D NMR for fast quantitative analysis: application to tropine-nortropine mixtures. J. Pharmaceut. Biomed. Anal. 43:1243–48 [Google Scholar]
  100. Koskela H, Kilpeläinen I, Heikkinen S. 100.  2005. Some aspects of quantitative 2D NMR. J. Magn. Reson. 174:237–44 [Google Scholar]
  101. Koskela H, Väänänen T. 101.  2002. Quantitative determination of aliphatic hydrocarbon compounds by 2D NMR. Magn. Reson. Chem. 40:705–15 [Google Scholar]
  102. Lewis IA, Karsten RH, Norton ME, Tonelli M, Westler WM, Markley JL. 102.  2010. NMR method for measuring carbon-13 isotopic enrichment of metabolites in complex solutions. Anal. Chem. 82:4558–63 [Google Scholar]
  103. Lewis IA, Schommer SC, Hodis B, Robb KA, Tonelli M. 103.  et al. 2007. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal. Chem. 79:9385–90 [Google Scholar]
  104. Martineau E, Giraudeau P, Tea I, Akoka S. 104.  2011. Fast and precise quantitative analysis of metabolic mixtures by 2D 1H INADEQUATE NMR. J. Pharm. Biomed. Anal. 54:252–57 [Google Scholar]
  105. Martineau E, Tea I, Akoka S, Giraudeau P. 105.  2012. Absolute quantification of metabolites in breast cancer cell extracts by quantitative 2D 1H INADEQUATE NMR. NMR Biomed. 25:985–92 [Google Scholar]
  106. Massou S, Nicolas C, Letisse F, Portais J-C. 106.  2007. Application of 2D-TOCSY NMR to the measurement of specific 13C-enrichments in complex mixtures of 13C-labeled metabolites. Metab. Eng. 9:252–57 [Google Scholar]
  107. Zhang L, Gellerstedt G. 107.  2007. Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn. Reson. Chem. 45:37–45 [Google Scholar]
  108. Giraudeau P, Akoka S. 108.  2013. Fast and ultrafast quantitative 2D NMR: vital tools for efficient metabolomic approaches. Adv. Bot. Res. 67:99–158 [Google Scholar]
  109. Martineau E, Akoka S, Boisseau R, Delanoue B, Giraudeau P. 109.  2013. Fast quantitative 1H-13C 2D NMR with very high precision. Anal. Chem. 85:4777–83 [Google Scholar]
  110. Gronwald W, Klein MS, Kaspar H, Fagerer SR, Nurnberger N. 110.  et al. 2008. Urinary metabolite quantification employing 2D NMR spectroscopy. Anal. Chem. 80:9288–97 [Google Scholar]
  111. Hu F, Furihata K, Kato Y, Tanokura M. 111.  2007. Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy. J. Agric. Food Chem. 55:4307–11 [Google Scholar]
  112. Giraudeau P, Remaud GS, Akoka S. 112.  2009. Evaluation of ultrafast 2D NMR for quantitative analysis. Anal. Chem. 81:479–84 [Google Scholar]
  113. Pathan M, Akoka S, Tea I, Charrier B, Giraudeau P. 113.  2011. “Multi-scan single shot” quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR. Analyst 136:3157–63 [Google Scholar]
  114. Guennec A, Tea I, Antheaume I, Martineau E, Charrier B. 114.  Le et al. 2012. Fast determination of absolute metabolite concentrations by spatially-encoded 2D NMR: application to breast cancer cell extracts. Anal. Chem. 84:10831–37 [Google Scholar]
  115. Giraudeau P, Massou S, Robin Y, Cahoreau E, Portais J-C, Akoka S. 115.  2011. Ultrafast quantitative 2D NMR: an efficient tool for the measurement of specific isotopic enrichments in complex biological mixtures. Anal. Chem. 83:3112–19 [Google Scholar]
  116. Pathan M, Akoka S, Giraudeau P. 116.  2012. Ultrafast hetero-nuclear 2D J-resolved spectroscopy. J. Magn. Reson. 214:335–39 [Google Scholar]
  117. Cardoza LA, Almeida VK, Carr A, Larive CK, Graham DW. 117.  2003. Separations coupled with NMR detection. Trends Anal. Chem. 22:766–75 [Google Scholar]
  118. Corcoran O, Spraul M. 118.  2003. LC-NMR-MS in drug discovery. Drug Discov. Today 8:624–31 [Google Scholar]
  119. Exarchou V, Krucker M, van Beek TA, Vervoort J, Gerothanassis IP, Albert K. 119.  2005. LC-NMR coupling technology: recent advancements and applications in natural products analysis. Magn. Reson. Chem. 43:681–87 [Google Scholar]
  120. Zhou Z, Lan W, Zhang W, Zhang X, Xia S. 120.  et al. 2007. Implementation of real-time two-dimensional nuclear magnetic resonance spectroscopy for on-flow high-performance liquid chromatography. J. Chromatogr. A1154464–68 [Google Scholar]
  121. Shapira B, Karton A, Aronzon D, Frydman L. 121.  2004. Real-time 2D NMR identification of analytes undergoing continuous chromatographic separation. J. Am. Chem. Soc. 126:1262–65 [Google Scholar]
  122. Queiroz LHK Jr, Queiroz DPK, Dhooghe L, Ferreira AG, Giraudeau P. 122.  2012. Real-time separation of natural products by ultrafast 2D NMR coupled to on-line HPLC. Analyst 137:2357–61 [Google Scholar]
  123. Adams RW, Aguilar JA, Atkinson KD, Cowley AJ, Elliott PIP. 123.  et al. 2009. Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323:1708–11 [Google Scholar]
  124. Eisenschmid TC, Kirss RU, Deutsch PP, Hommeltoft SI, Eisenberg R. 124.  et al. 2002. Para hydrogen induced polarization in hydrogenation reactions. J. Am. Chem. Soc. 109:8089–91 [Google Scholar]
  125. Albert MS, Cates GD, Driehuys B, Happer W, Saam B. 125.  et al. 1994. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370:199–201 [Google Scholar]
  126. Navon G, Song Y-Q, Rõõm T, Appelt S, Taylor RE, Pines A. 126.  1996. Enhancement of solution NMR and MRI with laser-polarized xenon. Science271 [Google Scholar]
  127. Wolber J, Ellner F, Fridlund B, Gram A, Jóhanesson H. 127.  et al. 2004. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization. Nucl. Instrum. Methods Phys. Res. A 526:173–81 [Google Scholar]
  128. Hausser KH, Stehlik D. 128.  1968. Dynamic nuclear polarization in liquids. Adv. Magn. Reson. 3:79–139 [Google Scholar]
  129. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L. 129.  et al. 2003. Increase in signal-to-noise ratio of >10,000 times in liquid state NMR. Proc. Natl. Acad. Sci. USA 100:10158–63 [Google Scholar]
  130. Joo C-G, Hu K-N, Bryant J-A, Griffin RG. 130.  2006. In situ temperature jump high-frequency dynamic nuclear polarization experiments: enhanced sensitivity in liquid-state NMR spectroscopy. J. Am. Chem. Soc. 128:9428–32 [Google Scholar]
  131. Krahn A, Lottmann P, Marquardsen T, Tavernier A, Türke A-T. 131.  et al. 2010. Shuttle DNP spectrometer with a two-center magnet. Phys. Chem. Chem. Phys. 12:5830–40 [Google Scholar]
  132. Leggett J, Hunter R, Granwehr J, Panek R, Perez-Linde AJ. 132.  et al. 2010. A dedicated spectrometer for dissolution DNP NMR spectroscopy. Phys. Chem. Chem. Phys. 12:5883–92 [Google Scholar]
  133. Frydman L, Blazina D. 133.  2007. Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions. Nat. Phys. 3:415–19 [Google Scholar]
  134. Mishkovsky M, Frydman L. 134.  2008. Progress in hyperpolarized ultrafast 2D NMR spectroscopy. Chem. Phys. Chem. 9:2340–48 [Google Scholar]
  135. Giraudeau P, Shrot Y, Frydman L. 135.  2009. Multiple ultrafast, broadband 2D NMR spectra of hyperpolarized natural products. J. Am. Chem. Soc. 131:13902–3 [Google Scholar]
  136. Panek R, Granwehr J, Leggett J, Kockenberger W. 136.  2010. Slice-selective single scan proton COSY with dynamic nuclear polarisation. Phys. Chem. Chem. Phys. 12:5771–78 [Google Scholar]
  137. Lloyd LS, Adams RW, Bernstein M, Coombes S, Duckett SB. 137.  et al. 2012. Utilization of SABRE-derived hyperpolarization to detect low-concentration analytes via 1D and 2D NMR methods. J. Am. Chem. Soc. 134:12904–07 [Google Scholar]
  138. Vold RL, Waugh JS, Klein MP, Phelps DE. 138.  1968. Measurement of spin relaxation in complex systems. J. Chem. Phys. 48:3831–32 [Google Scholar]
  139. Bhattacharyya R, Kumar A. 139.  2004. A fast method for the measurement of long spin-lattice relaxation times by single scan inversion recovery experiment. Chem. Phys. Lett. 383:99–103 [Google Scholar]
  140. Loening NM, Thrippleton MJ, Keeler J, Griffin RG. 140.  2003. Single-scan longitudinal relaxation measurements in high-resolution NMR spectroscopy. J. Magn. Reson. 164:321–28 [Google Scholar]
  141. Smith PE, Donovan KJ, Szekely O, Baias M, Frydman L. 141.  2013. Ultrafast NMR T1 relaxation measurements: probing molecular properties in real time. Chem. Phys. Chem. 14:3138–45 [Google Scholar]
  142. Barjat H, Morris GA, Smart S, Swanson AG, Williams SCR. 142.  1995. High-resolution diffusion-ordered spectroscopy (HR-DOSY)—a new tool for the analysis of complex mixtures. J. Magn. Reson. Ser. B 108:170–72 [Google Scholar]
  143. Shrot Y, Frydman L. 143.  2008. Single-scan 2D DOSY NMR spectroscopy. J. Magn. Reson. 195:226–31 [Google Scholar]
  144. Xu X, Lee J-S, Jerschow A. 144.  2013. Ultrafast scanning of exchangeable sites by NMR spectroscopy. Angew. Chem. 52:8281–84 [Google Scholar]
  145. Wolff SD, Balaba RS. 145.  1990. NMR imaging of labile proton exchange. J. Magn. Reson. 86:164–69 [Google Scholar]
  146. Shrot Y, Frydman L. 146.  2003. Single-scan NMR spectroscopy at arbitrary dimensions. J. Am. Chem. Soc. 125:11385–96 [Google Scholar]
  147. Giraudeau P, Cahoreau E, Massou S, Pathan M, Portais J-C, Akoka S. 147.  2012. UFJCOSY: a fast 3D NMR method for measuring isotopic enrichments in complex samples. Chem. Phys. Chem. 13:3098–101 [Google Scholar]
  148. Roussel T, Giraudeau P, Ratiney H, Akoka S, Cavassila S. 148.  2012. 3D localized 2D ultrafast J-resolved magnetic resonance spectroscopy: in vitro study on a 7T imaging system. J. Magn. Reson. 215:50–65 [Google Scholar]
  149. Pelupessy P, Renella E, Bodenhausen G. 149.  2009. High-resolution NMR in magnetic fields with unknown spatiotemporal variations. Science 324:1693–97 [Google Scholar]
  150. Zhang Z, Chen H, Wu C, Wu R, Cai S, Chen Z. 150.  2013. Spatially encoded ultrafast high-resolution 2D homonuclear correlation spectroscopy in inhomogeneous fields. J. Magn. Reson. 227:39–45 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error