In the past 30 years, there has been a significant growth in the use of solid-phase assays in the area of drug discovery, with a range of new assays being used for both soluble and membrane-bound targets. In this review, we provide some basic background to typical drug targets and immobilization protocols used in solid-phase biological assays (SPBAs) for drug discovery, with emphasis on particularly labile biomolecular targets such as kinases and membrane-bound receptors, and highlight some of the more recent approaches for producing protein microarrays, bioaffinity columns, and other devices that are central to small molecule screening by SPBA. We then discuss key applications of such assays to identify drug leads, with an emphasis on the screening of mixtures. We conclude by highlighting specific advantages and potential disadvantages of SPBAs, particularly as they relate to particular assay formats.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Tyagi S, Kramer FR. 1.  1996. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303–8 [Google Scholar]
  2. Berrade L, Garcia AE, Camarero JA. 2.  2011. Protein microarrays: novel developments and applications. Pharm. Res. 28:1480–99 [Google Scholar]
  3. Tiefenauer L, Demarche S. 3.  2012. Challenges in the development of functional assays of membrane proteins. Materials 5:2205–42 [Google Scholar]
  4. Kwok KC, Cheung NH. 4.  2010. Measuring binding kinetics of ligands with tethered receptors by fluorescence polarization and total internal reflection fluorescence. Anal. Chem. 82:3819–25 [Google Scholar]
  5. Sanghvi M, Moaddel R, Wainer IW. 5.  2011. The development and characterization of protein-based stationary phases for studying drug-protein and protein-protein interactions. J. Chromatogr. A 12188791–98
  6. Hong YL, Webb BL, Pai S, Ferrie A, Peng JL. 6.  et al. 2006. G-protein-coupled receptor microarrays for multiplexed compound screening. J. Biomol. Screen. 11:435–38 [Google Scholar]
  7. Mallik R, Yoo MJ, Briscoe CJ, Hage DS. 7.  2010. Analysis of drug-protein binding by ultrafast affinity chromatography using immobilized human serum albumin. J. Chromatogr. A 12172796–803
  8. Sharma J, Besanger TR, Brennan JD. 8.  2008. Assaying small-molecule-receptor interactions by continuous flow competitive displacement chromatography/mass spectrometry. Anal. Chem. 80:3213–20 [Google Scholar]
  9. Lebert JM, Forsberg EM, Brennan JD. 9.  2008. Solid-phase assays for small molecule screening using sol-gel entrapped proteins. Biochem. Cell Biol. 86:100–10 [Google Scholar]
  10. Cichna-Markl M.10.  2006. Selective sample preparation with bioaffinity columns prepared by the sol-gel method. J. Chromatogr. A 1124167–80
  11. Wark AW, Lee J, Kim S, Faisal SN, Lee HJ. 11.  2010. Bioaffinity detection of pathogens on surfaces. J. Ind. Eng. Chem. 16:169–77 [Google Scholar]
  12. Yarmush ML, King KR. 12.  2009. Living-cell microarrays. Annu. Rev. Biomed. Eng. 11:235–57 [Google Scholar]
  13. Ng W, Dai JR, Slon-Usakiewicz JJ, Redden PR, Pasternak A, Reid N. 13.  2007. Automated multiple ligand screening by frontal affinity chromatography-mass spectrometry (FAC-MS). J. Biomol. Screen. 12:167–74 [Google Scholar]
  14. Imai H, Kawauchi Y. 14.  1981. Application of immobilized enzyme electrode to inhibitor screening of beta-D-glucose oxidase. Bunseki Kagaku 30:94–99 [Google Scholar]
  15. Markoglou N, Hsuesh R, Wainer IW. 15.  2004. Immobilized enzyme reactors based upon the flavoenzymes monoamine oxidase A and B. J. Chromatogr. B 804:295–302 [Google Scholar]
  16. Duong-Thi MD, Bergstrom M, Fex T, Isaksson R, Ohlson S. 16.  2013. High-throughput fragment screening by affinity LC-MS. J. Biomol. Screen. 18:160–71 [Google Scholar]
  17. Forsberg EM, Green JR, Brennan JD. 17.  2011. Continuous flow immobilized enzyme reactor-tandem mass spectrometry for screening of AChE inhibitors in complex mixtures. Anal. Chem. 83:5230–36 [Google Scholar]
  18. Lee JK, Kang IC. 18.  2013. Analysis of Plk1-Bora interaction using a Protein Chip system. BioChip J. 7:151–55 [Google Scholar]
  19. Cardoso CL, Lima VV, Zottis A, Oliva G, Andricopulo A. 19.  et al. 2006. Development and characterization of an immobilized enzyme reactor (IMER) based on human glyceraldehyde-3-phosphate dehydrogenase for on-line enzymatic studies. J. Chromatogr. A 1120:151–57 [Google Scholar]
  20. Wang S, Fischer PM. 20.  2008. Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol. Sci. 29:302–13 [Google Scholar]
  21. Zhang JM, Yang PL, Gray NS. 21.  2009. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9:28–39 [Google Scholar]
  22. Le Grice SFJ. 22.  2012. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J. Biol. Chem. 287:40850–57 [Google Scholar]
  23. Grawert MA, Groll M. 23.  2012. Exploiting nature's rich source of proteasome inhibitors as starting points in drug development. Chem. Commun. 48:1364–78 [Google Scholar]
  24. Drewe J, Cai SX. 24.  2010. Cell-based apoptosis assays in oncology drug discovery. Expert Opin. Drug Discov. 5:583–96 [Google Scholar]
  25. Pastore S, Mascia F, Mariani V, Girolomoni G. 25.  2008. The epidermal growth factor receptor system in skin repair and inflammation. J. Invest. Dermatol. 128:1365–74 [Google Scholar]
  26. Lecca D, Abbracchio MR. 26.  2008. Deorphanisation of G protein-coupled receptors: a tool to provide new insights in nervous system pathophysiology and new targets for psycho-active drugs. Neurochem. Int. 52:339–51 [Google Scholar]
  27. Thery C, Ostrowski M, Segura E. 27.  2009. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9:581–93 [Google Scholar]
  28. Rosenbaum DM, Rasmussen SGF, Kobilka BK. 28.  2009. The structure and function of G-protein-coupled receptors. Nature 459:356–63 [Google Scholar]
  29. Lemmon MA, Schlessinger J. 29.  2010. Cell signaling by receptor tyrosine kinases. Cell 141:1117–34 [Google Scholar]
  30. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP. 30.  2009. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 8:733–50 [Google Scholar]
  31. Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T. 31.  2007. Voltage-gated ion channels and gating modifier toxins. Toxicon 49:124–41 [Google Scholar]
  32. Grote M, O'Malley MA. 32.  2011. Enlightening the life sciences: the history of halobacterial and microbial rhodopsin research. FEMS Microbiol. Rev. 35:1082–99 [Google Scholar]
  33. Riese DJ.33.  2011. Ligand-based receptor tyrosine kinase partial agonists: New paradigm for cancer drug discovery?. Expert Opin. Drug Discov. 6:185–93 [Google Scholar]
  34. Tsai CJ, Nussinov R. 34.  2013. The molecular basis of targeting protein kinases in cancer therapeutics. Semin. Cancer Biol. 23:235–42 [Google Scholar]
  35. Hernandez K, Fernandez-Lafuente R. 35.  2011. Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb. Technol. 48:107–22 [Google Scholar]
  36. Monton MRN, Forsberg EM, Brennan JD. 36.  2012. Tailoring sol-gel-derived silica materials for optical biosensing. Chem. Mater. 24:796–811 [Google Scholar]
  37. Talbert JN, Goddard JM. 37.  2012. Enzymes on material surfaces. Colloids Surf. B 93:8–19 [Google Scholar]
  38. Nakanishi K, Sakiyama T, Kumada Y, Imamura K, Imanaka H. 38.  2008. Recent advances in controlled immobilization of proteins onto the surface of the solid substrate and its possible application to proteomics. Curr. Proteomics 5:161–75 [Google Scholar]
  39. Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON. 39.  2010. Immobilization of biomolecules on nanostructured films for biosensing. Biosens. Bioelectron. 25:1254–63 [Google Scholar]
  40. Brennan JD.40.  2007. Biofriendly sol-gel processing for the entrapment of soluble and membrane-bound proteins: toward novel solid-phase assays for high-throughput screening. Acc. Chem. Res. 40:827–35 [Google Scholar]
  41. Serebryany E, Zhu GA, Yan ECY. 41.  2012. Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochim. Biophys. Acta 1818:225–33 [Google Scholar]
  42. Kongsuphol P, Fang KB, Ding ZP. 42.  2013. Lipid bilayer technologies in ion channel recordings and their potential in drug screening assay. Sens. Actuators B 185:530–42 [Google Scholar]
  43. Phung T, Zhang YL, Dunlop J, Dalziel J. 43.  2011. Bilayer lipid membranes supported on Teflon filters: a functional environment for ion channels. Biosens. Bioelectron. 26:3127–35 [Google Scholar]
  44. Jadhav SR, Zheng Y, Garavito RM, Worden RM. 44.  2008. Functional characterization of PorB class II porin from Neisseria meningitidis using a tethered bilayer lipid membrane. Biosens. Bioelectron. 24:831–35 [Google Scholar]
  45. Budvytyte R, Valincius G, Niaura G, Voiciuk V, Mickevicius M. 45.  et al. 2013. Structure and properties of tethered bilayer lipid membranes with unsaturated anchor molecules. Langmuir 29:8645–56 [Google Scholar]
  46. Moaddel R, Rosenberg A, Spelman K, Frazier J, Frazier C. 46.  et al. 2011. Development and characterization of immobilized cannabinoid receptor (CB1/CB2) open tubular column for on-line screening. Anal. Biochem. 412:85–91 [Google Scholar]
  47. Hou YX, Helali S, Zhang AD, Jaffrezic-Renault N, Martelet C. 47.  et al. 2006. Immobilization of rhodopsin on a self-assembled multilayer and its specific detection by electrochemical impedance spectroscopy. Biosens. Bioelectron. 21:1393–402 [Google Scholar]
  48. Kroger D, Hucho F, Vogel H. 48.  1999. Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance. Anal. Chem. 71:3157–65 [Google Scholar]
  49. Sevin-Landais A, Rigler P, Tzartos S, Hucho F, Hovius R, Vogel H. 49.  2000. Functional immobilisation of the nicotinic acetylcholine receptor in tethered lipid membranes. Biophys. Chem. 85:141–52 [Google Scholar]
  50. Moaddel R, Wainer IW. 50.  2009. The preparation and development of cellular membrane affinity chromatography columns. Nat. Protoc. 4:197–205 [Google Scholar]
  51. May S, Andreasson-Ochsner M, Fu ZK, Low YX, Tan D. 51.  et al. 2013. In vitro expressed GPCR inserted in polymersome membranes for ligand-binding studies. Angew. Chem. 52:749–53 [Google Scholar]
  52. Fang Y.52.  2012. Ligand-receptor interaction platforms and their applications for drug discovery. Expert Opin. Drug Discov. 7:969–88 [Google Scholar]
  53. Mayr LM, Bojanic D. 53.  2009. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 9:580–88 [Google Scholar]
  54. Ruiz-Garcia A, Bermejo M, Moss A, Casabo VG. 54.  2008. Pharmacokinetics in drug discovery. J. Pharm. Sci. 97:654–90 [Google Scholar]
  55. Vegas AJ, Fuller JH, Koehler AN. 55.  2008. Small-molecule microarrays as tools in ligand discovery. Chem. Soc. Rev. 37:1385–94 [Google Scholar]
  56. Uttamchandani M, Lu CHS, Yao SQ. 56.  2009. Next generation chemical proteomic tools for rapid enzyme profiling. Acc. Chem. Res. 42:1183–92 [Google Scholar]
  57. Foong YM, Fu JQ, Yao SQ, Uttamchandani M. 57.  2012. Current advances in peptide and small molecule microarray technologies. Curr. Opin. Chem. Biol. 16:234–42 [Google Scholar]
  58. Gray CJ, Weissenborn MJ, Eyers CE, Flitsch SL. 58.  2013. Enzymatic reactions on immobilised substrates. Chem. Soc. Rev. 42:6378–405 [Google Scholar]
  59. Rao SV, Anderson KW, Bachas LG. 59.  1998. Oriented immobilization of proteins. Mikrochim. Acta 128:127–43 [Google Scholar]
  60. Besanger TR, Chen Y, Deisingh AK, Hodgson R, Jin W. 60.  et al. 2003. Screening of inhibitors using enzymes entrapped in sol-gel-derived materials. Anal. Chem. 75:2382–91 [Google Scholar]
  61. Cruz-Aguado JA, Chen Y, Zhang Z, Brook MA, Brennan JD. 61.  2004. Entrapment of Src protein tyrosine kinase in sugar-modified silica. Anal. Chem. 76:4182–88 [Google Scholar]
  62. Rupcich N, Nutiu R, Li YF, Brennan JD. 62.  2006. Solid-phase enzyme activity assay utilizing an entrapped fluorescence-signaling DNA aptamer. Angew. Chem. 45:3295–99 [Google Scholar]
  63. Besanger TR, Easwaramoorthy B, Brennan JD. 63.  2004. Entrapment of highly active membrane-bound receptors in macroporous sol-gel derived silica. Anal. Chem. 76:6470–75 [Google Scholar]
  64. Harder D, Fotiadis D. 64.  2012. Measuring substrate binding and affinity of purified membrane transport proteins using the scintillation proximity assay. Nat. Protoc. 7:1569–78 [Google Scholar]
  65. Barbour R, Bova MP. 65.  2012. Combining label-free technologies: discovery in strength. Bioanalysis 4:619–22 [Google Scholar]
  66. O'Malley SM, Xie XY, Frutos AG. 66.  2007. Label-free high-throughput functional lytic assays. J. Biomol. Screen. 12:117–25 [Google Scholar]
  67. Fang JL, Verkleeren R, Scibek J, Frutos A. 67.  2007. A high throughput label-free platform for biochemical and cell-based assays. Nat. Methods, Appl. Note 2007:doi:10.1038/an2390
  68. Vela L, Lowe PN, Gerstenmaier J, Laing LG, Stimmel JB. 68.  et al. 2011. Validation of an optical microplate label-free platform in the screening of chemical libraries for direct binding to a nuclear receptor. Assay Drug Dev. Technol. 9:532–48 [Google Scholar]
  69. Chen Q, Li ZM, Zhao XR, Yu XB, Vuki M. 69.  et al. 2012. A highly-sensitive colorimetric assay method for antibody array based on an tyramide signal amplification system. Anal. Lett. 45:219–26 [Google Scholar]
  70. Oh YH, Hong MY, Jin Z, Lee T, Han MK. 70.  et al. 2007. Chip-based analysis of SUMO (small ubiquitin-like modifier) conjugation to a target protein. Biosens. Bioelectron. 22:1260–67 [Google Scholar]
  71. Li ZH, Yan M, Li ZM, Vuki MK, Wu D. 71.  et al. 2012. A multiplexed screening method for agonists and antagonists of the estrogen receptor protein. Anal. Bioanal. Chem. 403:1373–84 [Google Scholar]
  72. Giavazzi F, Salina M, Cerbino R, Bassi M, Prosperi D. 72.  et al. 2013. Multispot, label-free biodetection at a phantom plastic-water interface. Proc. Natl. Acad. Sci. USA 110:9350–55 [Google Scholar]
  73. Wang DQ, Ding LL, Zhang W, Luo ZF, Ou HC. 73.  et al. 2012. A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging. Meas. Sci. Technol.23:065701
  74. Hu S, Wong DT. 74.  2009. Lectin microarray. Proteomics Clin. Appl. 3:148–54 [Google Scholar]
  75. Kimzey MJ, Zarate X, Galbraith DW, Lau SS. 75.  2011. Optimizing microarray-based in situ transcription–translation of proteins for matrix-assisted laser desorption ionization mass spectrometry. Anal. Biochem. 414:282–86 [Google Scholar]
  76. MacBeath G, Schreiber SL. 76.  2000. Printing proteins as microarrays for high-throughput function determination. Science 289:1760–63 [Google Scholar]
  77. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A. 77.  et al. 2001. Global analysis of protein activities using proteome chips. Science 293:2101–5 [Google Scholar]
  78. Weinrich D, Jonkheijm P, Niemeyer CM, Waldmann H. 78.  2009. Applications of protein biochips in biomedical and biotechnological research. Angew. Chem. 48:7744–51 [Google Scholar]
  79. Borrebaeck CAK, Wingren C. 79.  2009. Design of high-density antibody microarrays for disease proteomics: key technological issues. J. Proteomics 72:928–35 [Google Scholar]
  80. Jin H, Zangar RC. 80.  2010. Antibody microarrays for high-throughput, multianalyte analysis. Cancer Biomarkers 6:281–90 [Google Scholar]
  81. Mustafa SA, Hoheisel JD, Alhamdani MSS. 81.  2011. Secretome profiling with antibody microarrays. Mol. Biosyst. 7:1795–801 [Google Scholar]
  82. Stoevesandt O, Taussig MJ. 82.  2012. Affinity proteomics: the role of specific binding reagents in human proteome analysis. Expert Rev. Proteomics 9:401–14 [Google Scholar]
  83. Jones RB, Gordus A, Krall JA, MacBeath G. 83.  2006. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–74 [Google Scholar]
  84. Popescu SC, Popescu GV, Bachan S, Zhang ZM, Gerstein M. 84.  et al. 2009. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev. 23:80–92 [Google Scholar]
  85. Feijs KLH, Kleine H, Braczynski A, Forst AH, Herzog N. 85.  et al. 2013. ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation. Cell Commun. Signal. 11:5 [Google Scholar]
  86. Rupcich N, Green JRA, Brennan JD. 86.  2005. Nanovolume kinase inhibition assay using a sol-gel-derived multicomponent microarray. Anal. Chem. 77:8013–19 [Google Scholar]
  87. Ge X, Lebert JM, Monton MRN, Lautens LL, Brennan JD. 87.  2011. Materials screening for sol-gel-derived high-density multi-kinase microarrays. Chem. Mater. 23:3685–91 [Google Scholar]
  88. Monton MRN, Lebert JM, Little JRL, Nair JJ, McNulty J, Brennan JD. 88.  2010. A sol-gel-derived acetylcholinesterase microarray for nanovolume small-molecule screening. Anal. Chem. 82:9365–73 [Google Scholar]
  89. Hong YL, Webb BL, Su H, Mozdy EJ, Fang Y. 89.  et al. 2005. Functional GPCR microarrays. J. Am. Chem. Soc. 127:15350–51 [Google Scholar]
  90. Lee MY, Park CB, Dordick JS, Clark DS. 90.  2005. Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses. Proc. Natl. Acad. Sci. USA 102:983–87 [Google Scholar]
  91. Lee MY, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS. 91.  2008. Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl. Acad. Sci. USA 105:59–63 [Google Scholar]
  92. Pfaunmiller EL, Hartmann M, Dupper CM, Soman S, Hage DS. 92.  2012. Optimization of human serum albumin monoliths for chiral separations and high-performance affinity chromatography. J. Chromatogr. A 1269:198–207 [Google Scholar]
  93. Besanger TR, Hodgson RJ, Green JRA, Brennan JD. 93.  2006. Immobilized enzyme reactor chromatography: optimization of protein retention and enzyme activity in monolithic silica stationary phases. Anal. Chim. Acta 564:106–15 [Google Scholar]
  94. Chen YZ, Wu MH, Wang KY, Chen B, Yao SZ. 94.  et al. 2011. Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene “click” strategy. J. Chromatogr. A 1218:7982–88 [Google Scholar]
  95. Temporini C, Pochetti G, Fracchiolla G, Piemontese L, Montanari R. 95.  et al. 2013. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with mass spectrometry detection. J. Chromatogr. A 1284:36–43 [Google Scholar]
  96. Vlakh EG, Tennikova TB. 96.  2013. Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application. J. Sep. Sci. 36:1149–67 [Google Scholar]
  97. Boschetti E, Righetti PG. 97.  2011. Mixed-bed chromatography as a way to resolve peculiar protein fractionation situations. J. Chromatogr. B 879:827–35 [Google Scholar]
  98. Kullolli M, Hancock WS, Hincapie M. 98.  2008. Preparation of a high-performance multi-lectin affinity chromatography (HP-M-LAC) adsorbent for the analysis of human plasma glycoproteins. J. Sep. Sci. 31:2733–39 [Google Scholar]
  99. Ramachandran KB, Perlmutter DD. 99.  1976. Effects of immobilization on kinetics of enzyme-catalyzed reactions. I. Glucose oxidase in a recirculation reactor system. Biotechnol. Bioeng. 18:669–84 [Google Scholar]
  100. Ramachandran KB, Perlmutter DD. 100.  1976. Effects of immobilization on kinetics of enzyme-catalyzed reactions. II. Urease in a packed-column differential reactor system. Biotechnol. Bioeng. 18:685–99 [Google Scholar]
  101. Di Marco MP, Felix G, Descorps V, Ducharme MP, Wainer IW. 101.  1998. On-line deconjugation of glucuronides using an immobilized enzyme reactor based upon beta-glucuronidase. J. Chromatogr. B 715:379–86 [Google Scholar]
  102. Bartolini M, Andrisano V, Wainer IW. 102.  2003. Development and characterization of an immobilized enzyme reactor based on glyceraldehyde-3-phosphate dehydrogenase for on-line enzymatic studies. J. Chromatogr. A 987:331–40 [Google Scholar]
  103. Massolini G, Calleri E, Lavecchia A, Lolodice F, Lubda D. 103.  et al. 2003. Enantioselective hydrolysis of some 2-aryloxyalkanoic acid methyl esters and isosteric analogues using a penicillin G acylase-based HPLC monolithic silica column. Anal. Chem. 75:535–42 [Google Scholar]
  104. Palm AK, Novotny MV. 104.  2005. A monolithic PNGase F enzyme microreactor enabling glycan mass mapping of glycoproteins by mass spectrometry. Rapid Commun. Mass Spectrom. 19:1730–38 [Google Scholar]
  105. de Moraes MC, Cardoso CL, Cass QB. 105.  2013. Immobilized purine nucleoside phosphorylase from Schistosoma mansoni for specific inhibition studies. Anal. Bioanal. Chem. 405:4871–78 [Google Scholar]
  106. Vanzolini KL, Vieira LCC, Correa AG, Cardoso CL, Cass QB. 106.  2013. Acetylcholinesterase immobilized capillary reactors-tandem mass spectrometry: an on-flow tool for ligand screening. J. Med. Chem. 56:2038–44 [Google Scholar]
  107. Hodgson RJ, Besanger TR, Brook MA, Brennan JD. 107.  2005. Inhibitor screening using immobilized enzyme reactor chromatography/mass spectrometry. Anal. Chem. 77:7512–19 [Google Scholar]
  108. Swaisgood HE, Chaiken IM. 108.  1986. Analytical high-performance affinity chromatography—evaluation by studies of neurophysin self-association and neurophysin peptide-hormone interaction using glass matrices. Biochemistry 25:4148–55 [Google Scholar]
  109. Wade JL, Bergold AF, Carr PW. 109.  1987. Theoretical description of nonlinear chromatography, with applications to physicochemical measurements in affinity chromatography and implications for preparative-scale separations. Anal. Chem. 59:1286–95 [Google Scholar]
  110. Jozwiak K, Hernandez SC, Kellar KJ, Wainer IW. 110.  2003. Enantioselective interactions of dextromethorphan and levomethorphan with the alpha 3 beta 4-nicotinic acetylcholine receptor: comparison of chromatographic and functional data. J. Chromatogr. B 797:373–79 [Google Scholar]
  111. Jozwiak K, Ravichandran S, Collins JR, Wainer IW. 111.  2004. Interaction of noncompetitive inhibitors with an immobilized α3β4 nicotinic acetylcholine receptor investigated by affinity chromatography, quantitative-structure activity relationship analysis, and molecular docking. J. Med. Chem. 47:4008–21 [Google Scholar]
  112. Joseph KS, Hage DS. 112.  2010. Characterization of the binding of sulfonylurea drugs to HSA by high-performance affinity chromatography. J. Chromatogr. B 878:1590–98 [Google Scholar]
  113. Sanghvi M, Moaddel R, Frazier C, Wainer IW. 113.  2010. Synthesis and characterization of liquid chromatographic columns containing the immobilized ligand binding domain of the estrogen related receptor alpha and estrogen related receptor gamma. J. Pharm. Biomed. Anal. 53:777–80 [Google Scholar]
  114. Kasai K, Oda Y, Nishikata M, Ishii S. 114.  1986. Frontal affinity chromatography—theory for its application to studies on specific interactions of biomolecules. J. Chromatogr. B. 376:33–47 [Google Scholar]
  115. Schriemer DC.115.  2004. Biosensor alternative: frontal affinity chromatography. Anal. Chem. 76:440A–48 [Google Scholar]
  116. Hodgson RJ, Chen Y, Zhang Z, Tleugabulova D, Long H. 116.  et al. 2004. Protein-doped monolithic silica columns for capillary liquid chromatography prepared by the sol-gel method: applications to frontal affinity chromatography. Anal. Chem. 76:2780–90 [Google Scholar]
  117. Ng ESM, Yang F, Kameyama A, Palcic MM, Hindsgaul O, Schriemer DC. 117.  2005. High-throughput screening for enzyme inhibitors using frontal affinity chromatography with liquid chromatography and mass spectrometry. Anal. Chem. 77:6125–33 [Google Scholar]
  118. Yoo MJ, Smith QR, Hage DS. 118.  2009. Studies of imipramine binding to human serum albumin by high-performance affinity chromatography. J. Chromatogr. B 877:1149–54 [Google Scholar]
  119. Nelson MA, Moser A, Hage DS. 119.  2010. Biointeraction analysis by high-performance affinity chromatography: kinetic studies of immobilized antibodies. J. Chromatogr. B 878:165–71 [Google Scholar]
  120. Fujii Y, Dohmae N, Takio K, Kawsar SMA, Matsumoto R. 120.  et al. 2012. A lectin from the mussel Mytilus galloprovincialis has a highly novel primary structure and induces glycan-mediated cytotoxicity of globotriaosylceramide-expressing lymphoma cells. J. Biol. Chem. 287:44772–83 [Google Scholar]
  121. Kovarik P, Hodgson RJ, Covey T, Brook MA, Brennan JD. 121.  2005. Capillary-scale frontal affinity chromatography/MALDI tandem mass spectrometry using protein-doped monolithic silica columns. Anal. Chem. 77:3340–50 [Google Scholar]
  122. Yang Q, Lundahl P. 122.  1995. Immobilized proteoliposome affinity chromatography for quantitative analysis of specific interactions between solutes and membrane proteins: interaction of cytochalasin B and D-glucose with the glucose transporter Glut1. Biochemistry 34:7289–94 [Google Scholar]
  123. Brekkan E, Lundqvist A, Lundahl P. 123.  1996. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter. Biochemistry 35:12141–45 [Google Scholar]
  124. Ng ESM, Chan NWC, Lewis DF, Hindsgaul O, Schriemer DC. 124.  2007. Frontal affinity chromatography-mass spectrometry. Nat. Protoc. 2:1907–17 [Google Scholar]
  125. Besanger TR, Hodgson RJ, Guillon D, Brennan JD. 125.  2006. Monolithic membrane-receptor columns: optimization of column performance for frontal affinity chromatography/mass spectrometry applications. Anal. Chim. Acta 561:107–18 [Google Scholar]
  126. Moaddel R, Jozwiak K, Yamaguchi R, Wainer IW. 126.  2005. Direct chromatographic determination of dissociation rate constants of ligand-receptor complexes: assessment of the interaction of noncompetitive inhibitors with an immobilized nicotinic acetylcholine receptor-based liquid chromatography stationary phase. Anal. Chem. 77:5421–26 [Google Scholar]
  127. Meiby E, Simmonite H, le Strat L, Davis B, Matassova N. 127.  et al. 2013. Fragment screening by weak affinity chromatography: comparison with established techniques for screening against HSP90. Anal. Chem. 85:6756–66 [Google Scholar]
  128. Habicht KL, Frazier C, Singh N, Shimmo R, Wainer IW, Moaddel R. 128.  2013. The synthesis and characterization of a nuclear membrane affinity chromatography column for the study of human breast cancer resistant protein (BCRP) using nuclear membranes obtained from the LN-229 cells. J. Pharm. Biomed. Anal. 72:159–62 [Google Scholar]
  129. Chen XF, Cao Y, Lv DY, Zhu ZY, Zhang JP, Chai YF. 129.  2012. Comprehensive two-dimensional HepG2/cell membrane chromatography/monolithic column/time-of-flight mass spectrometry system for screening anti-tumor components from herbal medicines. J. Chromatogr. A 1242:67–74 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error