1932

Abstract

Despite continuing research efforts, timely and simple pathogen detection with a high degree of sensitivity and specificity remains an elusive goal. Given the recent explosion of sensor technologies, significant strides have been made in addressing the various nuances of this important global challenge that affects not only the food industry but also human health. In this review, we provide a summary of the various ongoing efforts in pathogen detection and sample preparation in areas related to Fourier transform infrared and Raman spectroscopy, light scattering, phage display, micro/nanodevices, and nanoparticle biosensors. We also discuss the advantages and potential limitations of the detection methods and suggest next steps for further consideration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020249
2014-06-12
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-071213-020249.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020249&mimeType=html&fmt=ahah

Literature Cited

  1. Besse NG, Lafarge V. 1.  2001. Development of a membrane filtration method for enumeration of Listeria monocytogenes from soft cheese. Food Microbiol. 18:669–76 [Google Scholar]
  2. Chen WT, Hendrickson RL, Huang CP, Sherman D, Geng T. 2.  et al. 2005. Mechanistic study of membrane concentration and recovery of Listeria monocytogenes. Biotechnol. Bioeng. 89:263–73 [Google Scholar]
  3. Chen WT, Ladisch MR, Geng T, Bhunia AK. 3.  2005. Membrane for selective capture of the microbial pathogen Listeria monocytogenes. AIChE J. 51:3305–8 [Google Scholar]
  4. Carroll SA, Carr LE, Mallinson ET, Lamichanne C, Rice BE. 4.  et al. 2000. Development and evaluation of a 24-hour method for the detection and quantification of Listeria monocytogenes in meat products. J. Food Prot. 63:347–53 [Google Scholar]
  5. Entis P, Lerner I. 5.  2000. Twenty-four-hour direct presumptive enumeration of Listeria monocytogenes in food and environmental samples using the ISO-GRID method with LM-137 agar. J. Food Prot. 63:354–63 [Google Scholar]
  6. Koo OK, Liu Y, Shuaib S, Bhattacharya S, Ladisch MR. 6.  et al. 2009. Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal. Chem. 81:3094–101 [Google Scholar]
  7. Kim S-R, Yoon Y, Kim W-I, Park K-H, Yun H-J. 7.  et al. 2012. Comparison of sample preparation methods for the recovery of foodborne pathogens from fresh produce. J. Food Prot. 75:1213–18 [Google Scholar]
  8. Kim Y, Lee S, Sagong H, Heu S, Ryu S, Kang D. 8.  2012. Development and evaluation of a new device to effectively detach micro-organisms from food samples. Lett. Appl. Microbiol. 55:256–62 [Google Scholar]
  9. Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang Y-Y. 9.  et al. 2007. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. USA 104:1482–87 [Google Scholar]
  10. He W, Zhou Y-T, Warner WG, Hu X, Wu X. 10.  et al. 2013. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34:765–73 [Google Scholar]
  11. Liu J, Hu X, Hou S, Wen T, Liu W. 11.  et al. 2012. Au@Pt core/shell nanorods with peroxidase- and ascorbate oxidase-like activities for improved detection of glucose. Sens. Actuators B 166:708–14 [Google Scholar]
  12. Su H, Zhao H, Qiao F, Chen L, Duan R, Ai S. 12.  2013. Colorimetric detection of Escherichia coli O157:H7 using functionalized Au@Pt nanoparticles as peroxidase mimetics. Analyst 138:3026–31 [Google Scholar]
  13. Miranda OR, Li X, Garcia-Gonzalez L, Zhu Z-J, Yan B. 13.  et al. 2011. Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J. Am. Chem. Soc. 133:9650–53 [Google Scholar]
  14. Cho I-H, Irudayaraj J. 14.  2013. In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection. Int. J. Food Microbiol. 164:70–75 [Google Scholar]
  15. Lim S, Koo OK, You YS, Lee YE, Kim M-S. 15.  et al. 2012. Enhancing nanoparticle-based visible detection by controlling the extent of aggregation. Sci. Rep. 2:456 [Google Scholar]
  16. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL. 16.  et al. 2008. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5:545–51 [Google Scholar]
  17. Dudak FC, Boyaci IH. 17.  2009. Rapid and label-free bacteria detection by surface plasmon resonance (SPR) biosensors. Biotechnol. J. 4:1003–11 [Google Scholar]
  18. Wang Y, Lee K, Irudayaraj J. 18.  2010. Silver nanosphere SERS probes for sensitive identification of pathogens. J. Phys. Chem. C 114:16122–28 [Google Scholar]
  19. Xu X, Chen Y, Wei H, Xia B, Liu F, Li N. 19.  2012. Counting bacteria using functionalized gold nanoparticles as the light-scattering reporter. Anal. Chem. 84:9721–28 [Google Scholar]
  20. Phillips RL, Miranda OR, You CC, Rotello VM, Bunz UH. 20.  2008. Rapid and efficient identification of bacteria using gold-nanoparticle-poly(para-phenyleneethynylene) constructs. Angew. Chem. Int. Ed. 47:2590–94 [Google Scholar]
  21. El-Boubbou K, Gruden C, Huang X. 21.  2007. Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 129:13392–93 [Google Scholar]
  22. Chen L, Razavi FS, Mumin A, Guo X, Sham T-K, Zhang J. 22.  2013. Multifunctional nanoparticles for rapid bacterial capture, detection, and decontamination. RSC Adv. 3:2390–97 [Google Scholar]
  23. Gu HW, Ho PL, Tsang KWT, Wang L, Xu B. 23.  2003. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other Gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 125:15702–3 [Google Scholar]
  24. Kaittanis C, Naser SA, Perez JM. 24.  2007. One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett. 7:380–83 [Google Scholar]
  25. Lee H, Yoon T-J, Weissleder R. 25.  2009. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew Chem. Int. Ed. 48:5657–60 [Google Scholar]
  26. Varshney M, Li Y. 26.  2007. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosens. Bioelectron. 22:2408–14 [Google Scholar]
  27. Setterington EB, Alocilja EC. 27.  2012. Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens. Biosensors 2:15–31 [Google Scholar]
  28. Afonso AS, Perez-Lopez B, Faria RC, Mattoso LHC, Hernandez-Herrero M. 28.  et al. 2013. Electrochemical detection of Salmonella using gold nanoparticles. Biosens. Bioelectron. 40:121–26 [Google Scholar]
  29. Craig AP, Franca AS, Irudayaraj J. 29.  2013. Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol. 4:369–80 [Google Scholar]
  30. Ravindranath SP, Wang Y, Irudayaraj J. 30.  2011. SERS driven cross-platform based multiplex pathogen detection. Sens. Actuators B 152:183–90 [Google Scholar]
  31. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E. 31.  et al. 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 49:543–51 [Google Scholar]
  32. Chiang C-K, Chiang N-C, Lin Z-H, Lan G-Y, Lin Y-W, Chang H-T. 32.  2010. Nanomaterial-based surface-assisted laser desorption/ionization mass spectrometry of peptides and proteins. J. Am. Soc. Mass Spectrom. 21:1204–07 [Google Scholar]
  33. Ahmad F, Siddiqui MA, Babalola OO, Wu H-F. 33.  2012. Biofunctionalization of nanoparticle assisted mass spectrometry as biosensors for rapid detection of plant associated bacteria. Biosens. Bioelectron. 35:235–42 [Google Scholar]
  34. Pengsuk C, Chaivisuthangkura P, Longyant S, Sithigorngul P. 34.  2013. Development and evaluation of a highly sensitive immunochromatographic strip test using gold nanoparticle for direct detection of Vibrio cholerae O139 in seafood samples. Biosens. Bioelectron. 42:229–35 [Google Scholar]
  35. Cho I-H, Irudayaraj J. 35.  2013. Lateral-flow enzyme immunoconcentration for rapid detection of Listeria monocytogenes. Anal. Bioanal. Chem. 405:3313–19 [Google Scholar]
  36. Singh A, Arutyunov D, Szymanski CM, Evoy S. 36.  2012. Bacteriophage based probes for pathogen detection. Analyst 137:3405–21 [Google Scholar]
  37. Torres-Chavolla E, Alocilja EC. 37.  2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24:3175–82 [Google Scholar]
  38. Huang TT, Sturgis J, Gomez R, Geng T, Bashir R. 38.  et al. 2003. Composite surface for blocking bacterial adsorption on protein biochips. Biotechnol. Bioeng. 81:618–24 [Google Scholar]
  39. Bashir R. 39.  2004. BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev 56:1565–86 [Google Scholar]
  40. Hilt JZ, Gupta AK, Bashir R, Peppas NA. 40.  2003. Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed. Microdevices 5:177–84 [Google Scholar]
  41. Bashir R, Hilt J, Elibol O, Gupta A, Peppas N. 41.  2002. Micromechanical cantilever as an ultrasensitive pH microsensor. Appl. Phys. Lett. 81:3091–93 [Google Scholar]
  42. Park K, Millet LJ, Kim N, Li H, Jin X. 42.  et al. 2010. Measurement of adherent cell mass and growth. Proc. Natl. Acad. Sci. USA 107:20691–96 [Google Scholar]
  43. Johnson BN, Mutharasan R. 43.  2012. Biosensing using dynamic-mode cantilever sensors: a review. Biosens. Bioelectron. 32:1–18 [Google Scholar]
  44. Arlett J, Myers E, Roukes M. 44.  2011. Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6:203–15 [Google Scholar]
  45. Buchapudi KR, Huang X, Yang X, Ji H-F, Thundat T. 45.  2011. Microcantilever biosensors for chemicals and bioorganisms. Analyst 136:1539–56 [Google Scholar]
  46. Brewster JD, Mazenko RS. 46.  1998. Filtration capture and immunoelectrochemical detection for rapid assay of Escherichia coli O157:H71. J. Immunol. Methods 211:1–8 [Google Scholar]
  47. Zelada-Guillén GA, Bhosale SV, Riu J, Rius FX. 47.  2010. Real-time potentiometric detection of bacteria in complex samples. Anal. Chem. 82:9254–60 [Google Scholar]
  48. Gómez R, Bashir R, Bhunia AK. 48.  2002. Microscale electronic detection of bacterial metabolism. Sens. Actuators B 86:198–208 [Google Scholar]
  49. Gómez-Sjöberg R, Morisette DT, Bashir R. 49.  2005. Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism. J. Microelectromech. Syst. 14:829–38 [Google Scholar]
  50. Bhattacharya S, Salamat S, Morisette D, Banada P, Akin D. 50.  et al. 2008. PCR-based detection in a micro-fabricated platform. Lab Chip 8:1130–36 [Google Scholar]
  51. Jang B, Cao P, Chevalier A, Ellington A, Hassibi A. 51.  2009. A CMOS fluorescent-based biosensor microarray. IEEE International Solid-State Circuits Conference—Digest of Technical Papers, 2009. ISSCC 2009436–37 New York: IEEE [Google Scholar]
  52. Schwartz DE, Gong P, Shepard KL. 52.  2008. Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray. Biosens. Bioelectron. 24:383–90 [Google Scholar]
  53. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S. 53.  2006. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens. Bioelectron. 22:752–58 [Google Scholar]
  54. Bhunia AK.54.  2011. Rapid pathogen screening tools for food safety. Food Technol. 65:38–43 [Google Scholar]
  55. Craig AP, Franca AS, Irudayaraj J. 55.  2013. Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol. 4:369–80 [Google Scholar]
  56. Kong SG, Chen YR, Kim I, Kim MS. 56.  2004. Analysis of hyperspectral fluorescence images for poultry skin tumor inspection. Appl. Opt. 43:824–33 [Google Scholar]
  57. Park B, Chao YR, Chao KL. 57.  1999. Multispectral imaging for detecting contamination in poultry carcasses. Proc. Soc. Photoopt. Instrum. Eng. 3544:156–65 [Google Scholar]
  58. Bayraktar B, Banada PP, Hirleman ED, Bhunia AK, Robinson JP, Rajwa B. 58.  2006. Feature extraction from light-scatter patterns of Listeria colonies for identification and classification. J. Biomed. Opt. 11:34006 [Google Scholar]
  59. Rajwa B, Dundar MM, Akova F, Bettasso A, Patsekin V. 59.  et al. 2010. Discovering the unknown: detection of emerging pathogens using a label-free light-scattering system. Cytometry A 77:1103–12 [Google Scholar]
  60. Banada PP, Huff K, Bae E, Rajwa B, Aroonnual A. 60.  et al. 2009. Label-free detection of multiple bacterial pathogens using light-scattering sensor. Biosens. Bioelectron. 24:1685–92 [Google Scholar]
  61. Banada PP, Guo SL, Bayraktar B, Bae E, Rajwa B. 61.  et al. 2007. Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species. Biosens. Bioelectron. 22:1664–71 [Google Scholar]
  62. Huff K, Aroonnual A, Littlejohn AEF, Rajwa B, Bae E. 62.  et al. 2012. Light-scattering sensor for real-time identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar plate. Microb. Biotechnol. 5:607–20 [Google Scholar]
  63. Helm D, Labischinski H, Schallehn G, Naumann D. 63.  1991. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J. Gen. Microbiol. 137:69–79 [Google Scholar]
  64. Naumann D, Helm D, Labischinski H. 64.  1991. Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82 [Google Scholar]
  65. Gupta MJ, Irudayaraj JM, Debroy C, Schmilovitch Z, Mizrach A. 65.  2005. Differentiation of food pathogens using FT-IR and artificial neural networks. Trans. ASAE 48:1889–92 [Google Scholar]
  66. Irudayaraj J, Yang H, Sakhamuri S. 66.  2002. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy. J. Mol. Struct. 606:181–88 [Google Scholar]
  67. Davis R, Mauer LJ. 67.  2011. Subtyping of Listeria monocytogenes at the haplotype level by Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis. Int. J. Food Microbiol. 150:140–49 [Google Scholar]
  68. Davis R, Irudayaraj J, Reuhs BL, Mauer LJ. 68.  2010. Detection of E. coil O157:H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics. J. Food Sci. 75:M340–46 [Google Scholar]
  69. Davis R, Deering A, Burgula Y, Mauer LJ, Reuhs BL. 69.  2012. Differentiation of live, dead and treated cells of Escherichia coli O157:H7 using FT-IR spectroscopy. J. Appl. Microbiol. 112:743–51 [Google Scholar]
  70. Kim S, Burgula Y, Ojanen-Reuhs T, Cousin MA, Reuhs BL, Mauer UJ. 70.  2006. Differentiation of crude lipopolysaccharides from Escherichia coli strains using Fourier transform infrared spectroscopy and chemometrics. J. Food Sci. 71:M57–61 [Google Scholar]
  71. Mura S, Greppi G, Marongiu ML, Roggero PP, Ravindranath SP. 71.  et al. 2012. FT-IR nanobiosensors for Escherichia coli detection. Beilstein J. Nanotechnol. 3:485–92 [Google Scholar]
  72. Davis R, Paoli G, Mauer LJ. 72.  2012. Evaluation of Fourier transform infrared (FT-IR) spectroscopy and chemometrics as a rapid approach for sub-typing Escherichia coli O157:H7 isolates. Food Microbiol. 31:181–90 [Google Scholar]
  73. Davis R, Burgula Y, Deering A, Irudayaraj J, Reuhs BL, Mauer LJ. 73.  2010. Detection and differentiation of live and heat-treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT-IR) spectroscopy. J. Appl. Microbiol. 109:2019–31 [Google Scholar]
  74. Kim S, Kim H, Reuhs BL, Mauer LJ. 74.  2006. Differentiation of outer membrane proteins from Salmonella enterica serotypes using Fourier transform infrared spectroscopy and chemometrics. Lett. Appl. Microbiol. 42:229–34 [Google Scholar]
  75. Chenxu Y, Irudayaraj J, Debroy C, Schmilovtich Z, Mizrach A. 75.  2004. Spectroscopic differentiation and quantification of microorganisms in apple juice. J. Food Sci. 69:S268–72 [Google Scholar]
  76. Sivakesava S, Irudayaraj J, Debroy C. 76.  2004. Differentiation of microorganisms by FT-IR-ATR and NIR spectroscopy. Trans. ASAE 47:951–57 [Google Scholar]
  77. Alexandrakis D, Downey G, Scannell AGM. 77.  2008. Detection and identification of bacteria in an isolated system with near-infrared spectroscopy and multivariate analysis. J. Agric. Food Chem. 56:3431–37 [Google Scholar]
  78. Yu CX, Irudayaraj J, Debroy C, Schmilovtich Z, Mizrach A. 78.  2004. Spectroscopic differentiation and quantification of microorganisms in apple juice. J. Food Sci. 69:S268–72 [Google Scholar]
  79. Burgula Y, Reuhs BL, Mauer LJ. 79.  2008. Rapid FT-IR methods for detection of Escherichia coli O157:H7 in fruit juices. World Food Sci. 3:1–16 [Google Scholar]
  80. Davis R, Burgula Y, Irudayaraj J, Reuhs BL, Mauer LJ. 80.  2010. Fourier transform infrared (FT-IR) spectroscopy coupled with filtration and immunomagnetic separation for the detection of Escherichia coli O157:H7 in ground beef Presented at Micro-Nano Symp., Bienn. Univ. Gov. Ind., 18th, West Lafayette [Google Scholar]
  81. Levine S, Stevenson HJR, Chambers LA, Kenner BA. 81.  1953. Infrared spectrophotometry of enteric bacteria. J. Bacteriol. 65:10–15 [Google Scholar]
  82. Rebuffo-Scheer CA, Dietrich J, Wenning M, Scherer S. 82.  2008. Identification of five Listeria species based on infrared spectra (FT-IR) using macrosamples is superior to a microsample approach. Anal. Bioanal. Chem. 390:1629–35 [Google Scholar]
  83. Rebuffo-Scheer CA, Schmitt J, Scherer S. 83.  2007. Differentiation of Listeria monocytogenes serovars by using artificial neural network analysis of Fourier-transformed infrared spectra. Appl. Environ. Microbiol. 73:1036–40 [Google Scholar]
  84. Hagens S, Loessner MJ. 84.  2007. Application of bacteriophages for detection and control of foodborne pathogens. Appl. Microbiol. Biotechnol. 76:513–19 [Google Scholar]
  85. Brovko LY, Anany H, Griffiths MW. 85.  2012. Bacteriophages for detection and control of bacterial pathogens in food and food-processing environment. Adv. Food Nutr. Res. 67:241–88 [Google Scholar]
  86. Smartt AE, Xu TT, Jegier P, Carswell JJ, Blount SA. 86.  et al. 2012. Pathogen detection using engineered bacteriophages. Anal. Bioanal. Chem. 402:3127–46 [Google Scholar]
  87. Sarkis GJ, Jacobs WR Jr, Hatfull GF. 87.  1995. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol. 15:1055–67 [Google Scholar]
  88. Goodridge L, Chen JR, Griffiths M. 88.  1999. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65:1397–404 [Google Scholar]
  89. Oda M, Morita M, Unno H, Tanji Y. 89.  2004. Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl. Environ. Microbiol. 70:527–34 [Google Scholar]
  90. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA. 90.  et al. 2006. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. USA 103:4841–45 [Google Scholar]
  91. Yim PB, Clarke McKinstry De Paoli Lacerda ML M SH, Pease LF 3rd. 91.  et al. 2009. Quantitative characterization of quantum dot-labeled lambda phage for Escherichia coli detection. Biotechnol. Bioeng. 104:1059–67 [Google Scholar]
  92. Dobozi-King M, Seo S, Kim JU, Cheng M, Kish LB, Young R. 92.  2005. Nanoscale detection of bacteriophage triggered ion cascade. In Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems III ed. NG Stocks, D Abbott, RP Morse, pp. 186–93 Bellingham, WA: SPIE [Google Scholar]
  93. King MD, Seo S, Kim J, Cheng MS, Young R. 93.  et al. 2005. “Fatal scream” of bacteria infected by phages: nanoscale detection of bacteriophage triggered ion cascade. Unsolved Probl. Noise Fluct. 800:273–78 [Google Scholar]
  94. Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL. 94.  2007. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus: a surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 22:948–55 [Google Scholar]
  95. Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S. 95.  2011. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136:486–92 [Google Scholar]
  96. Tawil N, Sacher E, Mandeville R, Meunier M. 96.  2012. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens. Bioelectron. 37:24–29 [Google Scholar]
  97. Xiao CQ, Jiang FL, Zhou B, Li R, Liu Y. 97.  2012. Immobilization of Escherichia coli for detection of phage T4 using surface plasmon resonance. Sci. China Chem. 55:1931–39 [Google Scholar]
  98. Huang S, Li S, Yang H, Johnson ML, Lakshmanan RS. 98.  et al. 2009. Multiple phage-based magnetoelastic biosensors system for the detection of Salmonella typhimurium and Bacillus anthracis spores. MRS Proc. 1129:137–42 [Google Scholar]
  99. Lakshmanan RS, Hu J, Guntupalli R, Wan JH, Huang SC. 99.  et al. 2006. Detection of Salmonella typhimurium using phage based magnetostrictive sensor. Proc. SPIE 6218:Z2180 [Google Scholar]
  100. Li SQ, Li YG, Chen HQ, Horikawa S, Shen W. 100.  et al. 2010. Direct detection of Salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens. Bioelectron. 26:1313–19 [Google Scholar]
  101. Lakshmanan RS, Guntupalli R, Hu J, Kim DJ, Petrenko VA. 101.  et al. 2007. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. J. Microbiol. Methods 71:55–60 [Google Scholar]
  102. Lakshmanan RS, Guntupalli R, Hu J, Petrenko VA, Barbaree JM, Chin BA. 102.  2007. Detection of Salmonella typhimurium in fat free milk using a phage immobilized magnetoelastic sensor. Sens. Actuators B 126:544–50 [Google Scholar]
  103. Fu LL, Li SQ, Zhang KW, Chen IH, Barbaree JM. 103.  et al. 2011. Detection of Bacillus anthracis spores using phage-immobilized magnetostrictive milli/micro cantilevers. IEEE Sens. J. 11:1684–91 [Google Scholar]
  104. Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R. 104.  2008. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal. Chem. 80:9475–82 [Google Scholar]
  105. Tolba M, Ahmed MU, Tlili C, Eichenseher F, Loessner MJ, Zourob M. 105.  2012. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells. Analyst 137:5749–56 [Google Scholar]
  106. Olsen EV, Sorokulova IB, Petrenko VA, Chen IH, Barbaree JM, Vodyanoy VJ. 106.  2006. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium. Biosens. Bioelectron. 21:1434–42 [Google Scholar]
  107. Goodridge L, Griffiths M. 107.  2002. Reporter bacteriophage assays as a means to detect foodborne pathogenic bacteria. Food Res. Int. 35:863–70 [Google Scholar]
  108. Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H. 108.  2002. Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol. Immunol. 46:365–69 [Google Scholar]
  109. Loessner MJ, Rees CED, Stewart GSAB, Scherer S. 109.  1996. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Appl. Environ. Microbiol. 62:1133–40 [Google Scholar]
  110. Ulitzur S, Kuhn J. 110.  2000. Construction of lux bacteriophages and the determination of specific bacteria and their antibiotic sensitivities. Methods Enzymol. 305:543–57 [Google Scholar]
  111. Loessner MJ, Rudolf M, Scherer S. 111.  1997. Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods. Appl. Environ. Microbiol. 63:2961–65 [Google Scholar]
  112. Kodikara CP, Crew HH, Stewart GSAB. 112.  1991. Near online detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol. Lett. 83:261–66 [Google Scholar]
  113. Chen J, Griffiths MW. 113.  1996. Salmonella detection in eggs using Lux+ bacteriophages. J. Food Prot. 59:908–14 [Google Scholar]
  114. Thouand G, Vachon P, Liu S, Dayre M, Griffiths MW. 114.  2008. Optimization and validation of a simple method using P22::luxAB bacteriophage for rapid detection of Salmonella enterica serotypes A, B, and D in poultry samples. J. Food Prot. 71:380–85 [Google Scholar]
  115. Schofield DA, Molineux IJ, Westwater C. 115.  2009. Diagnostic bioluminescent phage for detection of Yersinia pestis. J. Clin. Microbiol. 47:3887–94 [Google Scholar]
  116. Schofield DA, Westwater C. 116.  2009. Phage-mediated bioluminescent detection of Bacillus anthracis. J. Appl. Microbiol. 107:1468–78 [Google Scholar]
  117. Hirsh DC, Martin LD. 117.  1983. Detection of Salmonella spp. in milk by using Felix-O1 bacteriophage and high-pressure liquid chromatography. Appl. Environ. Microbiol. 46:1243–45 [Google Scholar]
  118. Hirsh DC, Martin LD. 118.  1983. Rapid detection of Salmonella spp. by using Felix-O1 bacteriophage and high-performance liquid chromatography. Appl. Environ. Microbiol. 45:260–64 [Google Scholar]
  119. Hong-Geller E, Valdez YE, Shou Y, Yoshida TM, Marrone BL, Dunbar JM. 119.  2010. Evaluation of Bacillus anthracis and Yersinia pestis sample collection from nonporous surfaces by quantitative real-time PCR. Lett. Appl. Microbiol. 50:431–37 [Google Scholar]
  120. Marei AM, El-Behedy EM, Mohtady HA, Afify AF. 120.  2003. Evaluation of a rapid bacteriophage-based method for the detection of Mycobacterium tuberculosis in clinical samples. J. Med. Microbiol. 52:331–35 [Google Scholar]
  121. Reiman RW, Atchley DH, Voorhees KJ. 121.  2007. Indirect detection of Bacillus anthracis using real-time PCR to detect amplified gamma phage DNA. J. Microbiol. Methods 68:651–53 [Google Scholar]
  122. Anderson B, Rashid MH, Carter C, Pasternack G, Rajanna C. 122.  et al. 2011. Enumeration of bacteriophage particles: comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays. Bacteriophage 1:86–93 [Google Scholar]
  123. Sergueev KV, He YX, Borschel RH, Nikolich MP, Filippov AA. 123.  2010. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS ONE 5:0011337 [Google Scholar]
  124. Rees JC, Voorhees KJ. 124.  2005. Simultaneous detection of two bacterial pathogens using bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 19:2757–61 [Google Scholar]
  125. Blasco R, Murphy MJ, Sanders MF, Squirrell DJ. 125.  1998. Specific assays for bacteria using phage mediated release of adenylate kinase. J. Appl. Microbiol. 84:661–66 [Google Scholar]
  126. Minikh O, Tolba M, Brovko LY, Griffiths MW. 126.  2010. Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli. J. Microbiol. Methods 82:177–83 [Google Scholar]
  127. Wu Y, Brovko L, Griffiths MW. 127.  2001. Influence of phage population on the phage-mediated bioluminescent adenylate kinase (AK) assay for detection of bacteria. Lett. Appl. Microbiol. 33:311–15 [Google Scholar]
  128. Abdel-Hamid I, Ivnitski D, Atanasov P, Wilkins E. 128.  1998. Fast amperometric assay for E. coli O157:H7 using partially immersed immunoelectrodes. Electroanalysis 10:758–63 [Google Scholar]
  129. Yemini M, Levi Y, Yagil E, Rishpon J. 129.  2007. Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis. Bioelectrochemistry 70:180–84 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071213-020249
Loading
/content/journals/10.1146/annurev-anchem-071213-020249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error