Proton-coupled electron transfers (PCET) are ubiquitous in natural and synthetic processes. This review focuses on reactions where the two events are concerted. Semiclassical models of such reactions allow their kinetic characterization through activation versus driving force relationships, estimates of reorganization energies, effects of the nature of the proton acceptor, and H/D kinetic isotope effect as well as their discrimination from stepwise pathways. Several homogeneous reactions (through stopped-flow and laser flash-quench techniques) and electrochemical processes are discussed in this framework. Once the way has been rid of the improper notion of dependent driving force, water appears as a remarkable proton acceptor in terms of reorganization energy and pre-exponential factor, thanks to its H-bonded and H-bonding properties, similarly to purposely synthesized “H-bond train” molecules. The most recent developments are in modeling and description of emblematic concerted proton-electron transfer (CPET) reactions associated with the breaking of a heavy-atom bond in an all-concerted process.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kok B, Forbush B, McGloin M. 1.  1970. Cooperation of charges in photosynthetic O2 evolution—I. A linear four step mechanism. Photochem. Photobiol. 11:457–75 [Google Scholar]
  2. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S. 2.  2004. Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–38 [Google Scholar]
  3. Loll B, Kern J, Saenger W, Zouni A, Biesiadka1 J. 3.  2005. Towards complete cofactor arrangement in the 3.0Å resolution structure of photosystem II. Nature 438:1040–44 [Google Scholar]
  4. Umena Y, Kawakami K, Shen J, Kamiya N. 4.  2011. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60 [Google Scholar]
  5. Meyer TJ, Huynh MHV, Thorp HH. 5.  2007. The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II. Angew. Chem. Intern. Ed. 46:5284–304 [Google Scholar]
  6. Reece SY, Nocera DG. 6.  2009. Proton-coupled electron transfer in biology: results from synergistic studies in natural and model systems. Annu. Rev. Biochem. 78:673–99 [Google Scholar]
  7. Nagel ZD, Klinman JP. 7.  2010. Update 1 of: tunneling and dynamics in enzymatic hydride transfer. Chem. Rev. 110:PR41–67 [Google Scholar]
  8. Reece SY, Hodgkiss JM, Stubbe J, Nocera DG. 8.  2006. Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos. Trans. R. Soc. B 361:1351–64 [Google Scholar]
  9. Miller A-F.9.  2008. Redox tuning over almost 1 V in a structurally conserved active site: lessons from Fe-containing superoxide dismutase. Acc. Chem. Res. 41:501–10 [Google Scholar]
  10. Knapp MJ, Rickert K, Klinman JP. 10.  2002. Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc. 124:3865–74 [Google Scholar]
  11. Sancar A.11.  2003. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103:2203–38 [Google Scholar]
  12. Shih C, Museth AK, Abrahamsson M, Blanco-Rodriguez AM, Di Bilio AJ. 12.  et al. 2008. Tryptophan-accelerated electron flow through proteins. Science 320:1730–31 [Google Scholar]
  13. Blanco-Rodríguez AM, Busby M, Ronayne K, Towrie M, Grădinaru C. 13.  et al. 2009. Relaxation dynamics of Pseudomonas aeruginosa ReI(CO)3(α-diimine)(HisX)+ (X = 83, 107, 109, 124, 126)CuII azurins. J. Am. Chem. Soc. 131:11788–800 [Google Scholar]
  14. Becker CF, Watmough NJ, Elliott SJ. 14.  2008. Electrochemical evidence for multiple peroxidatic heme states of the diheme cytochrome c peroxidase of Pseudomonas aeruginosa. Biochemistry 48:87–95 [Google Scholar]
  15. Kaila VRI, Johansson MP, Sundholm D, Laakkonen L, Wikström M. 15.  2009. The chemistry of the CuB site in cytochrome c oxidase and the importance of its unique His–Tyr bond. Biochim. Biophys. Acta Bioenerg. 1787:221–33 [Google Scholar]
  16. Kaila VRI, Verkhovsky MI, Wikstrom M. 16.  2010. Proton-coupled electron transfer in cytochrome oxidase. Chem. Rev. 110:7062–81 [Google Scholar]
  17. Hoffert MI, Caldeira K, Jain AK, Haites EF, Harvey LDD. 17.  et al. 1998. Energy implications of future stabilization of atmospheric CO2 content. Nature 395:881–84 [Google Scholar]
  18. Nocera DG.18.  2009. Chemistry of personalized solar energy. Inorg. Chem. 48:10001–17 [Google Scholar]
  19. Chu S, Majumdar A. 19.  2012. Opportunities and challenges for a sustainable energy future. Nature 488:294–303 [Google Scholar]
  20. Bard AJ, Fox MA. 20.  1995. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28:141–45 [Google Scholar]
  21. Lewis NS, Nocera DG. 21.  2006. Powering the planet: chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. USA 103:15729–35 [Google Scholar]
  22. Liu F, Concepcion JJ, Jurss JW, Cardolaccia T, Templeton JL, Meyer TJ. 22.  2008. Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg. Chem. 47:1727–52 [Google Scholar]
  23. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG. 23.  2010. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110:6474–502 [Google Scholar]
  24. Schneider J, Jia H, Muckerman JT, Fujita E. 24.  2012. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev. 41:2036–51 [Google Scholar]
  25. Costentin C, Robert M, Savéant J-M. 25.  2013. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42:2423–36 [Google Scholar]
  26. Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP. 26.  2013. Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids. Inorg. Chem. 52:2484–91 [Google Scholar]
  27. Gasteiger HA, Marković NM. 27.  2009. Just a dream—or future reality?. Science 324:48–49 [Google Scholar]
  28. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y. 28.  2011. A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–85 [Google Scholar]
  29. Huynh MHV, Meyer TJ. 29.  2007. Proton-coupled electron transfer. Chem. Rev. 107:5004–64 [Google Scholar]
  30. Hammes-Schiffer S, Hatcher E, Ishikita H, Skone JH, Soudackov AV. 30.  2008. Theoretical studies of proton-coupled electron transfer: models and concepts relevant to bioenergetics. Coord. Chem. Rev. 252:384–94 [Google Scholar]
  31. Dempsey JL, Winkler JR, Gray HB. 31.  2010. Proton-coupled electron flow in protein redox machines. Chem. Rev. 110:7024–39 [Google Scholar]
  32. Hammes-Schiffer S, Stuchebrukhov AA. 32.  2010. Theory of coupled electron and proton transfer reactions. Chem. Rev. 110:6939–60 [Google Scholar]
  33. Costentin C, Robert M, Saveant J-M. 33.  2010. Update 1 of: electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem. Rev. 110:PR1–40 [Google Scholar]
  34. Warren JJ, Tronic TA, Mayer JM. 34.  2010. Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110:6961–7001 [Google Scholar]
  35. Cukier RI, Nocera DG. 35.  1998. Proton-coupled electron transfer. Annu. Rev. Phys. Chem. 49:337–69 [Google Scholar]
  36. Laviron E.36.  1980. Theoretical-study of a 1e, 1H+ surface electrochemical reaction (four-member square scheme) when the protonation reactions are at equilibrium. J. Electroanal. Chem. 109:57–67 [Google Scholar]
  37. Meunier-Prest R, Laviron E. 37.  1992. Electrochemical reactions with protonations at equilibrium 0.15. The 2e, 2H+ bicubic scheme. J. Electroanal. Chem. 328:33–46 [Google Scholar]
  38. Biczok L, Linschitz H. 38.  1995. Concerted electron and proton movement in quenching of triplet C60 and tetracene fluorescence by hydrogen-bonded phenol-base pairs. J. Phys. Chem. 99:1843–45 [Google Scholar]
  39. Costentin C, Robert M, Savéant J-M, Teillout A-L. 39.  2009. Concerted and stepwise proton-coupled electron transfers in aquo/hydroxo complex couples in water: oxidative electrochemistry of [OsII(bpy)2(py)(OH2)]2+. Chem. Phys. Chem. 10:191–98 [Google Scholar]
  40. Costentin C, Robert M, Savéant J-M, Teillout A-L. 40.  2009. Concerted proton-coupled electron transfers in aquo/hydroxo/oxo metal complexes: electrochemistry of [OsII(bpy)2py(OH2)]2+ in water. Proc. Natl. Acad. Sci. USA 106:11829–36 [Google Scholar]
  41. Bonin J, Costentin C, Louault C, Robert M, Routier M, Savéant J-M. 41.  2010. Intrinsic reactivity and driving force dependence in concerted proton-electron transfers to water illustrated by phenol oxidation. Proc. Nat. Acad. Sci. USA 107:3367–72 [Google Scholar]
  42. Bonin J, Costentin C, Robert M, Routier M, Savéant J-M. 42.  2013. Proton-coupled electron transfers: pH-dependent driving forces? Fundamentals and artifacts. J. Am. Chem. Soc. 135:14359–66 [Google Scholar]
  43. Savéant J-M.43.  2006. Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry Hoboken, NJ: Wiley508
  44. Rudolph M.44.  2003. Digital simulations on unequally spaced grids.: Part 2. Using the box method by discretisation on a transformed equally spaced grid. J. Electroanal. Chem. 543:23–39 [Google Scholar]
  45. Rhile IJ, Mayer JM. 45.  2004. One-electron oxidation of a hydrogen-bonded phenol occurs by concerted proton-coupled electron transfer. J. Am. Chem. Soc. 126:12718–19 [Google Scholar]
  46. Markle TF, Mayer JM. 46.  2008. Concerted proton–electron transfer in pyridylphenols: the importance of the hydrogen bond. Angew. Chem. Intern. Ed. 47:564–67 [Google Scholar]
  47. Markle TF, Rhile IJ, DiPasquale AG, Mayer JM. 47.  2008. Probing concerted proton–electron transfer in phenol-imidazoles. Proc. Nat. Acad. Sci. USA 105:8185–90 [Google Scholar]
  48. Rhile IJ, Markle TF, Nagao H, DiPasquale AG, Lam OP. 48.  et al. 2006. Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols. J. Am. Chem. Soc. 128:6075–88 [Google Scholar]
  49. Savéant J-M, Vianello E. 49.  1959. Recherches sur les courants catalytiques en polarographie oscillographique à balayage linéaire de tension. Étude théorique. Presented at Adv. Polarogr., 2nd, Cambridge, UK
  50. Savéant J-M, Su K-B. 50.  1984. Homogeneous redox catalysis of electrochemical reaction. Part VI. Zone diagram representation of the kinetics regimes. J. Electroanal. Chem. 171:341–49 [Google Scholar]
  51. Fecenko CJ, Thorp HH, Meyer TJ. 51.  2007. The role of free energy change in coupled electron-proton transfer. J. Am. Chem. Soc. 129:15098–99 [Google Scholar]
  52. Fecenko CJ, Meyer TJ, Thorp HH. 52.  2006. Electrocatalytic oxidation of tyrosine by parallel rate-limiting proton transfer and multisite electron-proton transfer. J. Am. Chem. Soc. 128:11020–21 [Google Scholar]
  53. Irebo T, Reece SY, Sjodin M, Nocera DG, Hammarstrom L. 53.  2007. Proton-coupled electron transfer of tyrosine oxidation: buffer dependence and parallel mechanisms. J. Am. Chem. Soc. 129:15462–64 [Google Scholar]
  54. Pizano AA, Yang JL, Nocera DG. 54.  2012. Photochemical tyrosine oxidation with a hydrogen-bonded proton acceptor by bidirectional proton-coupled electron transfer. Chem. Sci. 3:2457–61 [Google Scholar]
  55. Bonin J, Costentin C, Louault C, Robert M, Savéant J-M. 55.  2011. Water (in water) as an intrinsically efficient proton acceptor in concerted proton electron transfers. J. Am. Chem. Soc. 133:6668–74 [Google Scholar]
  56. Sjodin M, Styring S, Akermark B, Sun L, Hammarstrom L. 56.  2000. Proton-coupled electron transfer from tyrosine in a tyrosine-ruthenium-tris-bipyridine complex: comparison with tyrosineZ oxidation in photosystem II. J. Am. Chem. Soc. 122:3932–36 [Google Scholar]
  57. Zhang M-T, Hammarstrom L. 57.  2011. Proton-coupled electron transfer from tryptophan: a concerted mechanism with water as proton acceptor. J. Am. Chem. Soc. 133:8806–9 [Google Scholar]
  58. Bonin J, Routier M. 58.  2013. Transient absorption spectroscopy studies of proton-coupled electron transfers. Artif. Photosynth. 1:6–15 [Google Scholar]
  59. Taube H.59.  1970. Electron Transfer Reactions of Complex Ions in Solution New York: Academic
  60. Savéant J-M.60.  1991. Single electron transfer and nucleophilic substitution. Adv. Phys. Org. Chem 26:1–130 [Google Scholar]
  61. Marcus RA.61.  1956. On the theory of oxidation-reduction reactions involving electron transfer. 1. J. Chem. Phys. 24:966–78 [Google Scholar]
  62. Marcus RA.62.  1959. On the theory of electrochemical and chemical electron transfer processes. Can. J. Chem. 37:155–63 [Google Scholar]
  63. Marcus RA.63.  1965. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43:679–701 [Google Scholar]
  64. Hush NS.64.  1958. Adiabatic rate processes at electrodes. 1. Energy-charge relationships. J. Chem. Phys. 28:962–72 [Google Scholar]
  65. Hush NS.65.  1968. Homogeneous and heterogeneous optical and thermal electron transfer. Electrochim. Acta 13:1005–23 [Google Scholar]
  66. Hush NS.66.  1999. Electron transfer in retrospect and prospect 1: adiabatic electrode processes. J. Electroanal. Chem. 460:5–29 [Google Scholar]
  67. Levich VG.67.  1955. Present state of the theory of oxidation–reduction in solution (bulk and electrode reactions). Advances in Electrochemistry and Electrochemical Engineering, ed. P Delahay, CW Tobias 250–371 New York: Wiley [Google Scholar]
  68. Levich VG.68.  1967. Theory of macroscopic kinetics of heterogeneous and homogeneous-heterogeneous processes. Annu. Rev. Phys. Chem. 18:153–76 [Google Scholar]
  69. Newton MD, Sutin N. 69.  1984. Electron-transfer reactions in condensed phases. Annu. Rev. Phys. Chem. 35:437–80 [Google Scholar]
  70. Brunschwig BS, Logan J, Newton MD, Sutin N. 70.  1980. A semi-classical treatment of electron-exchange reactions—application to the hexaaquoiron(II)-hexaaquoiron(III) system. J. Am. Chem. Soc. 102:5798–809 [Google Scholar]
  71. Landau L.71.  1932. On the theory of transfer of energy at collisions II. Phys. Z. Sowjetunion 2:46–51 [Google Scholar]
  72. Zener C.72.  1932. Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A 137:696–702 [Google Scholar]
  73. Borgis DC, Lee S, Hynes JT. 73.  1989. A dynamical theory of nonadiabatic proton and hydrogen atom transfer reaction rates in solution. Chem. Phys. Lett. 162:19–26 [Google Scholar]
  74. Borgis D, Hynes JT. 74.  1991. Molecular-dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J. Chem. Phys. 94:3619–28 [Google Scholar]
  75. Borgis D, Hynes JT. 75.  1993. Dynamical theory of proton tunneling transfer rates in solution: general formulation. Chem. Phys. 170:315–46 [Google Scholar]
  76. Borgis D, Hynes JT. 76.  1996. Curve crossing formulation for proton transfer reactions in solution. J. Phys. Chem. 100:1118–28 [Google Scholar]
  77. Costentin C, Robert M, Savéant J-M. 77.  2006. Electrochemical concerted proton and electron transfers. Potential-dependent rate constant, reorganization factors, proton tunneling and isotope effects. J. Electroanal. Chem. 588:197–206 [Google Scholar]
  78. Costentin C, Robert M, Savéant J-M. 78.  2010. Concerted proton-electron transfers: electrochemical and related approaches. Acc. Chem. Res. 43:1019–29 [Google Scholar]
  79. Cukier RI.79.  1994. Mechanism for proton-coupled electron-transfer reactions. J. Phys. Chem. 98:2377–81 [Google Scholar]
  80. Cukier RI.80.  1996. Proton-coupled electron transfer reactions: evaluation of rate constants. J. Phys. Chem. 100:15428–43 [Google Scholar]
  81. Cukier RI, Zhu JJ. 81.  1997. Simulation of proton transfer reaction rates: the role of solvent electronic polarization. J. Phys. Chem. B 101:7180–90 [Google Scholar]
  82. Cukier RI.82.  1999. A theory for the rate constant of a dissociative proton-coupled electron-transfer reaction. J. Phys. Chem. A 103:5989–95 [Google Scholar]
  83. Cukier RI.83.  2002. A theory that connects proton-coupled electron-transfer and hydrogen-atom transfer reactions. J. Phys. Chem. B 106:1746–57 [Google Scholar]
  84. Cukier RI.84.  2004. Theory and simulation of proton-coupled electron transfer, hydrogen-atom transfer, and proton translocation in proteins. Biochim. Biophys. Acta Bioenerg. 1655:37–44 [Google Scholar]
  85. Georgievskii Y, Stuchebrukhov AA. 85.  2000. Concerted electron and proton transfer: transition from non-adiabatic to adiabatic proton tunneling. J. Chem. Phys. 113:10438–50 [Google Scholar]
  86. Soudackov A, Hammes-Schiffer S. 86.  1999. Multistate continuum theory for multiple charge transfer reactions in solution. J. Chem. Phys. 111:4672–87 [Google Scholar]
  87. Hammes-Schiffer S.87.  2012. Proton-coupled electron transfer: classification scheme and guide to theoretical methods. Energy Environ. Sci. 5:7696–703 [Google Scholar]
  88. Soudackov A, Hammes-Schiffer S. 88.  2000. Derivation of rate expressions for nonadiabatic proton-coupled electron transfer reactions in solution. J. Chem. Phys. 113:2385–96 [Google Scholar]
  89. Hammes-Schiffer S.89.  2001. Theoretical perspectives on proton-coupled electron transfer reactions. Acc. Chem. Res. 34:273–81 [Google Scholar]
  90. Carra C, Iordanova N, Hammes-Schiffer S. 90.  2003. Proton-coupled electron transfer in a model for tyrosine oxidation in photosystem II. J. Am. Chem. Soc. 125:10429–36 [Google Scholar]
  91. Hammes-Schiffer S, Iordanova N. 91.  2004. Theoretical studies of proton-coupled electron transfer reactions. Biochim. Biophys. Acta Bioenerg. 1655:29–36 [Google Scholar]
  92. Hatcher E, Soudackov A, Hammes-Schiffer S. 92.  2005. Comparison of dynamical aspects of nonadiabatic electron, proton, and proton-coupled electron transfer reactions. Chem. Phys. 319:93–100 [Google Scholar]
  93. Ishikita H, Soudackov AV, Hammes-Schiffer S. 93.  2007. Buffer-assisted proton-coupled electron transfer in a model rhenium-tyrosine complex. J. Am. Chem. Soc. 129:11146–52 [Google Scholar]
  94. Hammes-Schiffer S, Soudackov AV. 94.  2008. Proton-coupled electron transfer in solution, proteins, and electrochemistry. J. Phys. Chem. B 112:14108–23 [Google Scholar]
  95. Edwards SJ, Soudackov AV, Hammes-Schiffer S. 95.  2009. Analysis of kinetic isotope effects for proton-coupled electron transfer reactions. J. Phys. Chem. A 113:2117–26 [Google Scholar]
  96. Navrotskaya I, Hammes-Schiffer S. 96.  2009. Electrochemical proton-coupled electron transfer: beyond the golden rule. J. Chem. Phys. 131:024112 [Google Scholar]
  97. Venkataraman C, Soudackov AV, Hammes-Schiffer S. 97.  2009. Photoinduced homogeneous proton-coupled electron transfer: model study of isotope effects on reaction dynamics. J. Chem. Phys. 131:154502–11 [Google Scholar]
  98. Ko C, Solis BH, Soudackov AV, Hammes-Schiffer S. 98.  2013. Photoinduced proton-coupled electron transfer of hydrogen-bonded p-nitrophenylphenol-methylamine complex in solution. J. Phys. Chem. B 117:316–25 [Google Scholar]
  99. Markle TF, Tenderholt AL, Mayer JM. 99.  2011. Probing quantum and dynamic effects in concerted proton-electron transfer reactions of phenol-base compounds. J. Phys. Chem. B 116:571–84 [Google Scholar]
  100. Costentin C, Robert M, Saveant JM. 100.  2007. Adiabatic and non-adiabatic concerted proton-electron transfers. Temperature effects in the oxidation of intramolecularly hydrogen-bonded phenols. J. Am. Chem. Soc. 129:9953–63 [Google Scholar]
  101. Sjodin M, Ghanem R, Polivka T, Pan J, Styring S. 101.  et al. 2004. Tuning proton coupled electron transfer from tyrosine: a competition between concerted and step-wise mechanisms. Phys. Chem. Chem. Phys. 6:4851–56 [Google Scholar]
  102. Sjodin M, Styring S, Wolpher H, Xu Y, Sun L, Hammarstrom L. 102.  2005. Switching the redox mechanism: models for proton-coupled electron transfer from tyrosine and tryptophan. J. Am. Chem. Soc. 127:3855–63 [Google Scholar]
  103. Ohkubo K, Kitaguchi H, Fukuzumi S. 103.  2006. Activation of electron-transfer reduction of oxygen by hydrogen bond formation of superoxide anion with ammonium ion. J. Phys. Chem. A 110:11613–16 [Google Scholar]
  104. Costentin C, Robert M, Savéant JM. 104.  2007. Acceleration of the homogeneous and electrochemical reductions of dioxygen in aprotic media by ammonium ions. Is the driving force a function of NH4+ concentration? What is the mechanism of the reaction?. J. Phys. Chem. C 111:12877–80 [Google Scholar]
  105. Okamoto K, Imahori H, Fukuzumi S. 105.  2003. Metal ion-promoted intramolecular electron transfer in a ferrocene-naphthoquinone linked dyad. Continuous change in driving force and reorganization energy with metal ion concentration. J. Am. Chem. Soc. 125:7014–21 [Google Scholar]
  106. Okamoto K, Ohkubo K, Kadish KM, Fukuzumi S. 106.  2004. Remarkable accelerating effects of ammonium cations on electron-transfer reactions of quinones by hydrogen bonding with semiquinone radical anions. J. Phys. Chem. A 108:10405–13 [Google Scholar]
  107. Wu H, Zhang D, Su L, Ohkubo K, Zhang C. 107.  et al. 2007. Intramolecular electron transfer within the substituted tetrathiafulvalene-quinone dyads: facilitated by metal ion and photomodulation in the presence of spiropyran. J. Am. Chem. Soc. 129:6839–46 [Google Scholar]
  108. Savéant J-M.108.  2008. Evidence for concerted pathways in ion-pairing coupled electron transfers. J. Am. Chem. Soc. 130:4732–41 [Google Scholar]
  109. Maki T, Araki Y, Ishida Y, Onomura O, Matsumura Y. 109.  2001. Construction of persistent phenoxyl radical with intramolecular hydrogen bonding. J. Am. Chem. Soc. 123:3371–72 [Google Scholar]
  110. Markle TF, Rhile IJ, Mayer JM. 110.  2011. Kinetic effects of increased proton transfer distance on proton-coupled oxidations of phenol-amines. J. Am. Chem. Soc. 133:17341–52 [Google Scholar]
  111. Mayer JM.111.  2011. Simple Marcus-theory-type model for hydrogen-atom transfer/proton-coupled electron transfer. J. Phys. Chem. Lett. 2:1481–89 [Google Scholar]
  112. Markle TF, Tronic TA, DiPasquale AG, Kaminsky W, Mayer JM. 112.  2012. Effect of basic site substituents on concerted proton-electron transfer in hydrogen-bonded pyridyl-phenols. J. Phys. Chem. A 116:12249–59 [Google Scholar]
  113. Schrauben JN, Cattaneo M, Day TC, Tenderholt AL, Mayer JM. 113.  2012. Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical Marcus theory. J. Am. Chem. Soc. 134:16635–45 [Google Scholar]
  114. Waidmann CR, Miller AJM, Ng C-WA, Scheuermann ML, Porter TR. 114.  et al. 2012. Using combinations of oxidants and bases as PCET reactants: thermochemical and practical considerations. Energy Environ. Sci. 5:7771–80 [Google Scholar]
  115. Thomas F, Jarjayes O, Jamet H, Hamman S, Saint-Aman E. 115.  et al. 2004. How single and bifurcated hydrogen bonds influence proton-migration rate constants, redox, and electronic properties of phenoxyl radicals. Angew. Chem. Int. Ed. 43:594–97 [Google Scholar]
  116. Rhile IJ, Mayer JM. 116.  2005. Comments on “How single and bifurcated hydrogen bonds influence proton-migration rate constants, redox, and electronic properties of phenoxyl radicals”. Angew. Chem. Int. Ed. 44:1598–99 [Google Scholar]
  117. Costentin C, Robert M, Savéant J-M. 117.  2010. Reorganization energies and pre-exponential factors in the one-electron electrochemical and homogeneous oxidation of phenols coupled with an intramolecular amine-driven proton transfer. Phys. Chem. Chem. Phys. 12:13061–69 [Google Scholar]
  118. Bonin J, Costentin C, Louault C, Robert M, Routier M, Savéant J-M. 118.  2010. Intrinsic reactivity and driving force dependence in concerted proton–electron transfers to water illustrated by phenol oxidation. Proc. Natl. Acad. Sci. USA 107:3367–72 [Google Scholar]
  119. Costentin C, Louault C, Robert M, Savéant J-M. 119.  2008. Evidence for concerted proton-electron transfer in the electrochemical oxidation of phenols with water as proton acceptor. Tri-tert-butylphenol. J. Am. Chem. Soc. 130:15817–19 [Google Scholar]
  120. Costentin C, Louault C, Robert M, Savéant J-M. 120.  2009. The electrochemical approach to concerted proton-electron transfers in the oxidation of phenols in water. Proc. Natl. Acad. Sci. USA 106:18143–48 [Google Scholar]
  121. Costentin C, Hajj V, Louault C, Robert M, Savéant J-M. 121.  2011. Concerted proton-electron transfers. Consistency between electrochemical kinetics and their homogeneous counterparts. J. Am. Chem. Soc. 133:19160–67 [Google Scholar]
  122. Sjodin M, Irebo T, Utas JE, Lind J, Merenyi G. 122.  et al. 2006. Kinetic effects of hydrogen bonds on proton-coupled electron transfer from phenols. J. Am. Chem. Soc. 128:13076–83 [Google Scholar]
  123. Bonin J, Costentin C, Robert M, Savéant J-M. 123.  2011. Pyridine as proton acceptor in the concerted proton electron transfer oxidation of phenol. Org. Biomol. Chem. 9:4064–69 [Google Scholar]
  124. Stoyanov ES, Stoyanov IV, Reed CA. 124.  2010. The structure of the hydrogen ion (Haq+) in water. J. Am. Chem. Soc. 132:1484–85 [Google Scholar]
  125. Zhang MT, Nilsson J, Hammarstrom L. 125.  2012. Bimolecular proton-coupled electron transfer from tryptophan with water as the proton acceptor. Energy Environ. Sci. 5:7732–36 [Google Scholar]
  126. Creutz C, Taube H. 126.  1973. Binuclear complexes of ruthenium ammines. J. Am. Chem. Soc. 95:1086–94 [Google Scholar]
  127. Reimers JR, Wallace BB, Hush NS. 127.  2008. Towards a comprehensive model for the electronic and vibrational structure of the Creutz-Taube ion. Philos. Trans. R. Soc. A 366:15–31 [Google Scholar]
  128. Neyhart GA, Meyer TJ. 128.  1986. pH-Induced intramolecular electron transfer. Inorg. Chem. 25:4807–8 [Google Scholar]
  129. Balasubramanian R, Blondin G, Canales JC, Costentin C, Latour J-M. 129.  et al. 2012. Proton-coupled intervalence charge transfer: concerted processes. J. Am. Chem. Soc. 134:1906–9 [Google Scholar]
  130. Costentin C, Robert M, Savéant J-M, Tard C. 130.  2010. Inserting a hydrogen-bond relay between proton exchanging sites in proton-coupled electron transfers. Angew. Chem. Intern. Ed. 49:3803–6 [Google Scholar]
  131. Costentin C, Robert M, Savéant J-M, Tard C. 131.  2011. H-bond relays in proton-coupled electron transfers. Oxidation of a phenol concerted with proton transport to a distal base through an OH relay. Phys. Chem. Chem. Phys. 13:5353–58 [Google Scholar]
  132. Bonin J, Costentin C, Robert M, Savéant J-M, Tard C. 132.  2012. Hydrogen-bond relays in concerted proton-electron transfers.. Acc. Chem. Res. 45:372–81 2013. Correction to “Hydrogen-bond relays in concerted proton-electron transfers.”. Acc. Chem. Res. 46:1910–10 [Google Scholar]
  133. Costentin C, Evans DH, Robert M, Savéant JM, Singh PS. 133.  2005. Electrochemical approach to concerted proton and electron transfers. Reduction of the water-superoxide ion complex. J. Am. Chem. Soc. 127:12490–91 [Google Scholar]
  134. Singh PS, Evans DH. 134.  2006. Study of the electrochemical reduction of dioxygen in acetonitrile in the presence of weak acids. J. Phys. Chem. B 110:637–44 [Google Scholar]
  135. Savéant JM.135.  2007. Electrochemical concerted proton and electron transfers. Further insights in the reduction mechanism of superoxide ion in the presence of water and other weak acids. J. Phys. Chem. C 111:2819–22 [Google Scholar]
  136. Savéant J-M.136.  1987. A simple model for the kinetics of dissociative electron transfer in polar solvents. Application to the homogeneous and heterogeneous reduction of alkyl halides. J. Am. Chem. Soc. 109:6788–95 [Google Scholar]
  137. Savéant J-M.137.  1992. Dissociative electron transfer. New tests of the theory in the electrochemical and homogeneous reduction of alkyl halides. J. Am. Chem. Soc. 114:10595–602 [Google Scholar]
  138. Zhu J, Spirina OB, Cukier RI. 138.  1994. Solvent dynamical effects on bond-breaking electron transfer reactions. J. Chem. Phys. 100:8109–24 [Google Scholar]
  139. Savéant J-M.139.  2000. Dissociative electron transfer and the principle of microscopic reversibility. J. Electroanal. Chem. 485:86–88 [Google Scholar]
  140. Savéant J-M.140.  2000. Electron transfer, bond breaking and bond formation. Adv. Phys. Org. Chem. 35:117–92 [Google Scholar]
  141. Maran F, Wayner DDM, Workentin MS. 141.  2001. Kinetics and mechanisms of the dissociative reduction of C-X and X-X bonds (X = O, S). Adv. Phys. Org. Chem. 36:85–166 [Google Scholar]
  142. Costentin C, Robert M, Savéant J-M. 142.  2006. Electron transfer and bond breaking: recent advances. Chem. Phys. 324:40–56 [Google Scholar]
  143. Costentin C, Hajj V, Robert M, Savéant J-M, Tard C. 143.  2011. Concerted heavy-atom bond cleavage and proton and electron transfers illustrated by proton-assisted reductive cleavage of an O–O bond. Proc. Natl. Acad. Sci. USA 108:8559–64 [Google Scholar]
  144. Costentin C, Robert M, Savéant J-M, Tard C. 144.  2014. Breaking bonds with electrons and protons. Models and examples. Acc. Chem. Res. 47:271–80 [Google Scholar]
  145. Costentin C, Drouet S, Passard G, Robert M, Savéant J-M. 145.  2013. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C-O bond in the catalyzed electrochemical reduction of CO2. J. Am. Chem. Soc. 135:9023–31 [Google Scholar]
  146. Costentin C, Passard G, Robert M, Savéant J-M. 146.  2013. Concertedness in proton-coupled electron transfer cleavages of carbon-metal bonds illustrated by the reduction of an alkyl cobalt porphyrin. Chem. Sci. 4:819–23 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error