1932

Abstract

We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor–stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell–cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-071213-020323
2014-06-12
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/anchem/7/1/annurev-anchem-071213-020323.html?itemId=/content/journals/10.1146/annurev-anchem-071213-020323&mimeType=html&fmt=ahah

Literature Cited

  1. Thorsen T, Maerkl SJ, Quake SR. 1.  2002. Microfluidic large scale integration. Science 298:580–84 [Google Scholar]
  2. Fan R, Vermesh O, Srivastava A, Yen BKH, Qin L. 2.  et al. 2008. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26:1373–78 [Google Scholar]
  3. Ottesen EA, Hong JW, Quake SR, Leadbetter JR. 3.  2006. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–67 [Google Scholar]
  4. Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB. 4.  et al. 2013. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341:1110–12 [Google Scholar]
  5. Heath JR, Davis ME. 5.  2008. Nanotechnology and cancer. Annu. Rev. Med. 59:251–65 [Google Scholar]
  6. Toner M, Irimia D. 6.  2005. Blood-on-a-chip. Annu. Rev. Biomed. Eng. 7:77–103 [Google Scholar]
  7. Zare RN, Kim S. 7.  2010. Microfluidic platforms for single cell analysis. Annu. Rev. Biomed. Eng. 12:187–201 [Google Scholar]
  8. Choi K, Ng AHC, Fobel R, Wheeler AR. 8.  2012. Digital microfluidics. Annu. Rev. Anal. Chem. 5:412–40 [Google Scholar]
  9. Han NH, Li CA, Seong GH. 9.  2013. Microfluidic chips for immunoassays. Annu. Rev. Anal. Chem. 6:119–41 [Google Scholar]
  10. Wei W, Shin YS, Ma C, Wang J, Elitas M. 10.  et al. 2013. Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Med. 5:275–87 [Google Scholar]
  11. Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN. 11.  et al. 2003. Microfluidic device for single cell analysis. Anal. Chem. 75:3581–86 [Google Scholar]
  12. Rawlings JS, Rosler KM, Harrison DA. 12.  2004. The JAK/STAT signaling pathway. J. Cell Sci. 117:1281–83 [Google Scholar]
  13. Bhalla US, Iyengar R. 13.  1999. Emergent properties of networks of biological signaling pathways. Science 283:381–87 [Google Scholar]
  14. Logue JS, Morrison DK. 14.  2012. Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Genes Dev. 26:641–50 [Google Scholar]
  15. Kroemer G, Pouyssegur J. 15.  2008. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13:472–82 [Google Scholar]
  16. Hanahan D, Weinberg RA. 16.  2000. The hallmarks of cancer. Cell 100:57–70 [Google Scholar]
  17. Love JC, Ronan JL, Grotenbreg GM, Van der Veen AG, Ploegh HL. 17.  2006. A microengraving method for rapid selection of single cells producing antigen specific antibodies. Nat. Biotechnol. 24:703–7 [Google Scholar]
  18. Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F. 18.  et al. 2007. Quantitative detection of protein expression in single cells using droplet microfluidics. Chem. Commun. 2:1218–20 [Google Scholar]
  19. Di Carlo D, Aghdam N, Lee LP. 19.  2006. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78:4925–30 [Google Scholar]
  20. Shin YS, Ahmad H, Shi Q, Kim H, Pascal TA. 20.  et al. 2010. Chemistries for patterning robust DNA microbarcodes enable multiplex assays of cytoplasm proteins from single cancer cells. Chem. Phys. Chem. 11:3063–306 [Google Scholar]
  21. Czerkinsky C, Nilsson L, Nygren H, Ouchterlony O, Tarkowski A. 21.  1983. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J. Immunol. Methods 65:1–2109–21 [Google Scholar]
  22. Sun J, Masterman-Smith MD, Graham NA, Jiao J, Mottahedeh J. 22.  et al. 2010. A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens. Cancer Res. 70:6128–38 [Google Scholar]
  23. Welch CM, Elliott H, Danuser G, Hahn KM. 23.  2010. Imaging the coordination of multiple signaling activities in living cells. Nat. Rev. Mol. Cell Biol. 12:749–56 [Google Scholar]
  24. Lu Y, Chen JJ, Mu L, Xue Q, Wu Y. 24.  et al. 2013. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85:2548–56 [Google Scholar]
  25. Torres AJ, Contento RL, Gordo S, Wucherpfennig KW, Love CL. 25.  2013. Functional single-cell analysis of T-cell activation by supported bilayer-tethered ligands on arrays of nanowells. Lab Chip 13:90–99 [Google Scholar]
  26. Wang J, Tham D, Wei W, Shin YS, Ma C. 26.  et al. 2012. Quantitating cell–cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett. 12:6101–6 [Google Scholar]
  27. Yamanaka YJ, Berger CT, Sips M, Cheney PC, Alter G, Love CJ. 27.  2012. Single-cell analysis of the dynamics and functional outcomes of interactions between human natural killer cells and target cells. Integr. Biol. 4:1175–84 [Google Scholar]
  28. Ma C, Cheung AF, Chodon T, Koya RC, Wu Z. 28.  et al. 2013. Multifunctional T cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov. 3:418–29 [Google Scholar]
  29. Shi Q, Qin L, Wei W, Geng F, Fan R. 29.  et al. 2012. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc. Natl. Acad. Sci. USA 109:419–24 [Google Scholar]
  30. Wei W, Shi Q, Remacle F, Qin L, Shackelford D. 30.  et al. 2013. Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proc. Natl. Acad. Sci. USA 110:E1352–60 [Google Scholar]
  31. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT. 31.  et al. 2012. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem. Soc. Rev. 41:3912–28 [Google Scholar]
  32. Spiller DG, Wood CD, Rand DA, White MRH. 32.  2010. Measurement of single-cell dynamics. Nature 465:736–45 [Google Scholar]
  33. Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M. 33.  et al. 2010. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–38 [Google Scholar]
  34. Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA. 34.  et al. 1998. Helper T cell differentiation is controlled by the cell cycle. Immunity 9:229–37 [Google Scholar]
  35. Faley SL, Copland M, Reboud J, Cooper JM. 35.  2011. Cell chip array for microfluidic proteomics enabling rapid in situ assessment of intracellular protein phosphorylation. Biomicrofluidics 5:024106 [Google Scholar]
  36. Gibbs KD Jr, Gilbert PM, Sachs K, Zhao F, Blau HM. 36.  et al. 2011. Single-cell phospho-specific flow cytometric analysis demonstrates biochemical and functional heterogeneity in human hematopoietic stem and progenitor compartments. Blood 117:4226–33 [Google Scholar]
  37. Dang CF, Kim J-w, Gao P, Yustein J. 37.  2008. The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 8:51–56 [Google Scholar]
  38. Coulter WH. 1953 Means for counting particles suspended in fluid. US Patent No. 2,656,508
  39. Fulwyler MJ.39.  1965. Electronic separation of biological cells by volume. Science 150:698910–11 [Google Scholar]
  40. Herzenberg LA, Parks D, Sahaf B, Perez O, Roederer M, Herzenberg LA. 40.  2002. The history of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin. Chem. 48:1819–27 [Google Scholar]
  41. Herzenberg LA, Julius MH, Masuda T. 41.  1972. Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proc. Natl. Acad. Sci. USA 69:71934–38 [Google Scholar]
  42. Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO. 42.  et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–96 [Google Scholar]
  43. Moodie Z, Price L, Gouttefangeas C, Mander A, Janetzki S. 43.  et al. 2010. Response definition criteria for ELISPOT assays revisited. Cancer Immunol. Immunother. 59:1489–501 [Google Scholar]
  44. Hutchings PR, Cambridge G, Tite JP, Meager T, Cooke A. 44.  1989. The detection and enumeration of cytokine-secreting cells in mice and man and the clinical application of these assays. J. Immunol. Methods 120:1–8 [Google Scholar]
  45. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N. 45.  et al. 2001. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 61:6451–58 [Google Scholar]
  46. Shafer-Weaver K, Sayers T, Strobl S, Derby E, Ulderich T. 46.  et al. 2003. The Granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. J. Transl. Med. 1:14 [Google Scholar]
  47. Engvall E, Perlman P. 47.  1971. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:9871–74 [Google Scholar]
  48. Van Weemen BK, Schuurs AH. 48.  1971. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 15:3232–36 [Google Scholar]
  49. Perfetto SP, Chattopadhyay PK, Roederer M. 49.  2004. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4:648–55 [Google Scholar]
  50. Altman JD, Moss PAH, Goulder PJR, Barouch DH, McHeyzer-Williams MG. 50.  et al. 1996. Phenotype analysis of antigen-specific T-lymphocytes. Science 274:94–96 [Google Scholar]
  51. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. 51.  2012. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 36:142–52 [Google Scholar]
  52. Sandberg JK, Fast NM, Nixon DF. 52.  2001. Functional heterogeneity of cytokines and cytolytic effector molecules in human CD8+ T lymphocytes. J. Immunol. 167:181–87 [Google Scholar]
  53. Lamoreaux L, Roederer M, Koup R. 53.  2006. Intracellular cytokine optimization and standard operating procedure. Nat. Protoc. 1:1507–16 [Google Scholar]
  54. Krutzik PO, Nolan GP. 54.  2003. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry 55A:61–70 [Google Scholar]
  55. Krutzik PO, Irish JM, Nolan GP, Perez OD. 55.  2004. Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin. Immunol. 110:206–21 [Google Scholar]
  56. Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud O. 56.  et al. 2004. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:217–28 [Google Scholar]
  57. Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. 57.  2005. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–29 [Google Scholar]
  58. Altschuler SJ, Wu LF. 58.  2011. Cellular heterogeneity: Do differences make a difference?. Cell 141:559–63 [Google Scholar]
  59. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR. 59.  1999. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17:1109–11 [Google Scholar]
  60. Gerdes MJ, Sevinsky CJ, Sood A, Adak S, Bello MO. 60.  et al. 2013. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. USA 110:11982–87 [Google Scholar]
  61. Faley SL, Copland M, Wlodkowic D, Kolch W, Seale KT. 61.  et al. 2009. Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9:2659–64 [Google Scholar]
  62. Eyer K, Kuhn P, Hanke C, Dittrich PS. 62.  2012. A microchamber array for single cell isolation and analysis of intracellular biomolecules. Lab Chip 12:765–72 [Google Scholar]
  63. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C. 63.  et al. 2010. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 49:5846–68 [Google Scholar]
  64. Martino C, Zagnoni M, Sandison ME, Chanasakulniyom M, Pitt AR, Cooper JM. 64.  2011. Intracellular protein determination using droplet-based immunoassays. Anal. Chem. 83:5361–68 [Google Scholar]
  65. Zhuang Z.65.  2009. Nano-imaging with STORM. Nat. Photonics 3:365–67 [Google Scholar]
  66. Cai L.66.  2013. Turning single cells into microarrays by super-resolution barcoding. Briefings Funct. Genomics 12:75–80 [Google Scholar]
  67. Varadarajan N, Julg B, Yamanaka YJ, Chen H, Ogunniyi AO. 67.  et al. 2011. A high-throughput single-cell analysis of human CD8+ T cell functions reveals discordance for cytokine secretion and cytolysis. J. Clin. Investig. 121:4322–31 [Google Scholar]
  68. Nguyen CQ, Ogunniyi AO, Karabiyik A, Love CJ. 68.  2013. Single-cell analysis reveals isotype-specific autoreactive B cell repertoires in Sjogren's syndrome. PLoS One 8:e58127 [Google Scholar]
  69. Gong Y, Ogunniyi AO, Love JC. 69.  2010. Massively parallel detection of gene expression in single cells using subnanolitre wells. Lab Chip 10:2334–37 [Google Scholar]
  70. Niemeyer CM.70.  2005. Self-assembled bioconjugates for biochip technologies. Int. J. Environ. Chem. 85:639–43; Niemeyer CM. 2007. Functional devices from DNA and proteins. Nano Today 2:42–52 [Google Scholar]
  71. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR. 71.  2007. DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J. Am. Chem. Soc. 129:1959–67 [Google Scholar]
  72. Boozer C, Ladd J, Chen SF, Jiang ST. 72.  2006. DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal. Chem. 78:1515–19 [Google Scholar]
  73. Rose D.73.  2000. Microfluidic technologies and instrumentation for printing DNA microarrays. Microarray Biochip Technology M. Schena 19–38 Walton-on-Thames, UK: Eaton [Google Scholar]
  74. Barbulovic-Nad I, Lucente M, Sun Y, Zhang M, Wheeler AR, Bussman M. 74.  2006. Bio-microarray fabrication techniques—a review. Crit. Rev. Biotechnol. 26:237–59 [Google Scholar]
  75. Xia YN, Whitesides GM. 75.  1998. Soft lithography. Angew. Chem. Int. Ed. 37:550–75 [Google Scholar]
  76. Lange SA, Benes V, Kern DP, Horber JKH, Bernard A. 76.  2004. Microcontact printing of DNA molecules. Anal. Chem. 76:1641–47 [Google Scholar]
  77. Lee K-B, Park S-J, Mirkin CA, Smith JC, Mrksich M. 77.  2002. Protein nanoarrays generated by dip-pen nanolithography. Science 295:1702–5 [Google Scholar]
  78. Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H. 78.  1997. Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276:779–81 [Google Scholar]
  79. Ahmad H, Sutherland A, Shin YS, Hwang K, Qin L. 79.  et al. 2011. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell multiplex assays of functional proteins. Rev. Sci. Inst. 82:094301 [Google Scholar]
  80. Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B. 80.  et al. 2011. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17:738–43 [Google Scholar]
  81. Vermesh U, Vermesh O, Wang J, Kwong GA, Ma C. 81.  et al. 2011. High-density, multiplexed patterning of cells at single-cell resolution for tissue engineering and other applications. Angew. Chem. Int. Ed. 50:7378–80 [Google Scholar]
  82. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA. 82.  et al. 2006. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107:4781–89 [Google Scholar]
  83. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC. 83.  et al. 2006. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–29 [Google Scholar]
  84. Seder RA, Darrah PA, Roederer M. 84.  2008. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol. 8:247–58 [Google Scholar]
  85. Ronan JL, Story CM, Papa E, Love JC. 85.  2009. Optimization of the surfaces used to capture antibodies from single hybridomas reduces the time required for microengraving. J. Immunol. Methods 340:164–69 [Google Scholar]
  86. Bradshaw EM, Kent SC, Tripuraneni V, Orban T, Ploegh HL. 86.  et al. 2008. Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies. Clin. Immunol. 129:10–18 [Google Scholar]
  87. Han Q, Bradshaw EM, Nilsson B, Hafler DA, Love JC. 87.  2010. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10:1391–400 [Google Scholar]
  88. Varadarajan N, Kwon DS, Law KM, Ogunniyi AO, Anahtar MN. 88.  et al. 2012. Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving. Proc. Natl. Acad. Sci. USA 109:3885–90 [Google Scholar]
  89. Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC. 89.  2012. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc. Natl. Acad. Sci. USA 109:1607–12 [Google Scholar]
  90. Mascher B, Schlenke P, Seyfarth M. 90.  1999. Expression and kinetics of cytokines determined by intracellular staining using flow cytometry. J. Immunol. Methods 223:115–21 [Google Scholar]
  91. Ploegh HL.91.  1998. Viral strategies of immune evasion. Science 280:248–53 [Google Scholar]
  92. Kershaw MH, Westwood JA, Darcy PK. 92.  2013. Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 13:525–41 [Google Scholar]
  93. Yaffe MB.93.  2013. The scientific drunk and the lamppost: massive sequencing efforts in cancer discovery and treatment. Sci. Signal. 6:pe13 [Google Scholar]
  94. Raj A, van Oudenaarden A. 94.  2008. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–26 [Google Scholar]
  95. Paszek P, Ryan S, Ashall L, Sillitoe K, Harber CV. 95.  et al. 2010. Population robustness arising from cellular heterogeneity. Proc. Natl. Acad. Sci. USA 107:11644–49 [Google Scholar]
  96. Yuan TL, Wulf G, Burga L, Cantley LC. 96.  2011. Cell-to-cell variability in PI3K protein level regulates PI3K-AKT pathway activity in cell populations. Curr. Biol. 21:173–83 [Google Scholar]
  97. Sisan DR, Halter M, Hubbard JB, Plant AL. 97.  2012. Predicting rates of cell state change caused by stochastic fluctuations using a data-driven landscape model. Proc. Natl. Acad. Sci. USA 109:19262–67 [Google Scholar]
  98. Shin YS, Remacle F, Fan R, Hwang K, Wei W. 98.  et al. 2011. Protein signaling networks from single cell fluctuations and information theory profiling. Biophys. J. 100:2378–86 [Google Scholar]
  99. Nelson CM, Chen CS. 99.  2002. Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett. 514:238–42 [Google Scholar]
  100. Liu WF, Nelson CM, Pirone DM, Chen CS. 100.  2006. E-cadherin engagement stimulates proliferation via RAC 1. J. Cell Biol. 173:431–41 [Google Scholar]
  101. Hui EE, Bhatia SN. 101.  2007. Micromechanical control of cell–cell interactions. Proc. Natl. Acad. Sci. USA 104:5722–26 [Google Scholar]
  102. Puliafito A, Hufnagel L, Neveu P, Streichan S, Sigal A. 102.  et al. 2011. Collective and single cell behavior in epithelial contact inhibition. Proc. Natl. Acad. Sci. USA 109:739–44 [Google Scholar]
  103. Sear RP, Chung S-W, Markovich G, Gelbart WM, Heath JR. 103.  1999. Spontaneous patterning of quantum dots at the air-water interface. Phys. Rev. E 59:R6255–58 [Google Scholar]
  104. Shao H, Chung J, Balaj L, Charest A, Bigner DD. 104.  et al. 2012. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med. 18:1835–40 [Google Scholar]
  105. Thery C, Ostrowski M, Segura E. 105.  2009. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9:581–93 [Google Scholar]
  106. Al-Nedawi K, Micallef MB, Lhotak V, May L, Guha A, Rak J. 106.  2008. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10:619–24 [Google Scholar]
  107. Domon B, Aebersold R. 107.  2006. Mass spectrometry and protein analysis. Science 312:212–17 [Google Scholar]
  108. Deutsch EW, Eng JK, Zhang H, King NL, Nesvizhskii AI. 108.  et al. 2005. Human plasma peptide atlas. Proteomics 5:3497–500 [Google Scholar]
  109. Charles P, Elliott MJ, Davis D, Potter A, Kalden JR. 109.  et al. 1999. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-α therapy in rheumatoid arthritis. J. Immunol. 163:1521–28 [Google Scholar]
  110. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T. 110.  et al. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272:17907–11 [Google Scholar]
  111. Weinstein IB, Joe A. 111.  2008. Oncogene addiction. Cancer Res. 68:3077–3080 [Google Scholar]
  112. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. 112.  1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13:9–22 [Google Scholar]
/content/journals/10.1146/annurev-anchem-071213-020323
Loading
/content/journals/10.1146/annurev-anchem-071213-020323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error