Point-of-care applications are gaining increasing interest in clinical diagnostics and emergency applications. Biosensors are used to monitor the biomolecular interaction process between a disease biomarker and a recognition element such as a reagent. Essential are the quality and selectivity of the recognition elements and assay types used to improve sensitivity and to avoid nonspecific interactions. In addition, quality measures are influenced by the detection principle and the evaluation strategies. For these reasons, this review provides a survey and validation of recognition elements, assays, and various types of detection methods for point-of-care testing (POCT) platforms. Common applications of clinical parameters are discussed and considered. In this ever-changing field, a snapshot of current applications is needed. We provide such a snapshot by way of a table including literature citations and also discuss these applications in more detail throughout.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Gauglitz G, Luppa PB. 1.  2009. Patientennahe Labordiagnostik. Point-of-care testing. Chem. Unserer Z. 43:308–18 [Google Scholar]
  2. Ancy JJ.2.  2013. POC: instrumentation, people, parts, places, connectivity Presented at Annu. Conf. Clin. Lab. Sci. Alsk., Fairbanks, Alsk. http://www.clsaonline.org/2013%20CLSA%20Conference/2013%20CLSA%20Conference%20Speakers.htm
  3. Vasan ASS, Mahadeo DM, Doraiswami R, Huang YH, Pecht M. 3.  2013. Point-of-care biosensor system. Front. Biosci. S5:139–71 [Google Scholar]
  4. Junker R, Luppa PB, Schlebusch H, Hoffmann G, von Eiff W. 4.  2012. Medizinische und wirtschaftliche Bedeutung von POCT. See Reference 122 3–14
  5. Nichols JH.5.  2013. Point-of-care testing. The Immunoassay Handbook D Wild 455–63 Amsterdam: Elsevier, 4th ed.. [Google Scholar]
  6. Aguilera-Herrador E, Cruz-Vera M, Valcárcel M. 6.  2010. Analytical connotations of point-of-care testing. Analyst 135:2220–32 [Google Scholar]
  7. Clinical and Laboratory Standards Institute (CLSI) 2009. Quality Management: Approaches to Reducing Errors at the Point of Care; Approved Guideline. POCT07AE. Wayne, PA: CLSI
  8. Petersmann A, Luppa PB, Michelsen A, Sonntag O, Nauck M. 8.  2012. Joint statement on the situation of external quality control for glucose in POCT systems. Laboratoriumsmedizin 36:3165–68 [Google Scholar]
  9. Luppa PB, Mueller C, Schlichtiger A, Schlebusch H. 9.  2011. Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal. Chem. 30:6887–98 [Google Scholar]
  10. Price CP, St. John A. 10.  2012. Point-of-care testing. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics C Curtis, E Ashwood, D Bruns 487–505 Amsterdam: Elsevier [Google Scholar]
  11. Schlebusch H.11.  2012. Prä- und Postanalytik. See Reference 122 43–53
  12. Pänke O, Balkenhohl T, Kafka J, Schäfer D, Lisdat F. 12.  2008. Impedance spectroscopy and biosensing. Adv. Biochem. Eng. Biotechnol. 109:195–237 [Google Scholar]
  13. Warsinke A.13.  2009. Point-of-care testing of proteins. Anal. Bioanal. Chem. 393:51393–405 [Google Scholar]
  14. Bhadoria R, Chaudhary HS. 14.  2011. Recent advances of biosensors in biomedical sciences. Int. J. Drug Deliv. 3:571–85 [Google Scholar]
  15. Gauglitz G.15.  2010. Direct optical detection in bioanalysis: an update. Anal. Bioanal. Chem. 398:62363–72 [Google Scholar]
  16. Gauglitz G, Proll G. 16.  2008. Strategies for label-free optical detection. Adv. Biochem. Eng. Biotechnol. 109:395–443 [Google Scholar]
  17. O'Farrell B, Bauer J. 17.  2006. Developing highly sensitive, more-reproducible lateral-flow assays. Part 1: new approaches to old problems. IVD Technology (Feature Articles) June 1. http://www.ivdtechnology.com/article/highly-sensitive [Google Scholar]
  18. Park R.18.  2007. Lateral-flow POC tests to grow. IVD Technology (Trends & Perspectives) May 1. http://www.ivdtechnology.com/print/874 [Google Scholar]
  19. Berge M.19.  2013. Market trends in lateral flow immunoassays. Group T Thesis, Group 1316 Apr. 4. http://groeptms1316.wordpress.com/2013/04/04/market-trends-in-lateral-flow-immunoassays/ [Google Scholar]
  20. Faulstich K, Gruler R, Eberhard M, Haberstroh K. 20.  2007. Developing rapid mobile POC systems. Part 1: devices and applications for lateral-flow immunodiagnostics. IVD Technology (Feature Articles) July 1. http://www.ivdtechnology.com/print/904 [Google Scholar]
  21. Taranova NA, Byzova NA, Zaiko VV, Starovoitova TA, Venterov YY. 21.  et al. 2013. Integration of lateral flow and microarray technologies for multiplex immunoassay: application to the determination of drugs of abuse. Microchim. Acta 180:1165–72 [Google Scholar]
  22. Pohanak M, Hrabinova M, Fusek J, Hynek D, Adam V. 22.  et al. 2012. Electrochemical biosensor based on acetylcholinesterase and indoxylacetate for assay of neurotoxic compounds represented by paraoxon. Int. J. Electrochem. Sci. 7:50–57 [Google Scholar]
  23. Yang D, Ma JZ, Zhang QL, Li NN, Yang JC. 23.  et al. 2013. Polyelectrolyte-coated gold magnetic nanoparticles for immunoassay development: toward point of care diagnostic for syphilis screening. Anal. Chem. 85:6688–95 [Google Scholar]
  24. Markovic G, Mutschler T, Wöllner K, Gauglitz G. 24.  2006. Application of surface acoustic waves for optimization of biocompatibility of carboxymethylated dextran surfaces. Surf. Coat. Technol. 201:3–41282–88 [Google Scholar]
  25. Mehne J, Markovic G, Pröll F, Schweizer N, Zorn S. 25.  et al. 2008. Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings for biosensor applications. Anal. Bioanal. Chem. 391:51783–91 [Google Scholar]
  26. Proll G, Markovic G, Steinle L, Gauglitz G. 26.  2008. Reflectometric interference spectroscopy. Biosensors and Biodetection: Methods and Protocols 1 Optical-Based Detectors A Rasooly, KE Herold 167–78 New York: Humana [Google Scholar]
  27. Hilbig U, Bleher O, Le Blanc A, Gauglitz G. 27.  2012. A biomimetic sensor surface to detect anti-β-2-glycoprotein-I antibodies as a marker for antiphospholipid syndrome. Anal. Bioanal. Chem. 403:713–17 [Google Scholar]
  28. Mateescu A, Wang Y, Dostalek J, Jonas U. 28.  2012. Thin hydrogel films for optical biosensor applications. Membranes 2:40–46 [Google Scholar]
  29. Proll G, Ehni M. 29.  2014. Immunoassays. See Reference 144, chapter 36
  30. Proll G, Gauglitz G. 30.  2012. On-site analysis. Handbook of Biophotonics 3 Photonics in Pharmaceutics, Bioanalysis and Environmental Research J Popp, VV Tuchin, A Chiou, SH Heinemann 141–72 Weinheim, Ger: Wiley-VCH [Google Scholar]
  31. Dudley RA, Edwards P, Ekins RP, Finney DJ, McKenzie IGM. 31.  et al. 1985. Guidelines for immunoassay data processing. Clin. Chem. 31:81264–71 [Google Scholar]
  32. Krämer P, Schmid R. 32.  1991. Flow injection immunoanalysis (FIIA)—a new immunoassay format for the determination of pesticides in water. Biosens. Bioelectron. 6:239–43 [Google Scholar]
  33. Fintschenko Y, Wilson GS. 33.  1998. Flow injection immunoassay: a review. Mikrochim. Acta 129:7–18 [Google Scholar]
  34. Hansen EH, Miro M. 34.  2010. Flow injection analysis (FIA). Encycl. Ind. Biotechnol. 4:2467–81 [Google Scholar]
  35. Mansour FR, Danielson ND. 35.  2012. Reverse flow-injection analysis. Trends Anal. Chem. 40:1–14 [Google Scholar]
  36. Grudpan K, Christian GD, McKelvie ID. 36.  2011. How did flow injection analysis, and its related techniques, develop in various parts of the globe? Reflections of prominent FIA practitioners. Talanta 84:51200–4 [Google Scholar]
  37. Simkova D, Labuda J. 37.  2011. Electrochemical DNA biosensors and flow-through analysis. A review. Curr. Anal. Chem. 7:12–7 [Google Scholar]
  38. Ruiz-Medina A, Llorent-Martinez EJ. 38.  2010. Recent progress of flow-through optosensing in clinical and pharmaceutical analysis. J. Pharmaceut. Biomed. 53:3250–61 [Google Scholar]
  39. Tan SN, Ge LY, Tan HY, Loke WK, Gao JR, Wang W. 39.  2012. Paper-based enzyme immobilization for flow injection electrochemical biosensor integrated with reagent-loaded cartridge toward portable modular device. Anal. Chem. 84:2210071–76 [Google Scholar]
  40. Schilling KM, Lepore AL, Kurian JA, Martinez AW. 40.  2012. Fully enclosed microfluidic paper-based analytical devices. Anal. Chem. 84:31579–85 [Google Scholar]
  41. Zhou C, Mu Y, Yang MC, Song Q, Zhang Y. 41.  et al. 2013. A gravity-induced flow injection system for surface plasmon resonance biosensor. Talanta 112:95–100 [Google Scholar]
  42. Hartwell SK, Grudpan K. 42.  2011. Flow injection and related techniques in blood studies for clinical screening and analysis: a review. Anal. Lett. 44:1–3483–502 [Google Scholar]
  43. Kenneth M.43.  2011. Janeway's Immunobiology New York: Garland Sci, 8th ed..
  44. Lequin RM.44.  2005. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51:122415–18 [Google Scholar]
  45. Chambers JP, Arulanandam BP, Matta LL, Weis A, Valdes JJ. 45.  2008. Biosensor recognition elements. Curr. Issues Mol. Biol. 10:1–21–12 [Google Scholar]
  46. Liu Y, Matharu Z, Howland MC, Revzin A, Simonian AL. 46.  2012. Affinity and enzyme-based biosensors: recent advances and emerging applications in cell analysis and point-of-care testing. Anal. Bioanal. Chem. 404:1181–96 [Google Scholar]
  47. Holford TRJ, Davis F, Higson SPJ. 47.  2012. Recent trends in antibody based sensors. Biosens. Bioelectron. 34:112–24 [Google Scholar]
  48. Trilling AK, Beekwilder J, Zuilhof H. 48.  2013. Antibody orientation on biosensor surfaces, a minireview. Analyst 138:61619–27 [Google Scholar]
  49. Conroy PJ, Hearty S, Leonard P, O'Kennedy RJ. 49.  2009. Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol. 20:110–26 [Google Scholar]
  50. Zhen XQ, Shen Z, Mernaugh R. 50.  2012. Recombinant antibodies and their use in biosensors. Anal. Bioanal. Chem. 402:3027–38 [Google Scholar]
  51. Beissenhirtz MK, Leupold E, Stoecklein W, Wollenberger U, Paenke O. 51.  et al. 2009. Aptamers: hybrids between nature and technology. Aptamers in Bioanalysis M Mascini 87–99 Hoboken, NJ: John Wiley & Sons [Google Scholar]
  52. Scheller FW, Kleinjung F, Bier FF, Makower A, Neumann B. 52.  et al. 1998. New recognition elements in biosensing. Ann. N. Y. Acad. Sci. 864:37–45 [Google Scholar]
  53. Iliuk AB, Hu LH, Tao WA. 53.  2011. Aptamer in bioanalytical applications. Anal. Chem. 83:4440–52 [Google Scholar]
  54. Tan Y, Zhang X, Xie YH, Zhao R, Tan CY, Jiang YY. 54.  2012. Label-free fluorescent assays based on aptamer-target recognition. Analyst 137:2309–12 [Google Scholar]
  55. Baltzer L.55.  2007. Polypeptide conjugate binders for protein recognition. Top. Curr. Chem. 277:89–106 [Google Scholar]
  56. Pei H, Zuo XL, Pan D, Shi JY, Huang Q, Fan C. 56.  2013. Scaffolded biosensors with designed DNA nanostructures. NPG Asia Mater. 5:e51 [Google Scholar]
  57. Kolarov F, Niedergall K, Bach M, Tovar GEM, Gauglitz G. 57.  2012. Optical sensors with molecularly imprinted nanospheres: a promising approach for robust and label-free detection of small molecules. Anal. Bioanal. Chem. 402:103245–52 [Google Scholar]
  58. Kryscio DR, Peppas NA. 58.  2012. Critical review and perspective of macromolecularly imprinted polymers. Acta Biomaterialia 8:461–73 [Google Scholar]
  59. Baughman RH, Zakhidov AA, de Heer WA. 59.  2002. Carbon nanotubes—the route toward applications. Science 297:787–92 [Google Scholar]
  60. Druzhinina T, Hoeppener S, Schubert US. 60.  2011. Strategies for post-synthesis alignment and immobilization of carbon nanotubes. Adv. Mater. 23:953–70 [Google Scholar]
  61. Liu WW, Hashim U, Rao S. 61.  2012. Carbon nanotubes-based electrochemical biosensors. IEEE EMBS International Conference on Biomedical Engineering and Science (Langkawi, 17th–19th December 2012)392–97 Piscataway, NJ: IEEE EMBS [Google Scholar]
  62. Su L, Jia WZ, Lei Y. 62.  2012. Carbon nanotube-based biosensors. Pan Stanford Ser. Carb.-Based Nanomater. 1:355–414 [Google Scholar]
  63. Mandal HS, Su ZD, Ward A, Tang XW. 63.  2012. Carbon nanotube thin film biosensors for sensitive and reproducible whole virus detection. Theranostics 2:3251–57 [Google Scholar]
  64. Morales-Narvcáez E, Merkoçi A. 64.  2012. Graphene oxide as an optical biosensing platform. Adv. Mater. 24:3298–308 [Google Scholar]
  65. Vidotti M, Carvalhal RF, Mendes RK, Ferreira DCM, Kubota LT. 65.  2011. Biosensors based on gold nanostructures. J. Braz. Chem. Soc. 22:13–20 [Google Scholar]
  66. Chang TH, Chang YC, Ko FH, Liu FK. 66.  2013. Electroless plating growth Au-Ag core-shell nanoparticles for surface enhanced Raman scattering. Int. J. Electrochem. Sci. 8:56889–99 [Google Scholar]
  67. Ye SJ, Xiao J, Guo YY, Zhang SS. 67.  2013. Aptamer-based SERS assay of ATP and lysozyme by using primer self-generation. Chem. Eur. J. 19:258111–16 [Google Scholar]
  68. Yi Z, Li XY, Liu FJ, Jin PY, Chu X, Yu RQ. 68.  2013. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Biosens. Bioelectron. 43:308–14 [Google Scholar]
  69. Springer T, Bockova M, Homola J. 69.  2013. Label-free biosensing in complex media: a referencing approach. Anal. Chem. 85:125637–40 [Google Scholar]
  70. Petryayeva E, Krull UJ. 70.  2011. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chim. Acta 706:18–24 [Google Scholar]
  71. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán. 71.  2009. LSPR-based nanobiosensors. Nano Today 4:3244–51 [Google Scholar]
  72. Zhang Y, Zhou DJ. 72.  2012. Magnetic particle-based ultrasensitive biosensors for diagnostics. Expert Rev. Mol. Diagn. 12:6565–71 [Google Scholar]
  73. Dhanekar S, Jain S. 73.  2013. Porous silicon biosensor: current status. Biosens. Bioelectron. 41:54–64 [Google Scholar]
  74. Luppa PB, Schlebusch H, Stürenburg E, Proll G. 74.  2012. Allgemeine analytische Prinzipien und Gerätekategorien. See Reference 122 27
  75. Kellner R, Mermet JM, Otto M, Valcarcel M, Widmer HM. 75.  2004. Analytical Chemistry. A Modern Approach to Analytical Science Weinheim, Ger.: Wiley-VCH, 2nd ed..
  76. Skoog DA, West DM, Holler FJ, Crouch SR. 76.  2013. Fundamentals of Analytical Chemistry Belmont, CA: Wadsworth
  77. Thévenot DR, Tóth K, Durst RA, Wilson GS. 77.  1999. Electrochemical biosensors: recommended definitions and classification. Pure Appl. Chem. 71:122333–48 [Google Scholar]
  78. Veloso AJ, Cheng XR, Kerman K. 78.  2012. Electrochemical biosensors for medical applications. Woodhead Publ. Ser. Biomater. 45:3–40 [Google Scholar]
  79. Arredondo M, Stoytcheva M, Zlatev R, Gochev V. 79.  2012. Some clinical applications of the electrochemical biosensors. Mini-Rev. Med. Chem. 12:121301–13 [Google Scholar]
  80. Ricci F, Adornetto G, Palleschi G. 80.  2012. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta 84:74–83 [Google Scholar]
  81. Monosik R, Stred'ansky M, Sturdik E. 81.  2012. Application of electrochemical biosensors in clinical diagnosis. J. Clin. Lab. Anal. 26:22–34 [Google Scholar]
  82. Prakash S, Chakrabarty T, Singh AK, Shahi VK. 82.  2013. Polymer thin films embedded with metal nanoparticles for electrochemical biosensors applications. Biosens. Bioelectron. 41:13–53 [Google Scholar]
  83. Chen A, Shah B. 83.  2013. Electrochemical sensing and biosensing based on square wave voltammetry. Anal. Methods 5:92158–73 [Google Scholar]
  84. Eltzov E, Cosnier S, Marks RS. 84.  2011. Biosensors based on combined optical and electrochemical transduction for molecular diagnostics. Expert Rev. Mol. Diagn. 11:5533–46 [Google Scholar]
  85. Loncaric C, Tang YT, Ho C, Parameswaran MA, Yu HZ. 85.  2012. A USB-based electrochemical biosensor prototype for point-of-care diagnosis. Sens. Actuat. B 161:1908–13 [Google Scholar]
  86. Wang PP, Ge L, Yan M, Song XR, Ge SG, Yu JH. 86.  2012. Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens. Bioelectron. 32:1238–43 [Google Scholar]
  87. Lillehoj PB, Huang MC, Truong N, Ho CM. 87.  2013. Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950–55 [Google Scholar]
  88. Zhang BC, Wang Q. 88.  2012. Quartz crystal microbalance with dissipation. Nanotechnology Research Methods for Foods and Bioproducts GW Padua, Q Wang 181–94 Weinheim, Ger: Wiley-Blackwell [Google Scholar]
  89. Speight RE, Cooper MA. 89.  2012. A survey of the 2010 quartz crystal microbalance literature. J. Mol. Recognit. 25:9451–73 [Google Scholar]
  90. García-Martinez G, Bustabad EA, Perrot H, Gabrielli C, Bucur B. 90.  et al. 2011. Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit. Sensors 11:7656–64 [Google Scholar]
  91. Länge K, Gruhl FJ, Rapp M. 91.  2013. Surface Acoustic Wave (SAW) biosensors: coupling of sensing layers and measurement. Methods Mol. Biol. 9:491–505 [Google Scholar]
  92. Martin F, Newton MI, McHale G, Melzak KA, Gizeli E. 92.  2004. Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications. Biosens. Bioelectron. 19:6627–32 [Google Scholar]
  93. Thalhammer S, Wixforth A. 93.  2013. Surface acoustic wave actuated lab-on-chip system for single cell analysis. Biosens. Bioelectron. 4:3 134: [Google Scholar]
  94. Tenje M, Keller SS, Davis ZJ, Boisen A, Ndieyira J. 94.  et al. 2012. Cantilever-based sensors. Optochemical Nanosensors A Cusano, FJ Arregui, M Giordano, A Cutolo 119–46 Boca Raton, Fla: Taylor & Francis [Google Scholar]
  95. Ricciardi C, Canavese G, Castagna R, Ferrante I, Ricci A. 95.  et al. 2010. Integration of microfluidic and cantilever technology for biosensing application in liquid environment. Biosens. Bioelectron. 26:41565–70 [Google Scholar]
  96. Nagl S, Wolfbeis OS. 96.  2008. Classification of chemical sensors and biosensors based on fluorescence and phosphorescence. Springer Series on Fluorescence 5325–46 Heidelberg, Ger: Springer [Google Scholar]
  97. Stich MIJ, Fischer LH, Wolfbeis OS. 97.  2010. Multiple fluorescent chemical sensing and imaging. Chem. Soc. Rev. 39:3102–14 [Google Scholar]
  98. Förster T.98.  1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik 2:55–75 [Google Scholar]
  99. Roda A, Guardigli M, Michelini E, Mirasoli M. 99.  2007. Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal. Bioanal. Chem. 393:109–23 [Google Scholar]
  100. Varghese S, Zhu Y, Davis TJ, Trowell SC. 100.  2010. FRET for lab-on-a-chip devices—current trends and future prospects. Lab Chip 10:1355–64 [Google Scholar]
  101. Shrestha S, Deo S. 101.  2006. Bioluminescence resonance energy transfer in bioanalysis. Photoproteins in Bioanalysis S Daunert, SK Deo 95–111 Weinheim, Ger: Wiley-VCH GmbH [Google Scholar]
  102. Karsunke XYZ, Niessner R, Seidel M. 102.  2009. Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. Anal. Bioanal. Chem. 395:1623–30 [Google Scholar]
  103. Chouhan RS, Babu VK, Kumar MA, Neeta NS, Thakur MS. 103.  et al. 2006. Detection of methyl parathion using immune-chemiluminescence based image analysis using charge coupled device. Biosens. Bioelectron. 21:1264–71 [Google Scholar]
  104. Roda A, Guardigli M, Michelini E, Mirasoli M, Pasini P. 104.  2003. The possibility of detecting a few molecules using bioluminescence and chemiluminescence is exciting, especially in the context of miniaturized analytical devices. Anal. Chem. 75:462A–70A [Google Scholar]
  105. Aslan K, Geddes CD. 105.  2009. Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century. Chem. Soc. Rev. 38:2556–64 [Google Scholar]
  106. Hecht E.106.  1997. Optics London: Addison Wesley, 3rd ed..
  107. Schmitt K, Oehse K, Sulz G, Hoffmann C. 107.  2008. Evanescent field sensors based on tantalum pentoxide waveguides—a review. Sensors 8:711–38 [Google Scholar]
  108. Clerc D, Lukosz W. 108.  1994. Integrated optical output grating coupler as (bio-)chemical sensor. Sens. Actuat. B 19:1–3581–86 [Google Scholar]
  109. Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ. 109.  1993. The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interaction. Part I: Principle of operation and associated instrumentation. Biosens. Bioelectron. 8:347–53 [Google Scholar]
  110. Liedberg B, Nylander C, Lundström I. 110.  1983. Surface plasmon resonance for gas detection and biosensing. Sens. Actuat. 4:299–304 [Google Scholar]
  111. Lambeck PV.111.  2006. Integrated optical sensors for the chemical domain. Meas. Sci. Technol. 17:93–116 [Google Scholar]
  112. Brandenburg A, Henninger R. 112.  1994. Integrated optical Young interferometer. Appl. Opt. 33:255941–47 [Google Scholar]
  113. Bürk J, Conzen JP, Ache HJ. 113.  1992. A fiber optic evanescent field absorption sensor for monitoring contaminants in water. Fres J. Anal. Chem. 342:421–30 [Google Scholar]
  114. Gauglitz G.114.  1996. Opto-chemical and opto-immuno sensors. Sensors Update1–48
  115. Gauglitz G, Goddard NJ. 115.  2014. Direct optical detection in bioanalytics. See Reference 144, chapter 29
  116. Seidel M, Niessner R. 116.  2008. Automated analytical microarrays: a critical review. Anal. Bioanal. Chem. 391:1521–44 [Google Scholar]
  117. Azzam RMA, Bashara NM. 117.  1989. Ellipsometry and Polarized Light Amsterdam: North-Holland
  118. Piliarik M, Bockova M, Homola J. 118.  2011. Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens. Bioelectron. 26:41656–61 [Google Scholar]
  119. 119.  Deleted in proof
  120. Schwarz B, Fechner P, Pröll F, Proll G, Gauglitz G. 120.  2011. Imaging Reflectometric Interference Spectroscopy (iRIfS) für die markierungsfreie biomolekulare Interaktionsanalyse von Peptid- und Proteinarrays. Deutsches BioSensor Symposium, Heilbad Heiligenstadt Germany, 03–06 April 2011, p. S. 47. ISBN: 978-3-00-034073-4
  121. Vaidya VS, Bonventre JV. 121.  2010. Biomarkers in Medicine, Drug Discovery, and Environmental Health Hoboken: Wiley
  122. Luppa PB, Schlebusch H. 122.  2012. POCT—Patientennahe Labordiagnostik Heidelberg, Ger.: Springer, 2nd.
  123. Inoue S, Egi M, Kotani J, Morita K. 123.  2013. Accuracy of blood-glucose measurements using glucose meters and arterial blood gas analyzers in critically ill adult patients: systematic review. Crit. Care 17:21–13 [Google Scholar]
  124. D'Orazio P.124.  2011. Biosensors in clinical chemistry—2011 update. Clin. Chim. Acta 412:1749–61 [Google Scholar]
  125. Turner APF.125.  2013. Biosensors: sense and sensibility. Chem. Soc. Rev. 42:3184–96 [Google Scholar]
  126. Hervas M, Lopez MA, Escarpa A. 126.  2012. Electrochemical immunosensing on board microfluidic chip platforms. Trends Anal. Chem. 31:109–28 [Google Scholar]
  127. Gong MM, MacDonald BD, Nguyen TV, Nguyen KV, Sinton D. 127.  2013. Field tested milliliter-scale blood filtration device for point-of-care applications. Biomicrofluidics 7:4044111 [Google Scholar]
  128. Natl. Acad. Clin. Biochem 2007. Laboratory Medicine Practice Guidelines: Evidence-Based Practice for Point-of-Care Testing. Washington, DC: AACC
  129. Koschinsky T, Junker R, Luppa PB, Schlebusch H. 129.  2009. Improvement of therapeutic safety through standardized plasma calibration of blood glucose test systems at the point-of-care. Statement of the POCT Working Group of the German Society for Clinical Chemistry and Laboratory Medicine (DGKL). Laboratoriumsmedizin 33:6349–52 [Google Scholar]
  130. O'Kane MJ, McManus P, McGowan N, Lynch PLM. 130.  2011. Quality error rates in point-of-care testing. Clin. Chem. (Wash.) 57:91267–71 [Google Scholar]
  131. Friess U, Stark M. 131.  2009. Cardiac markers: a clear cause for point-of-care testing. Anal. Bioanal. Chem. 393:51453–62 [Google Scholar]
  132. Wright WF.132.  2013. Essentials of Clinical Infectious Diseases New York: Demos Med.
  133. Martinon F, Mayor A, Tschopp J. 133.  2009. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27:229–65 [Google Scholar]
  134. Albrecht C.134.  2011. Vergleichende Entwicklung verschiedener Assays für die medizinische Diagnostik und Charakterisierung der funktionellen Oberflächen. Life Sciences 772–78 Berlin: Rhombos [Google Scholar]
  135. Pfaefflin A, Schleicher E. 135.  2009. Inflammation markers in point-of-care testing (POCT). Anal. Bioanal. Chem. 393:51473–80 [Google Scholar]
  136. Hanafiah KM, Garcia M, Anderson D. 136.  2013. Point-of-care testing and the control of infectious diseases. Biomarkers Med. 7:3333–47 [Google Scholar]
  137. Martin J, Blobner M, Busch R, Moser N, Kochs E, Luppa PB. 137.  2013. Point-of-care testing on admission to the intensive care unit: lactate and glucose independently predict mortality. Clin. Chem. Lab. Med. 51:2405–12 [Google Scholar]
  138. Bleher O, Ehni M, Gauglitz G. 138.  2012. Label-free quantification of cystatin C as an improved marker for renal failure. Anal. Bioanal. Chem. 402:1349–56 [Google Scholar]
  139. Narang J, Bhambi M, Pundir CS. 139.  2010. Fabrication of an amperometric triglyceride biosensor based on PVC membrane. Anal. Lett. 43:11–11 [Google Scholar]
  140. Krieg AK, Gauglitz G. 140.  2012. Detecting pancreatic lipase using a new strategy for bio-functionalization of the sensor surface. Proc. Europtrode (Barcelona) XI:191 [Google Scholar]
  141. Ortiz M, Fragoso A, O'Sullivan CK. 141.  2011. Detection of antigliadin autoantibodies in celiac patient samples using a cyclodextrin-based supramolecular biosensor. Anal. Chem. 83:2931–38 [Google Scholar]
  142. Cennamo N, Varriale A, Pennacchio A, Staiano M, Massarotti D. 142.  et al. 2013. An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sens. Actuat. B 176:1008–14 [Google Scholar]
  143. Okada H, Hosokawa K, Maeda M. 143.  2011. Power-free microchip immunoassay of PSA in human serum for point-of-care testing. Anal. Sci. 27:3237–41 [Google Scholar]
  144. Gauglitz G, Moore D. 144.  2014. Handbook of Spectroscopy Weinheim, Ger: Wiley-VCH, 2nd ed..

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error