An important recent discovery concerning the fundamentals of matrix-assisted laser desorption/ionization (MALDI) is that the abundance of each ion appearing in a spectrum is fixed, regardless of the experimental condition, when an effective temperature associated with the spectrum is fixed. We describe this phenomenon and the thermal picture for the ion formation in MALDI derived from it. Accepting that matrix-to-analyte proton transfer is in quasi-equilibrium as supported by experimental data, the above thermal determination occurs because the primary (matrix) ion formation processes are thermally governed. We propose that the abundances of the primary ions are limited by the autoprotolysis-recombination process regardless of how they are initially produced. Finally, we note that primary ion formation, secondary (analyte) ion formation, and their dissociations occur sequentially while the effective temperature of the matrix plume falls steadily due to cooling associated with expansion.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. 1.  1988. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2:151–53 [Google Scholar]
  2. Karas M, Hillenkamp F. 2.  1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60:2299–301 [Google Scholar]
  3. Cotter RJ. 3.  1997. Time-of-Flight Mass Spectrometry Washington, DC: Am. Chem. Soc.
  4. Hillenkamp F, Peter-Katalinić J. 4.  2007. MALDI MS. A Practical Guide to Instrumentation, Methods and Applications Weinheim: Wiley-VCH.
  5. Cole RB. 5.  2010. Electrospray and MALDI Mass Spectrometry. Fundamentals, Instrumentation, Practicalities, and biological Applications Hoboken: Wiley, 2nd ed..
  6. Trimpin S, Inutan ED, Herath TN, McEwen CN. 6.  2010. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions. Anal. Chem. 82:11–15 [Google Scholar]
  7. Zenobi R, Knochenmuss R. 7.  1998. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17:337–66 [Google Scholar]
  8. Dreisewerd K. 8.  2003. The desorption process in MALDI. Chem. Rev. 103:395–425 [Google Scholar]
  9. Karas M, Krüger R. 9.  2003. Ion formation in MALDI: the cluster ionization mechanism. Chem. Rev. 103:427–39 [Google Scholar]
  10. Knochenmuss R, Zenobi R. 10.  2003. MALDI ionization: the role of in-plume processes. Chem. Rev. 103:441–52 [Google Scholar]
  11. Knochenmuss R. 11.  2006. Ion formation mechanisms in UV-MALDI. Analyst 131:966–86 [Google Scholar]
  12. Trimpin S, Wang B, Inutan ED, Li J, Lietz CB. 12.  et al. 2012. A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization. J. Am. Soc. Mass Spectrom. 23:1644–60 [Google Scholar]
  13. Bae YJ, Moon JH, Kim MS. 13.  2011. Expansion cooling in the matrix plume is under-recognized in MALDI mass spectrometry. J. Am. Soc. Mass Spectrom. 22:1070–78 [Google Scholar]
  14. Yoon SH, Moon JH, Kim MS. 14.  2010. A comparative study of in- and post-source decays of peptide and preformed ions in matrix-assisted laser desorption ionization time-of-flight mass spectrometry: effective temperature and matrix effect. J. Am. Soc. Mass Spectrom. 21:1876–83 [Google Scholar]
  15. Glückmann M, Karas M. 15.  1999. The initial ion velocity and its dependence on matrix, analyte and preparation method in ultraviolet matrix-assisted laser desorption/ionization. J. Mass Spectrom. 34:467–77 [Google Scholar]
  16. Vertes A, Irinyi G, Gijbels R. 16.  1993. Hydrodynamic model of matrix-assisted laser desorption mass spectrometry. Anal. Chem. 65:2389–93 [Google Scholar]
  17. Brown RS, Lennon JJ. 17.  1995. Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions. Anal. Chem. 67:3990–99 [Google Scholar]
  18. Bae YJ, Park KM, Kim MS. 18.  2012. Reproducibility of temperature-selected mass spectra in matrix-assisted laser desorption ionization of peptides. Anal. Chem. 84:7107–11 [Google Scholar]
  19. Ahn SH, Park KM, Bae YJ, Kim MS. 19.  2013. Quantitative reproducibility of mass spectra in matrix-assisted laser desorption ionization and unraveling of the mechanism for gas-phase peptide ion formation. J. Mass Spectrom. 48:299–305 [Google Scholar]
  20. Spengler B. 20.  1997. Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J. Mass Spectrom. 32:1019–36 [Google Scholar]
  21. Land CM, Kinsel GR. 21.  1998. Investigation of the mechanism of intracluster proton transfer from sinapinic acid to biomolecular analytes. J. Am. Soc. Mass Spectrom. 9:1060–67 [Google Scholar]
  22. Kinsel GR, Knochenmuss R, Setz P, Land CM, Goh SK. 22.  et al. 2002. Ionization energy reductions in small 2,5-dihydroxybenzoic acid–proline clusters. J. Mass Spectrom. 37:1131–40 [Google Scholar]
  23. Liu BH, Charkin OP, Klemenko N, Chen CW, Wang YS. 23.  2010. Initial ionization reaction in matrix-assisted laser dosorption/ionization. J. Phys. Chem. B 114:10853–59 [Google Scholar]
  24. Mukamel S, Abramavicius D. 24.  2004. Many-body approaches for simulating coherent nonlinear spectroscopies of electronic and vibrational excitons. Chem. Rev. 104:2073–98 [Google Scholar]
  25. Knochenmuss R. 25.  2002. A quantitative model of ultraviolet matrix-assisted laser desorption/ionization. J. Mass Spectrom. 37:867–77 [Google Scholar]
  26. Knochenmuss R, Zhigilei LV. 26.  2005. Molecular dynamics model of ultraviolet matrix-assisted laser desorption/ionization including ionization processes. J. Phys. Chem. B 109:22947–57 [Google Scholar]
  27. Knochenmuss R, Zhigilei LV. 27.  2010. Molecular dynamics simulations of MALDI: laser fluence and pulse width dependence of plume characteristics and consequences for matrix and analyte ionization. J. Mass Spectrom. 45:333–46 [Google Scholar]
  28. Ehring H, Karas M, Hillenkamp F. 28.  1992. Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption ionization mass spectrometry. Org. Mass Spectrom. 27:472–80 [Google Scholar]
  29. Asfandiarov NL, Pshenichnyuk SA, Fokin AI, Lukin VG, Fal'ko VS. 29.  2002. Electron capture negative ion mass spectra of some typical matrix-assisted laser desorption/ionization matrices. Rapid Commun. Mass Spectrom. 16:1760–65 [Google Scholar]
  30. Knochenmuss R. 30.  2004. Photoionization pathways and free electrons in UV-MALDI. Anal. Chem. 76:3179–84 [Google Scholar]
  31. Lin HY, Song B, Lu IC, Hsu KT, Liao CY. 31.  et al. 2014. Is energy pooling necessary in ultraviolet matrix-assisted laser desorption/ionization?. Rapid Commun. Mass Spectrom. 28:77–82 [Google Scholar]
  32. Karas M, Bachmann D, Hillenkamp F. 32.  1985. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 57:2935–39 [Google Scholar]
  33. Breuker K, Knochenmuss R, Zenobi R. 33.  1999. Gas-phase basicities of deprotonated matrix-assisted laser desorption/ionization matrix molecules. Int. J. Mass Spectrom. 184:25–38 [Google Scholar]
  34. Chen X, Carroll JA, Beavis RC. 34.  1998. Near-ultraviolet-induced matrix-assisted laser desorption/ionization as a function of wavelength. J. Am. Soc. Mass Spectrom. 9:885–91 [Google Scholar]
  35. Niu S, Zhang W, Chait BT. 35.  1998. Direct comparison of infrared and ultraviolet wavelength matrix-assisted laser desorption/ionization mass spectrometry of proteins. J. Am. Soc. Mass Spectrom. 9:1–7 [Google Scholar]
  36. Zhu YF, Lee KL, Tang K, Allman SL, Taranenko NI, Chen CH. 36.  1995. Revisit of MALDI for small proteins. Rapid Commun. Mass Spectrom. 9:1315–20 [Google Scholar]
  37. Krüger R, Pfenninger A, Fournier I, Glückmann M, Karas M. 37.  2001. Analyte incorporation and ionization in matrix-assisted laser desorption/ionization visualized by pH indicator molecular probes. Anal. Chem. 73:5812–21 [Google Scholar]
  38. Liao PC, Allison J. 38.  1995. Enhanced detection of peptides in matrix-assisted laser desorption/ionization mass spectrometry through the use of charge-localized derivatives. J. Mass Spectrom. 30:511–12 [Google Scholar]
  39. Karas M, Glückmann M, Schäfer J. 39.  2000. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J. Mass Spectrom. 35:1–12 [Google Scholar]
  40. Jaskolla TW, Karas M. 40.  2011. Compelling evidence for lucky survivor and gas phase protonation: the unified MALDI analyte protonation mechanism. J. Am. Soc. Mass Spectrom. 22:976–88 [Google Scholar]
  41. Moon JH, Shin YS, Bae YJ, Kim MS. 41.  2012. Ion yields for some salts in MALDI: mechanism for the gas-phase ion formation from preformed ions. J. Am. Soc. Mass Spectrom. 23:162–70 [Google Scholar]
  42. Oh JY, Moon JH, Kim MS. 42.  2004. Tandem time-of-flight mass spectrometer for photodissociation of biopolymer ions generated by matrix-assisted laser desorption ionization (MALDI-TOF-PD-TOF) using a linear-plus-quadratic potential reflectron. J. Am. Soc. Mass Spectrom. 15:1248–59 [Google Scholar]
  43. Bae YJ, Yoon SH, Moon JH, Kim MS. 43.  2010. Optimization of reflectron for kinetic and mechanistic studies with multiplexed multiple tandem (MSn) time-of-flight mass spectrometry. Bull. Korean Chem. Soc. 31:92–99 [Google Scholar]
  44. Westmacott G, Ens W, Hillenkamp F, Dreisewerd K, Schürenberg M. 44.  2002. The influence of laser fluence on ion yield in matrix-assisted laser desorption ionization mass spectrometry. Int. J. Mass Spectrom. 221:67–81 [Google Scholar]
  45. Feldhaus D, Menzel C, Berkenkamp S, Hillenkamp F, Dreisewerd K. 45.  2000. Influence of the laser fluence in infrared matrix-assisted laser desorption/ionization with a 2.94 μm Er : YAG laser and a flat-top beam profile. J. Mass Spectrom. 35:1320–28 [Google Scholar]
  46. Moon JH, Yoon SH, Kim MS. 46.  2009. Temperature of peptide ions generated by matrix-assisted laser desorption ionization and their dissociation kinetic parameters. J. Phys. Chem. B 113:2071–76 [Google Scholar]
  47. Bae YJ, Shin YS, Moon JH, Kim MS. 47.  2012. Degree of ionization in MALDI of peptides: thermal explanation for the gas-phase ion formation. J. Am. Soc. Mass Spectrom. 23:1326–35 [Google Scholar]
  48. Westman A, Brinkmalm G, Barofsky DF. 48.  1997. MALDI induced saturation effects in chevron microchannel plate detectors. Int. J. Mass Spectrom. Ion Process. 169–170:79–87 [Google Scholar]
  49. Baer T, Mayer PM. 49.  1997. Statistical Rice-Ramsperger-Kassel-Marcus quasiequilibrium theory calculations in mass spectrometry. J. Am. Soc. Mass Spectrom. 8:103–15 [Google Scholar]
  50. Moon JH, Sun M, Kim MS. 50.  2007. Efficient and reliable calculation of Rice-Ramsperger-Kassel-Marcus unimolecular reaction rate constants for biopolymers: modification of Beyer-Swinehart algorithm for degenerate vibrations. J. Am. Soc. Mass Spectrom. 18:1063–69 [Google Scholar]
  51. Yoon SH, Moon JH, Kim MS. 51.  2009. Time-resolved photodissociation study of singly protonated peptides with a histidine residue generated by matrix-assisted laser desorption ionization: dissociation rate constant and internal temperature. J. Am. Soc. Mass. Spectrom. 20:1522–29 [Google Scholar]
  52. Takayama M. 52.  2001. N-Cα bond cleavage of the peptide backbone via hydrogen abstraction. J. Am. Soc. Mass Spectrom. 12:1044–49 [Google Scholar]
  53. Köcher T, Engström Å, Zubarev RA. 53.  2005. Fragmentation of peptides in MALDI in-source decay mediated by hydrogen radicals. Anal. Chem. 77:172–77 [Google Scholar]
  54. Ahn SH, Bae YJ, Kim MS. 54.  2012. Matrix-assisted variable wavelength laser desorption ionization of peptides; influence of the matrix absorption coefficient on expansion cooling. Bull. Korean Chem. Soc. 33:2955–60 [Google Scholar]
  55. Demeure K, Gavelica V, De Pauw EA. 55.  2010. New advances in the understanding of the in-source decay fragmentation of peptides in MALDI-TOF-MS. J. Am. Soc. Mass Spectrom. 21:1906–17 [Google Scholar]
  56. Campbell JM, Vestal ML, Blank PS, Stein SE, Epstein JA, Yergey AL. 56.  2007. Fragmentation of leucine encephalin as a function of laser fluence in a MALDI TOF-TOF. J. Am. Soc. Mass Spectrom. 18:607–16 [Google Scholar]
  57. Mowry CD, Johnston MV. 57.  1994. Internal energy of neutral molecules ejected by matrix-assisted laser desorption. J. Phys. Chem. 98:1904–9 [Google Scholar]
  58. Park KM, Bae YJ, Ahn SH, Kim MS. 58.  2012. A simple method for quantification of peptides and proteins by matrix-assisted laser desorption ionization mass spectrometry. Anal. Chem. 84:10332–37 [Google Scholar]
  59. Duncan MW, Roder H, Hunsucker SW. 59.  2008. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief. Funct. Genom. Proteom. 7:355–70 [Google Scholar]
  60. Szájli E, Fehér T, Medzihradszky KF. 60.  2008. Investigating the quantitative nature of MALDI-TOF MS. Mol. Cell. Proteom. 7:2410–18 [Google Scholar]
  61. Garden RW, Sweedler JV. 61.  2000. Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal. Chem. 72:30–36 [Google Scholar]
  62. Hyzak L, Moos R, von Rath F, Wulf V, Wirtz M. 62.  et al. 2011. Quantitative matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis of synthetic polymers and peptides. Anal. Chem. 83:9467–71 [Google Scholar]
  63. Harrison AG. 63.  1997. The gas-phase basicities and proton affinities of amino acids and peptides. Mass Spectrom. Rev. 16:201–17 [Google Scholar]
  64. Steenvoorden RJJM, Breuker K, Zenobi R. 64.  1997. The gas-phase basicities of matrix-assisted laser desorption/ionization matrices. Eur. Mass Spectrom. 3:339–46 [Google Scholar]
  65. Koubenakis A, Frankevich V, Zhang J, Zenobi R. 65.  2004. Time-resolved surface temperature measurement of MALDI matrices under pulsed UV laser irradiation. J. Phys. Chem. A 108:2405–10 [Google Scholar]
  66. Chan TWD, Colburn AW, Derrick PJ. 66.  1991. Matrix-assisted UV laser desorption. Suppression of the matrix peaks. Org. Mass Spectrom. 26:342–44 [Google Scholar]
  67. Asakawa D, Takayama M. 67.  2011. Cα-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices. J. Am. Soc. Mass Spectrom. 22:1224–33 [Google Scholar]
  68. Stevenson E, Breuker K, Zenobi R. 68.  2000. Internal energies of analyte ions generated from different matrix-assisted laser desorption/ionization matrices. J. Mass Spectrom. 35:1035–41 [Google Scholar]
  69. Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeilman MI. 69.  2003. Computer simulations of laser ablation of molecular substrates. Chem. Rev. 103:321–47 [Google Scholar]
  70. Bae YJ, Choe JC, Moon JH, Kim MS. 70.  2013. Why do the abundances of ions generated by MALDI look thermally determined?. J. Am. Soc. Mass Spectrom. 24:1807–15 [Google Scholar]
  71. Hasted JB. 71.  1972. Physics of Atomic Collisions New York: Elsevier
  72. Liao PC, Allison J. 72.  1995. Ionization processes in matrix-assisted laser desorption/ionization mass spectrometry: matrix-dependent formation of [M + H]+ vs [M + Na]+ ions of small peptides and some mechanistic comments. J. Mass Spectrom. 30:408–23 [Google Scholar]
  73. Frankevich V, Knochenmuss R, Zenobi R. 73.  2002. The origin of electrons in MALDI and their use for sympathetic cooling of negative ions in FTICR. Int. J. Mass Spectrom. 220:11–19 [Google Scholar]
  74. Frankevich VE, Zhang J, Friess SD, Dashtiev M, Zenobi R. 74.  2003. Role of electrons in laser desorption/ionization mass spectrometry. Anal. Chem. 75:6063–67 [Google Scholar]
  75. Liu BH, Lee YT, Wang YS. 75.  2009. Incoherent production reactions of positive and negative ions in matrix-assisted laser desorption/ionization. J. Am. Soc. Mass Spectrom. 20:1078–86 [Google Scholar]
  76. Knochenmuss R, McCombie G, Faderl M. 76.  2006. Ion yields of thin MALDI samples: dependence on matrix and metal substrate and implications for models. J. Phys. Chem. A 110:12728–33 [Google Scholar]
  77. Curtiss LA, Redfern PC, Raghavachari K. 77.  2007. Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 124:124105 [Google Scholar]
  78. Kinsel GR, Yao D, Yassin FH, Marynick DS. 78.  2006. Equilibrium conditions in laser-desorbed plumes: thermodynamic properties of α-cyano-4-hydroxycinnamic acid and protonation of amino acids. Eur. Mass Spectrom. 12:359–67 [Google Scholar]
  79. Allwood DA, Dreyfus RW, Perera IK, Dyer PE. 79.  1996. UV optical absorption of matrices used for matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 10:1575–78 [Google Scholar]
  80. Lai YH, Wang CC, Chen CW, Liu BH, Lin SH. 80.  et al. 2012. Analysis of initial reactions of MALDI based on chemical properties of matrixes and excitation condition. J. Phys. Chem. B 116:9635–43 [Google Scholar]
  81. Ahn SH, Park KM, Bae YJ, Kim MS. 81.  2013. Efficient methods to generate reproducible mass spectra in matrix-assisted laser desorption ionization of peptides. J. Am. Soc. Mass Spectrom. 24:868–76 [Google Scholar]
  82. Tang K, Allman SL, Jones RB, Chen CH. 82.  1993. Quantitative analysis of biopolymers by matrix-assisted laser desorption. Anal. Chem. 65:2164–66 [Google Scholar]
  83. Shrestha B, Li Y, Vertes A. 83.  2008. Rapid analysis of pharmaceuticals and excreted xenobiotic and endogenous metabolites with atmospheric pressure infrared MALDI mass spectrometry. Metabolomics 4:297–311 [Google Scholar]
  84. Ong SE, Mann M. 84.  2005. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1:252–62 [Google Scholar]
  85. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. 85.  2003. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100:6940–45 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error