1932

Abstract

Imaging mass spectrometry (IMS) enables highly multiplexed, untargeted tissue mapping for a broad range of molecular classes, facilitating in situ biological discovery. Yet, challenges persist in molecular specificity, which is the ability to discern one molecule from another, and spatial specificity, which is the ability to link untargeted imaging data to specific tissue features. Instrumental developments have dramatically improved IMS spatial resolution, allowing molecular observations to be more readily associated with distinct tissue features across spatial scales, ranging from larger anatomical regions to single cells. High-performance mass analyzers and systems integrating ion mobility technologies are also becoming more prevalent, further improving molecular coverage and the ability to discern chemical identity. This review provides an overview of recent advancements in high-specificity IMS that are providing critical biological context to untargeted molecular imaging, enabling integrated analyses, and addressing advanced biomedical research applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-083023-024546
2024-07-17
2025-02-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/17/1/annurev-anchem-083023-024546.html?itemId=/content/journals/10.1146/annurev-anchem-083023-024546&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Caprioli RM, Farmer TB, Gile J. 1997.. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. . Anal. Chem. 69::475160
    [Crossref] [Google Scholar]
  2. 2.
    Ebefors K, Bergwall L, Nyström J. 2022.. The glomerulus according to the mesangium. . Front. Med. 8::740527
    [Crossref] [Google Scholar]
  3. 3.
    Guenther S, Koestler M, Schulz O, Spengler B. 2010.. Laser spot size and laser power dependence of ion formation in high resolution MALDI imaging. . Int. J. Mass Spectrom. 294::715
    [Crossref] [Google Scholar]
  4. 4.
    Spivey EC, McMillen JC, Ryan DJ, Spraggins JM, Caprioli RM. 2019.. Combining MALDI-2 and transmission geometry laser optics to achieve high sensitivity for ultra-high spatial resolution surface analysis. . J. Mass Spectrom. 54::36670
    [Crossref] [Google Scholar]
  5. 5.
    Potthoff A, Dreisewerd K, Soltwisch J. 2020.. Detailed characterization of the postionization efficiencies in MALDI-2 as a function of relevant input parameters. . J. Am. Soc. Mass Spectrom. 31::184453
    [Crossref] [Google Scholar]
  6. 6.
    Barré FPY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, et al. 2019.. Enhanced sensitivity using MALDI imaging coupled with laser postionization (MALDI-2) for pharmaceutical research. . Anal. Chem. 91::1084048
    [Crossref] [Google Scholar]
  7. 7.
    McMillen JC, Gutierrez DB, Judd AM, Spraggins JM, Caprioli RM. 2021.. Enhancement of tryptic peptide signals from tissue sections using MALDI IMS postionization (MALDI-2). . J. Am. Soc. Mass Spectrom. 32::258391
    [Crossref] [Google Scholar]
  8. 8.
    Ellis SR, Soltwisch J, Paine MRL, Dreisewerd K, Heeren RMA. 2017.. Laser post-ionisation combined with a high resolving power Orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids. . Chem. Commun. 53::724649
    [Crossref] [Google Scholar]
  9. 9.
    Niehaus M, Robinson KN, Murta T, Elia EA, Race AM, et al. 2020.. MALDI-2 at atmospheric pressure—parameter optimization and first imaging experiments. . J. Am. Soc. Mass Spectrom. 31::228795
    [Crossref] [Google Scholar]
  10. 10.
    Soltwisch J, Heijs B, Koch A, Vens-Cappell S, Höhndorf J, Dreisewerd K. 2020.. MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument for rapid mass spectrometry imaging and ion mobility separation of complex lipid profiles. . Anal. Chem. 92::8697703
    [Crossref] [Google Scholar]
  11. 11.
    Niehaus M, Soltwisch J, Belov ME, Dreisewerd K. 2019.. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution. . Nat. Methods 16::92531
    [Crossref] [Google Scholar]
  12. 12.
    Soltwisch J, Kettling H, Vens-Cappell S, Wiegelmann M, Müthing J, Dreisewerd K. 2015.. Mass spectrometry imaging with laser-induced postionization. . Science 348::21115
    [Crossref] [Google Scholar]
  13. 13.
    Schneemann J, Schäfer K-C, Spengler B, Heiles S. 2022.. IR-MALDI mass spectrometry imaging with plasma post-ionization of nonpolar metabolites. . Anal. Chem. 94::1608694
    [Crossref] [Google Scholar]
  14. 14.
    Michael JA, Mutuku SM, Ucur B, Sarretto T, Maccarone AT, et al. 2022.. Mass spectrometry imaging of lipids using MALDI coupled with plasma-based post-ionization on a trapped ion mobility mass spectrometer. . Anal. Chem. 94::17494503
    [Crossref] [Google Scholar]
  15. 15.
    Ellis SR, Paine MRL, Eijkel GB, Pauling JK, Husen P, et al. 2018.. Automated, parallel mass spectrometry imaging and structural identification of lipids. . Nat. Methods 15::51518
    [Crossref] [Google Scholar]
  16. 16.
    Prentice BM, Chumbley CW, Caprioli RM. 2015.. High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. . J. Mass Spectrom. 50::70310
    [Crossref] [Google Scholar]
  17. 17.
    Akakpo JY, Jaeschke MW, Etemadi Y, Artigues A, Toerber S, et al. 2022.. Desorption electrospray ionization mass spectrometry imaging allows spatial localization of changes in acetaminophen metabolism in the liver after intervention with 4-methylpyrazole. . J. Am. Soc. Mass Spectrom. 33::2094107
    [Crossref] [Google Scholar]
  18. 18.
    Dannhorn A, Doria ML, McKenzie J, Inglese P, Swales JG, et al. 2023.. Targeted desorption electrospray ionization mass spectrometry imaging for drug distribution, toxicity, and tissue classification studies. . Metabolites 13::377
    [Crossref] [Google Scholar]
  19. 19.
    Goodwin RJA. 2012.. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. . J. Proteom. 75::4893911
    [Crossref] [Google Scholar]
  20. 20.
    Buszewska-Forajta M, Rafińska K, Buszewski B. 2022.. Tissue sample preparations for preclinical research determined by molecular imaging mass spectrometry using matrix-assisted laser desorption/ionization. . J. Sep. Sci. 45::134561
    [Crossref] [Google Scholar]
  21. 21.
    Winograd N, Bloom A. 2015.. Sample preparation for 3D SIMS chemical imaging of cells. . In Mass Spectrometry Imaging of Small Molecules, ed. L He , pp. 919. New York:: Springer
    [Google Scholar]
  22. 22.
    Bien T, Bessler S, Dreisewerd K, Soltwisch J. 2021.. Transmission-mode MALDI mass spectrometry imaging of single cells: optimizing sample preparation protocols. . Anal. Chem. 93::451320
    [Crossref] [Google Scholar]
  23. 23.
    Ràfols P, Vilalta D, Brezmes J, Cañellas N, del Castillo E, et al. 2018.. Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF mass spectrometry imaging for biological applications. . Mass Spectrom. Rev. 37::281306
    [Crossref] [Google Scholar]
  24. 24.
    Baquer G, Sementé L, Mahamdi T, Correig X, Ràfols P, García-Altares M. 2023.. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. . Mass Spectrom. Rev. 42::192764
    [Crossref] [Google Scholar]
  25. 25.
    Verbeeck N, Caprioli RM, Van de Plas R. 2020.. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. . Mass Spectrom. Rev. 39::24591
    [Crossref] [Google Scholar]
  26. 26.
    Alexandrov T. 2020.. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. . Annu. Rev. Biomed. Data Sci. 3::6187
    [Crossref] [Google Scholar]
  27. 27.
    Xiao Y, Deng J, Yao Y, Fang L, Yang Y, Luan T. 2020.. Recent advances of ambient mass spectrometry imaging for biological tissues: a review. . Anal. Chim. Acta 1117::7488
    [Crossref] [Google Scholar]
  28. 28.
    Bodzon-Kulakowska A, Suder P. 2016.. Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. . Mass Spectrom. Rev. 35::14769
    [Crossref] [Google Scholar]
  29. 29.
    Dilmetz BA, Lee Y-R, Condina MR, Briggs M, Young C, et al. 2021.. Novel technical developments in mass spectrometry imaging in 2020: a mini review. . Anal. Sci. Adv. 2::22537
    [Crossref] [Google Scholar]
  30. 30.
    Buchberger AR, DeLaney K, Johnson J, Li L. 2018.. Mass spectrometry imaging: a review of emerging advancements and future insights. . Anal. Chem. 90::24065
    [Crossref] [Google Scholar]
  31. 31.
    Dreisewerd K. 2003.. The desorption process in MALDI. . Chem. Rev. 103::395426
    [Crossref] [Google Scholar]
  32. 32.
    Jurchen JC, Rubakhin SS, Sweedler JV. 2005.. MALDI-MS imaging of features smaller than the size of the laser beam. . J. Am. Soc. Mass Spectrom. 16::165459
    [Crossref] [Google Scholar]
  33. 33.
    Snel MF, Fuller M. 2010.. High-spatial resolution matrix-assisted laser desorption ionization imaging analysis of glucosylceramide in spleen sections from a mouse model of Gaucher disease. . Anal. Chem. 82::366470
    [Crossref] [Google Scholar]
  34. 34.
    Barré F, Rocha B, Dewez F, Towers M, Murray P, et al. 2019.. Faster raster matrix-assisted laser desorption/ionization mass spectrometry imaging of lipids at high lateral resolution. . Int. J. Mass Spectrom. 437::3848
    [Crossref] [Google Scholar]
  35. 35.
    Spraggins JM, Caprioli RM. 2011.. High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. . J. Am. Soc. Mass Spectrom. 22::102231
    [Crossref] [Google Scholar]
  36. 36.
    Vestal M, Li L, Dobrinskikh E, Shi Y, Wang B, et al. 2020.. Rapid MALDI-TOF molecular imaging: instrument enhancements and their practical consequences. . J. Mass Spectrom. 55::e4423
    [Crossref] [Google Scholar]
  37. 37.
    Spraggins JM, Djambazova KV, Rivera ES, Migas LG, Neumann EK, et al. 2019.. High-performance molecular imaging with MALDI trapped ion-mobility time-of-flight (timsTOF) mass spectrometry. . Anal. Chem. 91::1455260
    [Crossref] [Google Scholar]
  38. 38.
    Angerer TB, Bour J, Biagi J-L, Moskovets E, Frache G. 2022.. Evaluation of 6 MALDI-matrices for 10 μm lipid imaging and on-tissue MSn with AP-MALDI-Orbitrap. . J. Am. Soc. Mass Spectrom. 33::76071
    [Crossref] [Google Scholar]
  39. 39.
    Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM. 2016.. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. . Proteomics 16::167889
    [Crossref] [Google Scholar]
  40. 40.
    Zavalin A, Todd EM, Rawhouser PD, Yang J, Norris JL, Caprioli RM. 2012.. Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. . J. Mass Spectrom. 47::147381
    [Crossref] [Google Scholar]
  41. 41.
    Zavalin A, Yang J, Hayden K, Vestal M, Caprioli RM. 2015.. Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. . Anal. Bioanal. Chem. 407::233742
    [Crossref] [Google Scholar]
  42. 42.
    Koestler M, Kirsch D, Hester A, Leisner A, Guenther S, Spengler B. 2008.. A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer. . Rapid Commun. Mass Spectrom. 22::327585
    [Crossref] [Google Scholar]
  43. 43.
    Takáts Z, Wiseman JM, Gologan B, Cooks RG. 2004.. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. . Science 306::47173
    [Crossref] [Google Scholar]
  44. 44.
    Tillner J, Wu V, Jones EA, Pringle SD, Karancsi T, et al. 2017.. Faster, more reproducible DESI-MS for biological tissue imaging. . J. Am. Soc. Mass Spectrom. 28::209098
    [Crossref] [Google Scholar]
  45. 45.
    Hale OJ, Cooper HJ. 2021.. Native mass spectrometry imaging of proteins and protein complexes by nano-DESI. . Anal. Chem. 93::461927
    [Crossref] [Google Scholar]
  46. 46.
    Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ. 2012.. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. . Anal. Chem. 84::14148
    [Crossref] [Google Scholar]
  47. 47.
    Yin R, Burnum-Johnson KE, Sun X, Dey SK, Laskin J. 2019.. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. . Nat. Protocols 14::344570
    [Crossref] [Google Scholar]
  48. 48.
    Shariatgorji M, Nilsson A, Fridjonsdottir E, Vallianatou T, Källback P, et al. 2019.. Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. . Nat. Methods 16::102128
    [Crossref] [Google Scholar]
  49. 49.
    Nguyen SN, Sontag RL, Carson JP, Corley RA, Ansong C, Laskin J. 2018.. Towards high-resolution tissue imaging using nanospray desorption electrospray ionization mass spectrometry coupled to shear force microscopy. . J. Am. Soc. Mass Spectrom. 29::31622
    [Crossref] [Google Scholar]
  50. 50.
    Nguyen SN, Liyu AV, Chu RK, Anderton CR, Laskin J. 2017.. Constant-distance mode nanospray desorption electrospray ionization mass spectrometry imaging of biological samples with complex topography. . Anal. Chem. 89::113137
    [Crossref] [Google Scholar]
  51. 51.
    Passarelli MK, Pirkl A, Moellers R, Grinfeld D, Kollmer F, et al. 2017.. The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. . Nat. Methods 14::117583
    [Crossref] [Google Scholar]
  52. 52.
    Sparvero LJ, Tian H, Amoscato AA, Sun W-Y, Anthonymuthu TS, et al. 2021.. Direct mapping of phospholipid ferroptotic death signals in cells and tissues by gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS). . Angew. Chem. Int. Ed. 60::1178488
    [Crossref] [Google Scholar]
  53. 53.
    Touboul D, Kollmer F, Niehuis E, Brunelle A, Laprévote O. 2005.. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. . J. Am. Soc. Mass Spectrom. 16::160818
    [Crossref] [Google Scholar]
  54. 54.
    Fletcher JS. 2009.. Cellular imaging with secondary ion mass spectrometry. . Analyst 134::220415
    [Crossref] [Google Scholar]
  55. 55.
    Colliver TL, Brummel CL, Pacholski ML, Swanek FD, Ewing AG, Winograd N. 1997.. Atomic and molecular imaging at the single-cell level with TOF-SIMS. . Anal. Chem. 69::222531
    [Crossref] [Google Scholar]
  56. 56.
    Bich C, Touboul D, Brunelle A. 2014.. Cluster TOF-SIMS imaging as a tool for micrometric histology of lipids in tissue. . Mass Spectrom. Rev. 33::44251
    [Crossref] [Google Scholar]
  57. 57.
    Winograd N. 2018.. Gas cluster ion beams for secondary ion mass spectrometry. . Annu. Rev. Anal. Chem. 11::2948
    [Crossref] [Google Scholar]
  58. 58.
    Winograd N. 2015.. Imaging mass spectrometry on the nanoscale with cluster ion beams. . Anal. Chem. 87::32833
    [Crossref] [Google Scholar]
  59. 59.
    Tian H, Sparvero LJ, Amoscato AA, Bloom A, Bayır H, et al. 2017.. Gas cluster ion beam time-of-flight secondary ion mass spectrometry high-resolution imaging of cardiolipin speciation in the brain: identification of molecular losses after traumatic injury. . Anal. Chem. 89::461119
    [Crossref] [Google Scholar]
  60. 60.
    Tian H, Sheraz née Rabbani S, Vickerman JC, Winograd N. 2021.. Multiomics imaging using high-energy water gas cluster ion beam secondary ion mass spectrometry [(H2O)n-GCIB-SIMS] of frozen-hydrated cells and tissue. . Anal. Chem. 93::780814
    [Crossref] [Google Scholar]
  61. 61.
    Pareek V, Tian H, Winograd N, Benkovic SJ. 2020.. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. . Science 368::28390
    [Crossref] [Google Scholar]
  62. 62.
    Kotowska AM, Trindade GF, Mendes PM, Williams PM, Aylott JW, et al. 2020.. Protein identification by 3D OrbiSIMS to facilitate in situ imaging and depth profiling. . Nat. Commun. 11::5832
    [Crossref] [Google Scholar]
  63. 63.
    Gorman BL, Torti SV, Torti FM, Anderton CR. 2023.. Mass spectrometry imaging of metals in tissues and cells: methods and biological applications. . Biochim. Biophys. Acta Gen. Subj. 2023::130329
    [Google Scholar]
  64. 64.
    Bowman AP, Blakney GT, Hendrickson CL, Ellis SR, Heeren RMA, Smith DF. 2020.. Ultra-high mass resolving power, mass accuracy, and dynamic range MALDI mass spectrometry imaging by 21-T FT-ICR MS. . Anal. Chem. 92::313342
    [Crossref] [Google Scholar]
  65. 65.
    Cornett DS, Frappier SL, Caprioli RM. 2008.. MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. . Anal. Chem. 80::564853
    [Crossref] [Google Scholar]
  66. 66.
    Sud M, Fahy E, Cotter D, Brown A, Dennis EA, et al. 2006.. LMSD: LIPID MAPS structure database. . Nucleic Acids Res. 35::D52732
    [Crossref] [Google Scholar]
  67. 67.
    Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D, et al. 2017.. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. . Nat. Methods 14::5760
    [Crossref] [Google Scholar]
  68. 68.
    Wishart DS, Guo A, Oler E, Wang F, Anjum A, et al. 2021.. HMDB 5.0: the Human Metabolome Database for 2022. . Nucleic Acids Res. 50::D62231
    [Crossref] [Google Scholar]
  69. 69.
    Spraggins JM, Rizzo DG, Moore JL, Rose KL, Hammer ND, et al. 2015.. MALDI FTICR IMS of intact proteins: using mass accuracy to link protein images with proteomics data. . J. Am. Soc. Mass Spectrom. 26::97485
    [Crossref] [Google Scholar]
  70. 70.
    Prentice BM, Ryan DJ, Van de Plas R, Caprioli RM, Spraggins JM. 2018.. Enhanced ion transmission efficiency up to m/z 24 000 for MALDI protein imaging mass spectrometry. . Anal. Chem. 90::509099
    [Crossref] [Google Scholar]
  71. 71.
    Dilillo M, Ait-Belkacem R, Esteve C, Pellegrini D, Nicolardi S, et al. 2017.. Ultra-high mass resolution MALDI imaging mass spectrometry of proteins and metabolites in a mouse model of glioblastoma. . Sci. Rep. 7::603
    [Crossref] [Google Scholar]
  72. 72.
    Zubarev RA, Makarov A. 2013.. Orbitrap mass spectrometry. . Anal. Chem. 85::528896
    [Crossref] [Google Scholar]
  73. 73.
    Strupat K, Kovtoun V, Bui H, Viner R, Stafford G, Horning S. 2009.. MALDI produced ions inspected with a linear ion trap-Orbitrap hybrid mass analyzer. . J. Am. Soc. Mass Spectrom. 20::145163
    [Crossref] [Google Scholar]
  74. 74.
    VanAernum ZL, Gilbert JD, Belov ME, Makarov AA, Horning SR, Wysocki VH. 2019.. Surface-induced dissociation of noncovalent protein complexes in an extended mass range Orbitrap mass spectrometer. . Anal. Chem. 91::361118
    [Crossref] [Google Scholar]
  75. 75.
    Su P, McGee JP, Durbin KR, Hollas MAR, Yang M, et al. 2022.. Highly multiplexed, label-free proteoform imaging of tissues by individual ion mass spectrometry. . Sci. Adv. 8::eabp9929
    [Crossref] [Google Scholar]
  76. 76.
    Guilhaus M, Selby D, Mlynski V. 2000.. Orthogonal acceleration time-of-flight mass spectrometry. . Mass Spectrom. Rev. 19::65107
    [Crossref] [Google Scholar]
  77. 77.
    May JC, McLean JA. 2015.. Ion mobility-mass spectrometry: time-dispersive instrumentation. . Anal. Chem. 87::142236
    [Crossref] [Google Scholar]
  78. 78.
    Dodds JN, May JC, McLean JA. 2017.. Correlating resolving power, resolution, and collision cross section: unifying cross-platform assessment of separation efficiency in ion mobility spectrometry. . Anal. Chem. 89::1217684
    [Crossref] [Google Scholar]
  79. 79.
    Ewing MA, Glover MS, Clemmer DE. 2016.. Hybrid ion mobility and mass spectrometry as a separation tool. . J. Chromatogr. A 1439::325
    [Crossref] [Google Scholar]
  80. 80.
    Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JLP, et al. 2019.. Recommendations for reporting ion mobility mass spectrometry measurements. . Mass Spectrom. Rev. 38::291320
    [Crossref] [Google Scholar]
  81. 81.
    Picache JA, Rose BS, Balinski A, Leaptrot Katrina L, Sherrod SD, et al. 2019.. Collision cross section compendium to annotate and predict multi-omic compound identities. . Chem. Sci. 10::98393
    [Crossref] [Google Scholar]
  82. 82.
    Lee J-Y, Bilbao A, Conant CR, Bloodsworth KJ, Orton DJ, et al. 2021.. AutoCCS: automated collision cross-section calculation software for ion mobility spectrometry–mass spectrometry. . Bioinformatics 37::4193201
    [Crossref] [Google Scholar]
  83. 83.
    Plante P-L, Francovic-Fontaine É, May JC, McLean JA, Baker ES, et al. 2019.. Predicting ion mobility collision cross-sections using a deep neural network: DeepCCS. . Anal. Chem. 91::519199
    [Crossref] [Google Scholar]
  84. 84.
    Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT. 2010.. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. . Anal. Chem. 82::955765
    [Crossref] [Google Scholar]
  85. 85.
    Sans M, Feider CL, Eberlin LS. 2018.. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. . Curr. Opin. Chem. Biol. 42::13846
    [Crossref] [Google Scholar]
  86. 86.
    Mesa Sanchez D, Creger S, Singla V, Kurulugama RT, Fjeldsted J, Laskin J. 2020.. Ion mobility-mass spectrometry imaging workflow. . J. Am. Soc. Mass Spectrom. 31::243742
    [Crossref] [Google Scholar]
  87. 87.
    Rivera ES, Djambazova KV, Neumann EK, Caprioli RM, Spraggins JM. 2020.. Integrating ion mobility and imaging mass spectrometry for comprehensive analysis of biological tissues: a brief review and perspective. . J. Mass Spectrom. 55::e4614
    [Crossref] [Google Scholar]
  88. 88.
    Paglia G, Smith AJ, Astarita G. 2022.. Ion mobility mass spectrometry in the omics era: challenges and opportunities for metabolomics and lipidomics. . Mass Spectrom. Rev. 41::72265
    [Crossref] [Google Scholar]
  89. 89.
    Miquelestorena-Standley E, Jourdan M-L, Collin C, Bouvier C, Larousserie F, et al. 2020.. Effect of decalcification protocols on immunohistochemistry and molecular analyses of bone samples. . Mod. Pathol. 33::150517
    [Crossref] [Google Scholar]
  90. 90.
    Good CJ, Neumann EK, Butrico CE, Cassat JE, Caprioli RM, Spraggins JM. 2022.. High spatial resolution MALDI imaging mass spectrometry of fresh-frozen bone. . Anal. Chem. 94::316572
    [Crossref] [Google Scholar]
  91. 91.
    Colley M, Liang S, Tan C, Trobough KP, Bach SBH, Chun Y-HP. 2020.. Mapping and identification of native proteins of developing teeth in mouse mandibles. . Anal. Chem. 92::763037
    [Crossref] [Google Scholar]
  92. 92.
    Sun N, Wu Y, Nanba K, Sbiera S, Kircher S, et al. 2018.. High-resolution tissue mass spectrometry imaging reveals a refined functional anatomy of the human adult adrenal gland. . Endocrinology 159::151124
    [Crossref] [Google Scholar]
  93. 93.
    Djambazova KV, Klein DR, Migas LG, Neumann EK, Rivera ES, et al. 2020.. Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry. . Anal. Chem. 92::1329097
    [Crossref] [Google Scholar]
  94. 94.
    Djambazova KV, Dufresne M, Migas LG, Kruse ARS, Van de Plas R, et al. 2023.. MALDI TIMS IMS of disialoganglioside isomers—GD1a and GD1b in murine brain tissue. . Anal. Chem. 95::117683
    [Google Scholar]
  95. 95.
    Škrášková K, Claude E, Jones EA, Towers M, Ellis SR, Heeren RMA. 2016.. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation. . Methods 104::6978
    [Crossref] [Google Scholar]
  96. 96.
    Unsihuay D, Yin R, Sanchez DM, Yang M, Li Y, et al. 2021.. High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry. . Anal. Chim. Acta 1186::339085
    [Crossref] [Google Scholar]
  97. 97.
    Hale OJ, Sisley EK, Griffiths RL, Styles IB, Cooper HJ. 2020.. Native LESA TWIMS-MSI: spatial, conformational, and mass analysis of proteins and protein complexes. . J. Am. Soc. Mass Spectrom. 31::87379
    [Crossref] [Google Scholar]
  98. 98.
    Hale OJ, Hughes JW, Cooper HJ. 2021.. Simultaneous spatial, conformational, and mass analysis of intact proteins and protein assemblies by nano-DESI travelling wave ion mobility mass spectrometry imaging. . Int. J. Mass Spectrom. 468::116656
    [Crossref] [Google Scholar]
  99. 99.
    Ellis BM, Fischer CN, Martin LB, Bachmann BO, McLean JA. 2019.. Spatiochemically profiling microbial interactions with membrane scaffolded desorption electrospray ionization-ion mobility-imaging mass spectrometry and unsupervised segmentation. . Anal. Chem. 91::1370311
    [Crossref] [Google Scholar]
  100. 100.
    Grove KJ, Voziyan PA, Spraggins JM, Wang S, Paueksakon P, et al. 2014.. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. . J. Lipid Res. 55::137585
    [Crossref] [Google Scholar]
  101. 101.
    Zemaitis KJ, Veličković D, Kew W, Fort KL, Reinhardt-Szyba M, et al. 2022.. Enhanced spatial mapping of histone proteoforms in human kidney through MALDI-MSI by high-field UHMR-Orbitrap detection. . Anal. Chem. 94::1260413
    [Crossref] [Google Scholar]
  102. 102.
    Yang M, Unsihuay D, Hu H, Nguele Meke F, Qu Z, et al. 2023.. Nano-DESI mass spectrometry imaging of proteoforms in biological tissues with high spatial resolution. . Anal. Chem. 95::521422
    [Crossref] [Google Scholar]
  103. 103.
    Bien T, Perl M, Machmüller AC, Nitsche U, Conrad A, et al. 2020.. MALDI-2 mass spectrometry and immunohistochemistry imaging of Gb3Cer, Gb4Cer, and further glycosphingolipids in human colorectal cancer tissue. . Anal. Chem. 92::7096105
    [Crossref] [Google Scholar]
  104. 104.
    Heijs B, Potthoff A, Soltwisch J, Dreisewerd K. 2020.. MALDI-2 for the enhanced analysis of N-linked glycans by mass spectrometry imaging. . Anal. Chem. 92::1390411
    [Crossref] [Google Scholar]
  105. 105.
    Bien T, Hambleton EA, Dreisewerd K, Soltwisch J. 2021.. Molecular insights into symbiosis—mapping sterols in a marine flatworm-algae-system using high spatial resolution MALDI-2-MS imaging with ion mobility separation. . Anal. Bioanal. Chem. 413::276777
    [Crossref] [Google Scholar]
  106. 106.
    Mackay CLL, Soltwisch J, Heijs B, Smith KW, Cruickshank FL, et al. 2021.. Spatial distribution of isobaric androgens in target tissues using chemical derivatization and MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument. . RSC Adv. 11::3391625
    [Crossref] [Google Scholar]
  107. 107.
    Liu C, Qi K, Yao L, Xiong Y, Zhang X, et al. 2019.. Imaging of polar and nonpolar species using compact desorption electrospray ionization/postphotoionization mass spectrometry. . Anal. Chem. 91::661623
    [Crossref] [Google Scholar]
  108. 108.
    Blaschke CRK, McDowell CT, Black AP, Mehta AS, Angel PM, Drake RR. 2021.. Glycan imaging mass spectrometry: progress in developing clinical diagnostic assays for tissues, biofluids, and cells. . Clinics Lab. Med. 41::24766
    [Crossref] [Google Scholar]
  109. 109.
    McDowell CT, Klamer Z, Hall J, West CA, Wisniewski L, et al. 2021.. Imaging mass spectrometry and lectin analysis of N-linked glycans in carbohydrate antigen defined pancreatic cancer tissues. . Mol. Cell. Proteom. 20::100012
    [Crossref] [Google Scholar]
  110. 110.
    Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH. 2016.. N-glycan MALDI imaging mass spectrometry on formalin-fixed paraffin-embedded tissue enables the delineation of ovarian cancer tissues. . Mol. Cell. Proteom. 15::300316
    [Crossref] [Google Scholar]
  111. 111.
    de Leoz MLA, Young LJT, An HJ, Kronewitter SR, Kim J, et al. 2011.. High-mannose glycans are elevated during breast cancer progression. . Mol. Cell. Proteom. 10::M110.002717
    [Crossref] [Google Scholar]
  112. 112.
    Schürch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L, et al. 2020.. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. . Cell 182::134159.e19
    [Crossref] [Google Scholar]
  113. 113.
    Ginzberg MB, Kafri R, Kirschner M. 2015.. On being the right (cell) size. . Science 348::1245075
    [Crossref] [Google Scholar]
  114. 114.
    Yin R, Kyle J, Burnum-Johnson K, Bloodsworth KJ, Sussel L, et al. 2018.. High spatial resolution imaging of mouse pancreatic islets using nanospray desorption electrospray ionization mass spectrometry. . Anal. Chem. 90::654855
    [Crossref] [Google Scholar]
  115. 115.
    Wang G, Heijs B, Kostidis S, Mahfouz A, Rietjens RGJ, et al. 2022.. Analyzing cell-type-specific dynamics of metabolism in kidney repair. . Nat. Metab. 4::110918
    [Crossref] [Google Scholar]
  116. 116.
    Esselman AB, Patterson NH, Migas LG, Dufresne M, Djambazova KV, et al. 2023.. Microscopy-directed imaging mass spectrometry for rapid high spatial resolution molecular imaging of glomeruli. . J. Am. Soc. Mass Spectrom. 34::130514
    [Crossref] [Google Scholar]
  117. 117.
    Anderson DMG, Messinger JD, Patterson NH, Rivera ES, Kotnala A, et al. 2020.. Lipid landscape of the human retina and supporting tissues revealed by high-resolution imaging mass spectrometry. . J. Am. Soc. Mass Spectrom. 31::242636
    [Crossref] [Google Scholar]
  118. 118.
    Pessotti RdC, Hansen BL, Zacharia VM, Polyakov D, Traxler MF. 2019.. High spatial resolution imaging mass spectrometry reveals chemical heterogeneity across bacterial microcolonies. . Anal. Chem. 91::1481823
    [Crossref] [Google Scholar]
  119. 119.
    Kaya I, Brinet D, Michno W, Başkurt M, Zetterberg H, et al. 2017.. Novel trimodal MALDI imaging mass spectrometry (IMS3) at 10 μm reveals spatial lipid and peptide correlates implicated in Aβ plaque pathology in Alzheimer's disease. . ACS Chem. Neurosci. 8::277890
    [Crossref] [Google Scholar]
  120. 120.
    Rivera ES, Weiss A, Migas LG, Freiberg JA, Djambazova KV, et al. 2022.. Imaging mass spectrometry reveals complex lipid distributions across Staphylococcus aureus biofilm layers. . J. Mass Spectrom. Adv. Clin. Lab 26::3646
    [Crossref] [Google Scholar]
  121. 121.
    Bakker B, Vaes RDW, Aberle MR, Welbers T, Hankemeier T, et al. 2022.. Preparing ductal epithelial organoids for high-spatial-resolution molecular profiling using mass spectrometry imaging. . Nat. Protoc. 17::96279
    [Crossref] [Google Scholar]
  122. 122.
    Strittmatter N, Richards FM, Race AM, Ling S, Sutton D, et al. 2022.. Method to visualize the intratumor distribution and impact of gemcitabine in pancreatic ductal adenocarcinoma by multimodal imaging. . Anal. Chem. 94::1795803
    [Crossref] [Google Scholar]
  123. 123.
    Bien T, Koerfer K, Schwenzfeier J, Dreisewerd K, Soltwisch J. 2022.. Mass spectrometry imaging to explore molecular heterogeneity in cell culture. . PNAS 119::e2114365119
    [Crossref] [Google Scholar]
  124. 124.
    Capolupo L, Khven I, Lederer AR, Mazzeo L, Glousker G, et al. 2022.. Sphingolipids control dermal fibroblast heterogeneity. . Science 376::eabh1623
    [Crossref] [Google Scholar]
  125. 125.
    Patterson NH, Tuck M, Van de Plas R, Caprioli RM. 2018.. Advanced registration and analysis of MALDI imaging mass spectrometry measurements through autofluorescence microscopy. . Anal. Chem. 90::12395403
    [Crossref] [Google Scholar]
  126. 126.
    Van de Plas R, Yang J, Spraggins J, Caprioli RM. 2015.. Image fusion of mass spectrometry and microscopy: a multimodality paradigm for molecular tissue mapping. . Nat. Methods 12::36672
    [Crossref] [Google Scholar]
  127. 127.
    Race AM, Rae A, Vorng J-L, Havelund R, Dexter A, et al. 2020.. Correlative hyperspectral imaging using a dimensionality-reduction-based image fusion method. . Anal. Chem. 92::1097988
    [Crossref] [Google Scholar]
  128. 128.
    Ščupáková K, Terzopoulos V, Jain S, Smeets D, Heeren RMA. 2019.. A patch-based super resolution algorithm for improving image resolution in clinical mass spectrometry. . Sci. Rep. 9::2915
    [Crossref] [Google Scholar]
  129. 129.
    Grélard F, Legland D, Fanuel M, Arnaud B, Foucat L, Rogniaux H. 2021.. Esmraldi: efficient methods for the fusion of mass spectrometry and magnetic resonance images. . BMC Bioinform. 22::56
    [Crossref] [Google Scholar]
  130. 130.
    Borodinov N, Lorenz M, King ST, Ievlev AV, Ovchinnikova OS. 2020.. Toward nanoscale molecular mass spectrometry imaging via physically constrained machine learning on co-registered multimodal data. . npj Comput. Mater. 6::83
    [Crossref] [Google Scholar]
  131. 131.
    Smets T, De Keyser T, Tousseyn T, Waelkens E, De Moor B. 2021.. Correspondence-aware manifold learning for microscopic and spatial omics imaging: a novel data fusion method bringing mass spectrometry imaging to a cellular resolution. . Anal. Chem. 93::345260
    [Crossref] [Google Scholar]
  132. 132.
    Porta Siegel T, Hamm G, Bunch J, Cappell J, Fletcher JS, Schwamborn K. 2018.. Mass spectrometry imaging and integration with other imaging modalities for greater molecular understanding of biological tissues. . Mol. Imaging Biol. 20::888901
    [Crossref] [Google Scholar]
  133. 133.
    Tian X, Xie B, Zou Z, Jiao Y, Lin L-E, et al. 2019.. Multimodal imaging of amyloid plaques: fusion of the single-probe mass spectrometry image and fluorescence microscopy image. . Anal. Chem. 91::1288289
    [Crossref] [Google Scholar]
  134. 134.
    Veselkov K, Sleeman J, Claude E, Vissers JPC, Galea D, et al. 2018.. BASIS: high-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology. . Sci. Rep. 8::4053
    [Crossref] [Google Scholar]
  135. 135.
    Lange F, Agüi-Gonzalez P, Riedel D, Phan NTN, Jakobs S, Rizzoli SO. 2021.. Correlative fluorescence microscopy, transmission electron microscopy and secondary ion mass spectrometry (CLEM-SIMS) for cellular imaging. . PLOS ONE 16::e0240768
    [Crossref] [Google Scholar]
  136. 136.
    Yang E, Kim JH, Tressler CM, Shen XE, Brown DR, et al. 2023.. RaMALDI: enabling simultaneous Raman and MALDI imaging of the same tissue section. . Biosens. Bioelectron. 239::115597
    [Crossref] [Google Scholar]
  137. 137.
    Molenaar MR, Shahraz M, Delafiori J, Eisenbarth A, Ekelöf M, et al. 2022.. Increasing quantitation in spatial single-cell metabolomics by using fluorescence as ground truth. . Front. Mol. Biosci. 9::1021889
    [Crossref] [Google Scholar]
  138. 138.
    Guo D, Föll MC, Bemis KA, Vitek O. 2023.. A noise-robust deep clustering of biomolecular ions improves interpretability of mass spectrometric images. . Bioinformatics 39::btad067
    [Crossref] [Google Scholar]
  139. 139.
    Tideman LEM, Migas LG, Djambazova KV, Patterson NH, Caprioli RM, et al. 2021.. Automated biomarker candidate discovery in imaging mass spectrometry data through spatially localized Shapley additive explanations. . Anal. Chim. Acta 1177::338522
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-anchem-083023-024546
Loading
/content/journals/10.1146/annurev-anchem-083023-024546
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error