1932

Abstract

Neglected tropical diseases (NTDs) affect tropical and subtropical countries and are caused by viruses, bacteria, protozoa, and helminths. These kinds of diseases spread quickly due to the tropical climate and limited access to clean water, sanitation, and health care, which make exposed people more vulnerable. NTDs are reported to be difficult and inefficient to diagnose. As mentioned, most NTDs occur in countries that are socially vulnerable, and the lack of resources and access to modern laboratories and equipment intensify the difficulty of diagnosis and treatment, leading to an increase in the mortality rate. Portable and low-cost microfluidic systems have been widely applied for clinical diagnosis, offering a promising alternative that can meet the needs for fast, affordable, and reliable diagnostic tests in developing countries. This review provides a critical overview of microfluidic devices that have been reported in the literature for the detection of the most common NTDs over the past 5 years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091522-024759
2023-06-14
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091522-024759.html?itemId=/content/journals/10.1146/annurev-anchem-091522-024759&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Utzinger J, Becker SL, Knopp S, Blum J, Neumayr AL et al. 2012. Neglected tropical diseases: diagnosis, clinical management, treatment and control. Swiss Med. Wkly. 142:w13727
    [Google Scholar]
  2. 2.
    Saviola AJ, Negrão F, Yates JR. 2020. Proteomics of select neglected tropical diseases. Annu. Rev. Anal. Chem. 13:315–36
    [Google Scholar]
  3. 3.
    Bharadwaj M, Bengtson M, Golverdingen M, Waling L, Dekker C. 2021. Diagnosing point-of-care diagnostics for neglected tropical diseases. PLOS Negl. Trop. Dis. 15:6e0009405
    [Google Scholar]
  4. 4.
    Deroco PB, Wachholz D Jr., Kubota LT 2021. Recent advances in point-of-care biosensors for the diagnosis of neglected tropical diseases. Sens. Actuators B Chem. 349:130821
    [Google Scholar]
  5. 5.
    Zarei M. 2017. Portable biosensing devices for point-of-care diagnostics: recent developments and applications. Trends Anal. Chem. 91:26–41
    [Google Scholar]
  6. 6.
    Drain PK, Hyle EP, Noubary F, Freedberg KA, Wilson D et al. 2014. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect. Dis. 14:3239–49
    [Google Scholar]
  7. 7.
    Parihar A, Ranjan P, Sanghi SK, Srivastava AK, Khan R. 2020. Point-of-care biosensor-based diagnosis of COVID-19 holds promise to combat current and future pandemics. ACS Appl. Bio Mater. 3:11732643
    [Google Scholar]
  8. 8.
    Rasmi Y, Li X, Khan J, Ozer T, Choi JR. 2021. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal. Bioanal. Chem. 413:164137–59
    [Google Scholar]
  9. 9.
    Wang C, Liu M, Wang Z, Li S, Deng Y, He N. 2021. Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today 37:101092
    [Google Scholar]
  10. 10.
    Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442:7101368–73
    [Google Scholar]
  11. 11.
    Nishat S, Jafry AT, Martinez AW, Awan FR. 2021. Paper-based microfluidics: simplified fabrication and assay methods. Sens. Actuators B Chem. 336:129681
    [Google Scholar]
  12. 12.
    Dittrich PS, Tachikawa K, Manz A. 2006. Micro total analysis systems. Latest advancements and trends. Anal. Chem. 78:123887–908
    [Google Scholar]
  13. 13.
    Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A. 2010. Latest developments in micro total analysis systems. Anal. Chem. 82:124830–47
    [Google Scholar]
  14. 14.
    Choi K, Ng AHC, Fobel R, Wheeler AR. 2012. Digital microfluidics. Annu. Rev. Anal. Chem. 5:413–40
    [Google Scholar]
  15. 15.
    Zhang J, Yan S, Yuan D, Alici G, Nguyen NT et al. 2016. Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16:110–34
    [Google Scholar]
  16. 16.
    Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG et al. 2006. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. PNAS 103:5119272–77
    [Google Scholar]
  17. 17.
    Reyes DR, Iossifidis D, Auroux PA, Manz A. 2002. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74:122623–36
    [Google Scholar]
  18. 18.
    Ren K, Zhou J, Wu H. 2013. Materials for microfluidic chip fabrication. Acc. Chem. Res. 46:112396–406
    [Google Scholar]
  19. 19.
    Tang T, Yuan Y, Yalikun Y, Hosokawa Y, Li M, Tanaka Y. 2021. Glass based micro total analysis systems: materials, fabrication methods, and applications. Sens. Actuators B Chem. 339:129859
    [Google Scholar]
  20. 20.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H et al. 2000. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:127–40
    [Google Scholar]
  21. 21.
    Becker H, Gärtner C. 2000. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21:112–26
    [Google Scholar]
  22. 22.
    Becker H, Gärtner C. 2008. Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 390:189–111
    [Google Scholar]
  23. 23.
    Raj MK, Chakraborty S. 2020. PDMS microfluidics: a mini review. J. Appl. Polym. Sci. 137:2748958
    [Google Scholar]
  24. 24.
    Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM. 2008. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80:103699–707
    [Google Scholar]
  25. 25.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E. 2010. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82:13–10
    [Google Scholar]
  26. 26.
    Thompson BL, Ouyang Y, Duarte GRM, Carrilho E, Krauss ST, Landers JP. 2015. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Nat. Protoc. 10:6875–86
    [Google Scholar]
  27. 27.
    Thompson BL, Gilbert RJ, Mejia M, Shukla N, Haverstick DM et al. 2016. Hematocrit analysis through the use of an inexpensive centrifugal polyester-toner device with finger-to-chip blood loading capability. Anal. Chim. Acta 924:1–8
    [Google Scholar]
  28. 28.
    Morbioli GG, Mazzu-Nascimento T, Stockton AM, Carrilho E. 2017. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs)—a review. Anal. Chim. Acta 970:1–22
    [Google Scholar]
  29. 29.
    Gabriel EFM, Lucca BG, Duarte GRM, Coltro WKT. 2018. Recent advances in toner-based microfluidic devices for bioanalytical applications. Anal. Methods 10:252952–62
    [Google Scholar]
  30. 30.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. 2015. Recent developments in paper-based microfluidic devices. Anal. Chem. 87:119–41
    [Google Scholar]
  31. 31.
    Li Y, Zhang G, Mao X, Yang S, De Ruyck K, Wu Y. 2018. High sensitivity immunoassays for small molecule compounds detection—novel noncompetitive immunoassay designs. Trends Anal. Chem. 103:198–208
    [Google Scholar]
  32. 32.
    Niemz A, Ferguson TM, Boyle DS. 2011. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29:5240–50
    [Google Scholar]
  33. 33.
    Wei TY, Fu Y, Chang KH, Lin KJ, Lu YJ, Cheng CM. 2018. Point-of-care devices using disease biomarkers to diagnose neurodegenerative disorders. Trends Biotechnol. 36:3290–303
    [Google Scholar]
  34. 34.
    Yaeger RG. 1996. Protozoa: structure, classification, growth, and development. Medical Microbiology S Baron Galveston: Univ. Texas Med. Branch. , 4th ed..
    [Google Scholar]
  35. 35.
    Ragavan KV, Kumar S, Swaraj S, Neethirajan S. 2018. Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosens. Bioelectron. 105:188–210
    [Google Scholar]
  36. 36.
    Kolluri N, Klapperich CM, Cabodi M. 2018. Towards lab-on-a-chip diagnostics for malaria elimination. Lab Chip 18:175–94
    [Google Scholar]
  37. 37.
    Dutta G. 2020. Electrochemical biosensors for rapid detection of malaria. Mater. Sci. Energy Technol. 3:150–58
    [Google Scholar]
  38. 38.
    Krampa FD, Aniweh Y, Kanyong P, Awandare GA. 2020. Recent advances in the development of biosensors for malaria diagnosis. Sensors 20:799
    [Google Scholar]
  39. 39.
    Thorne N, Flores-Olazo L, Egoávil-Espejo R, Vela EA, Noel J et al. 2021. Systematic review: microfluidics and Plasmodium. Micromachines 12:1245
    [Google Scholar]
  40. 40.
    Yang X, Chen Z, Miao J, Cui L, Guan W. 2017. High-throughput and label-free parasitemia quantification and stage differentiation for malaria-infected red blood cells. Biosens. Bioelectron. 98:408–14
    [Google Scholar]
  41. 41.
    Kim C, Hoffmann G, Searson PC. 2017. Integrated magnetic bead-quantum dot immunoassay for malaria detection. ACS Sens. 2:6766–72
    [Google Scholar]
  42. 42.
    Rackus DG, De Campos RPS, Chan C, Karcz MM, Seale B et al. 2017. Pre-concentration by liquid intake by paper (P-CLIP): a new technique for large volumes and digital microfluidics. Lab Chip 17:132272–80
    [Google Scholar]
  43. 43.
    Mao R, Ge G, Wang Z, Hao R, Zhang G et al. 2018. A multiplex microfluidic loop-mediated isothermal amplification array for detection of malaria-related parasites and vectors. Acta Trop. 178:186–92
    [Google Scholar]
  44. 44.
    Fraser LA, Kinghorn AB, Dirkzwager RM, Liang S, Cheung YW et al. 2018. A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis. Biosens. Bioelectron. 100:591–96
    [Google Scholar]
  45. 45.
    Choi J, Cho SJ, Kim YT, Shin H. 2019. Development of a film-based immunochromatographic microfluidic device for malaria diagnosis. Biomed. Microdevices 21:86
    [Google Scholar]
  46. 46.
    Pham NM, Rusch S, Temiz Y, Beck HP, Karlen W, Delamarche E. 2019. Immuno-gold silver staining assays on capillary-driven microfluidics for the detection of malaria antigens. Biomed. Microdevices 21:124
    [Google Scholar]
  47. 47.
    Reboud J, Xu G, Garrett A, Adriko M, Yang Z et al. 2019. Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. PNAS 116:114834–42
    [Google Scholar]
  48. 48.
    Malpartida-Cardenas K, Miscourides N, Rodriguez-Manzano J, Yu LS, Moser N et al. 2019. Quantitative and rapid Plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS Lab-on-Chip platform. Biosens. Bioelectron. 145:111678
    [Google Scholar]
  49. 49.
    Ghosh S, Aggarwal K, Vinitha TU, Nguyen T, Han J, Ahn CH. 2020. A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria. Microsystems Nanoeng. 6:5
    [Google Scholar]
  50. 50.
    Ruiz-Vega G, Arias-Alpízar K, de la Serna E, Borgheti-Cardoso LN, Sulleiro E et al. 2020. Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. Biosens. Bioelectron. 150:111925
    [Google Scholar]
  51. 51.
    Lee WS, Kang T, Kwak KJ, Park K, Yi SY et al. 2020. Simple, rapid, and accurate malaria diagnostic platform using microfluidic-based immunoassay of Plasmodium falciparum lactate dehydrogenase. Nano Converg. 7:13
    [Google Scholar]
  52. 52.
    Adiga U, Rai T. 2021. Evaluation of sensitivity, specificity, and cost-effectiveness of paper-based microfluidics for DNA diagnostics of malaria versus nucleic acid test (NAT) versus rapid diagnostic tests (RDT) in resource-limited settings: a protocol. J. Pharm. Res. Int. 33:160–68
    [Google Scholar]
  53. 53.
    Regiart M, Gimenez AM, Marques RF, Soares IS, Bertotti M. 2021. Microfluidic device based on electrodeposited nanoporous gold/carbon nanotubes for Plasmodium vivax detection. Sensors Actuators B Chem. 340:129961
    [Google Scholar]
  54. 54.
    Ferreira E, Lima J, Alves-Balvedi RP, Bonan PR, Medeiros E et al. 2017. Leishmania spp. detection using a surface plasmon resonance biosensor. Proceedings 1:536
    [Google Scholar]
  55. 55.
    Humbert MV, Costa LE, Katis I, Fonseca Ramos F, Sanchéz Machado A et al. 2019. A rapid diagnostic test for human visceral leishmaniasis using novel Leishmania antigens in a laser direct-write lateral flow device. Emerg. Microbes Infect. 8:11178–85
    [Google Scholar]
  56. 56.
    Liberato MS, Mancini RSN, Factori IM, Ferreira FF, De Oliveira VL et al. 2019. Peptide-based assemblies on electrospun polyamide-6/chitosan nanofibers for detecting visceral leishmaniasis antibodies. ACS Appl. Electron. Mater. 1:102086–95
    [Google Scholar]
  57. 57.
    Cordeiro TAR, de Resende MAC, dos Moraes SC, Franco DL, Pereira AC, Ferreira LF. 2021. Electrochemical biosensors for neglected tropical diseases: a review. Talanta 234:122617
    [Google Scholar]
  58. 58.
    Kumar R, Nylén S. 2012. Immunobiology of visceral leishmaniasis. Front. Immunol. 3:251
    [Google Scholar]
  59. 59.
    Marlais T, Bhattacharyya T, Singh OP, Mertens P, Gilleman Q et al. 2018. Visceral leishmaniasis IgG1 rapid monitoring of cure versus relapse, and potential for diagnosis of post kala-azar dermal leishmaniasis. Front. Cell. Infect. Microbiol. 8:427
    [Google Scholar]
  60. 60.
    Bern C, Montgomery SP, Herwaldt BL, Rassi A, Marin-Neto JA et al. 2007. Evaluation and treatment of chagas disease in the United States: a systematic review. J. Am. Med. Assoc. 298:182171–81
    [Google Scholar]
  61. 61.
    Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH et al. 2019. Chagas disease: from discovery to a worldwide health problem. Front. Public Health 7:166
    [Google Scholar]
  62. 62.
    Steverding D. 2014. The history of Chagas disease. Parasites Vectors 7:317
    [Google Scholar]
  63. 63.
    Santos SS, de Araújo RV, Giarolla J, El Seoud O, Ferreira EI. 2020. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. Int. J. Antimicrob. Agents 55:4105906
    [Google Scholar]
  64. 64.
    Janissen R, Sahoo PK, Santos CA, da Silva AM, von Zuben AAG et al. 2017. InP nanowire biosensor with tailored biofunctionalization: ultrasensitive and highly selective disease biomarker detection. Nano Lett. 17:105938–49
    [Google Scholar]
  65. 65.
    Kennedy PGE, Rodgers J. 2019. Clinical and neuropathogenetic aspects of human African trypanosomiasis. Front. Immunol. 10:39
    [Google Scholar]
  66. 66.
    Bottieau E, Clerinx J. 2019. Human African trypanosomiasis: progress and stagnation. Infect. Dis. Clin. North Am. 33:161–77
    [Google Scholar]
  67. 67.
    Dickie EA, Giordani F, Gould MK, Mäser P, Burri C et al. 2020. New drugs for human African trypanosomiasis: a twenty first century success story. Trop. Med. Infect. Dis. 5:129
    [Google Scholar]
  68. 68.
    Voyton CM, Choi J, Qiu Y, Morris MT, Ackroyd PC et al. 2019. A microfluidic-based microscopy platform for continuous interrogation of Trypanosoma brucei during environmental perturbation. Biochemistry 58:875–82
    [Google Scholar]
  69. 69.
    Wan L, Gao J, Chen T, Dong C, Li H et al. 2019. LampPort: a handheld digital microfluidic device for loop-mediated isothermal amplification (LAMP). Biomed. Microdevices 21:19
    [Google Scholar]
  70. 70.
    Puntasecca CJ, King CH, Labeaud AD. 2021. Measuring the global burden of Chikungunya and Zika viruses: a systematic review. PLOS Negl. Trop. Dis. 15:3e0009055
    [Google Scholar]
  71. 71.
    Estrela PFN, Mendes GDM, de Oliveira KG, Bailão AM, Soares CMDA et al. 2019. Ten-minute direct detection of Zika virus in serum samples by RT-LAMP. J. Virol. Methods 271:113675
    [Google Scholar]
  72. 72.
    Paixão ES, Rodrigues LC, Costa MCN, Itaparica M, Barreto F et al. 2018. Chikungunya chronic disease: a systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 112:7301–16
    [Google Scholar]
  73. 73.
    Oliver GF, Carr JM, Smith JR. 2019. Emerging infectious uveitis: Chikungunya, dengue, Zika and Ebola: a review. Clin. Exp. Ophthalmol. 47:3372–80
    [Google Scholar]
  74. 74.
    Harapan H, Michie A, Sasmono RT, Imrie A. 2020. Dengue: a minireview. Viruses 12:8829
    [Google Scholar]
  75. 75.
    Silva MMO, Kikuti M, Anjos RO, Portilho MM, Santos VC et al. 2021. Risk of chronic arthralgia and impact of pain on daily activities in a cohort of patients with chikungunya virus infection from Brazil. Int. J. Infect. Dis. 105:608–16
    [Google Scholar]
  76. 76.
    Bettis AA, L'Azou Jackson M, Yoon I-K, Breugelmans JG, Goios A et al. 2022. The global epidemiology of chikungunya from 1999 to 2020: a systematic literature review to inform the development and introduction of vaccines. PLOS Negl. Trop. Dis. 16:1e0010069
    [Google Scholar]
  77. 77.
    Noorbakhsh F, Abdolmohammadi K, Fatahi Y, Dalili H, Rasoolinejad M et al. 2019. Zika virus infection, basic and clinical aspects: a review article. Iran. J. Public Health 48:120–31
    [Google Scholar]
  78. 78.
    Iswardy E, Tsai TC, Cheng IF, Ho TC, Perng GC, Chang HC. 2017. A bead-based immunofluorescence-assay on a microfluidic dielectrophoresis platform for rapid dengue virus detection. Biosens. Bioelectron. 95:1174–80
    [Google Scholar]
  79. 79.
    Yuzon MK, Kim JH, Kim S. 2019. A novel paper-plastic microfluidic hybrid chip integrated with a lateral flow immunoassay for dengue nonstructural protein 1 antigen detection. Biochip J. 13:3277–87
    [Google Scholar]
  80. 80.
    Mendes GM, Oliveira KG, Borba JC, Oliveira TS, Fiaccadori FS et al. 2019. Molecular diagnostics of dengue by reverse transcription-loop mediated isothermal amplification (RT-LAMP) in disposable polyester-toner microdevices. J. Braz. Chem. Soc. 30:91841–49
    [Google Scholar]
  81. 81.
    Yuan X, Garg S, de Haan K, Fellouse FA, Gopalsamy A et al. 2020. Bead-based multiplex detection of dengue biomarkers in a portable imaging device. Biomed. Opt. Express 11:116154–67
    [Google Scholar]
  82. 82.
    Prabowo MH, Chatchen S, Rijiravanich P, Limkittikul K, Surareungchai W. 2020. Dengue NS1 detection in pediatric serum using microfluidic paper-based analytical devices. Anal. Bioanal. Chem. 412:122915–25
    [Google Scholar]
  83. 83.
    Alejo-Cancho I, Navero-Castillejos J, Peiró-Mestres A, Albarracín R, Barrachina J et al. 2020. Evaluation of a novel microfluidic immunomagnetic agglutination assay method for detection of dengue virus NS1 antigen. PLOS Negl. Trop. Dis. 14:2e0008082
    [Google Scholar]
  84. 84.
    Wongsawat E, Suputtamongkol Y, Assanasaen S, Silpasakorn S, Avirutnan P et al. 2021. Performance of a new microfluidic dengue NS1 immuno-magnetic agglutination assay for the rapid diagnosis of dengue infection in adults. Am. J. Trop. Med. Hyg. 105:3771–76
    [Google Scholar]
  85. 85.
    Maeno H, Wong PF, Abubakar S, Yang M, Sam SS et al. 2021. A 3D microfluidic ELISA for the detection of severe dengue: sensitivity improvement and Vroman effect amelioration by EDC-NHS surface modification. Micromachines 12:1503
    [Google Scholar]
  86. 86.
    Suzuki Y, Morioka K, Shimizu T, Nakajima H, Uchiyama K, Yang M. 2018. Influence of structural dimensions of micro-pillar array in reaction field on sensitivity of enzyme-linked immunosorbent assay (ELISA). Biotechnol. Biotechnol. Equip. 32:2520–29
    [Google Scholar]
  87. 87.
    Suzuki Y, Morioka K, Ohata S, Shimizu T, Nakajima H et al. 2017. Rapid ELISA using a film-stack reaction field with micropillar arrays. Sensors 17:71608
    [Google Scholar]
  88. 88.
    Singh H, Morita T, Suzuki Y, Shimojima M, Le Van A et al. 2015. High sensitivity, high surface area Enzyme-linked Immunosorbent Assay (ELISA). Biomed. Mater. Eng. 26:3–4115–27
    [Google Scholar]
  89. 89.
    Kaarj K, Akarapipad P, Yoon JY. 2018. Simpler, faster, and sensitive zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips. Sci. Rep. 8:112438
    [Google Scholar]
  90. 90.
    Narahari T, Dahmer J, Sklavounos A, Kim T, Satkauskas M et al. 2022. Portable sample processing for molecular assays: application to Zika virus diagnostics. Lab Chip 22:1748–63
    [Google Scholar]
  91. 91.
    Theillet G, Grard G, Galla M, Maisse C, Enguehard M et al. 2019. Detection of chikungunya virus-specific IgM on laser-cut paper-based device using pseudo-particles as capture antigen. J. Med. Virol. 91:6899–910
    [Google Scholar]
  92. 92.
    Murphy CN. 2019. Recent advances in the diagnosis and management of Ebola virus disease. Clin. Microbiol. Newsl. 41:21185–89
    [Google Scholar]
  93. 93.
    Casillas AM, Nyamathi AM, Sosa A, Wilder CL, Sands H. 2003. A current review of Ebola virus: pathogenesis, clinical presentation, and diagnostic assessment. Biol. Res. Nurs. 4:4268–75
    [Google Scholar]
  94. 94.
    Broadhurst MJ, Brooks TJG, Pollock NR. 2016. Diagnosis of Ebola virus disease: past, present, and future. Clin. Microbiol. Rev. 29:4773–93
    [Google Scholar]
  95. 95.
    Kaushik A, Tiwari S, Jayant RD, Marty A, Nair M. 2016. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens. Bioelectron. 75:254–72
    [Google Scholar]
  96. 96.
    Bausch DG, Schwarz L. 2014. Outbreak of Ebola virus disease in Guinea: where ecology meets economy. PLOS Negl. Trop. Dis. 8:78–13
    [Google Scholar]
  97. 97.
    Coarsey CT, Esiobu N, Narayanan R, Pavlovic M, Shafiee H, Asghar W. 2017. Strategies in Ebola virus disease (EVD) diagnostics at the point of care. Crit. Rev. Microbiol. 43:6779–98
    [Google Scholar]
  98. 98.
    Hu J, Jiang YZ, Wu LL, Wu Z, Bi Y et al. 2017. Dual-signal readout nanospheres for rapid point-of-care detection of Ebola virus glycoprotein. Anal. Chem. 89:2413105–11
    [Google Scholar]
  99. 99.
    Magro L, Jacquelin B, Escadafal C, Garneret P, Kwasiborski A et al. 2017. Paper-based RNA detection and multiplexed analysis for Ebola virus diagnostics. Sci. Rep. 7:11347
    [Google Scholar]
  100. 100.
    Brangel P, Sobarzo A, Parolo C, Miller BS, Howes PD et al. 2018. A serological point-of-care test for the detection of IgG antibodies against Ebola virus in human survivors. ACS Nano 12:163–73
    [Google Scholar]
  101. 101.
    Fernández-Carballo BL, McBeth C, McGuiness I, Kalashnikov M, Baum C et al. 2018. Continuous-flow, microfluidic, qRT-PCR system for RNA virus detection. Anal. Bioanal. Chem. 410:133–43
    [Google Scholar]
  102. 102.
    Lin X, Jin X, Xu B, Wang R, Fu R et al. 2019. Fast and parallel detection of four Ebola virus species on a microfluidic-chip-based portable reverse transcription loop-mediated isothermal amplification system. Micromachines 10:777
    [Google Scholar]
  103. 103.
    Qin P, Park M, Alfson KJ, Tamhankar M, Carrion R et al. 2019. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sens. 4:41048–54
    [Google Scholar]
  104. 104.
    Murray LP, Govindan R, Mora AC, Munro JB, Mace CR. 2021. Antibody affinity as a driver of signal generation in a paper-based immunoassay for Ebola virus surveillance. Anal. Bioanal. Chem. 413:143695–706
    [Google Scholar]
  105. 105.
    Schnell MJ, McGettigan JP, Wirblich C, Papaneri A. 2010. The cell biology of rabies virus: using stealth to reach the brain. Nat. Rev. Microbiol. 8:151–61
    [Google Scholar]
  106. 106.
    Bellmann J, Goswami RY, Girardo S, Rein N, Hosseinzadeh Z et al. 2019. A customizable microfluidic platform for medium-throughput modeling of neuromuscular circuits. Biomaterials 225:119537
    [Google Scholar]
  107. 107.
    Sundaramoorthy V, Green D, Locke K, O'Brien CM, Dearnley M, Bingham J 2020. Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLOS Pathog. 16:2e1008343
    [Google Scholar]
  108. 108.
    Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S et al. 2017. Rabies—epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet. Q. 37:1212–51
    [Google Scholar]
  109. 109.
    Bauer US, van de Wijdeven R, Raveendran RN, Fiskum V, Kentros C et al. 2019. Modelling functional human neuromuscular junctions in a differentially-perturbable microfluidic environment, validated through recombinant monosynaptic pseudotyped ΔG-rabies virus tracing. bioRxiv 745513. https://doi.org/10.1101/745513
    [Crossref] [Google Scholar]
  110. 110.
    Sundaramoorthy V, Godde N, Farr RJ, Green D, Haynes JM et al. 2020. Modelling lyssavirus infections in human stem cell-derived neural cultures. Viruses 12:4359
    [Google Scholar]
  111. 111.
    Ghahremani GG, Hahn ME. 2022. Resurgence of intestinal ascariasis among adults: radiological diagnosis and clinical implications. Abdom. Radiol. 47:3915–22
    [Google Scholar]
  112. 112.
    Acosta Soto L, Santísima-Trinidad AB, Bornay-Llinares FJ, Martín González M, Pascual Valero JA, Ros Muñoz M. 2017. Quantitative PCR and digital PCR for detection of Ascaris lumbricoides eggs in reclaimed water. Biomed Res. Int. 2017:7515409
    [Google Scholar]
  113. 113.
    Wang AG, Dong T, Mansour H, Matamoros G, Sanchez AL, Li F. 2018. Paper-based DNA reader for visualized quantification of soil-transmitted helminth infections. ACS Sens. 3:1205–10
    [Google Scholar]
  114. 114.
    Lourens GB, Ferrell DK. 2019. Lymphatic filariasis. Nurs. Clin. North Am. 54:2181–92
    [Google Scholar]
  115. 115.
    Medeiros ZM, Vieira AVB, Xavier AT, Bezerra GSN, Lopes MFC et al. 2022. Lymphatic filariasis: a systematic review on morbidity and its repercussions in countries in the Americas. Int. J. Environ. Res. Public Health 19:316
    [Google Scholar]
  116. 116.
    Phuakrod A, Sripumkhai W, Jeamsaksiri W, Pattamang P, Juntasaro E et al. 2019. Diagnosis of feline filariasis assisted by a novel semi-automated microfluidic device in combination with high resolution melting real-time PCR. Parasites Vectors 12:1159
    [Google Scholar]
  117. 117.
    Loymek S, Phuakrod A, Zaelai K, Sripumkhai W, Vongjaroensanti P, Wongkamchai S. 2021. Investigation on the prevalence of canine microfilaremia in Thailand using a novel microfluidic device in combination with real-time PCR. Vet. Sci. 8:339
    [Google Scholar]
  118. 118.
    Phuakrod A, Sripumkhai W, Jeamsaksiri W, Pattamang P, Loymek S et al. 2021. A miniPCR-duplex lateral flow dipstick platform for rapid and visual diagnosis of lymphatic filariae infection. Diagnostics 11:101855
    [Google Scholar]
  119. 119.
    Maymone MBC, Venkatesh S, Laughter M, Abdat R, Hugh J et al. 2020. Leprosy: treatment and management of complications. J. Am. Acad. Dermatol. 83:117–30
    [Google Scholar]
  120. 120.
    Gurung P, Gomes CM, Vernal S, Leeflang MMG. 2019. Diagnostic accuracy of tests for leprosy: a systematic review and meta-analysis. Clin. Microbiol. Infect. 25:111315–27
    [Google Scholar]
  121. 121.
    Rêgo JL, de Lima Santana N, Machado PRL, Ribeiro-Alves M, de Toledo-Pinto TG et al. 2018. Whole blood profiling of leprosy type 1(reversal) reactions highlights prominence of innate immune response genes. BMC Infect. Dis. 18:1422
    [Google Scholar]
  122. 122.
    Corstjens PLAM, van Hooij A, Fat EMTK, Alam K, Vrolijk LB et al. 2019. Fingerstick test quantifying humoral and cellular biomarkers indicative for M. leprae infection. Clin. Biochem. 66:76–82
    [Google Scholar]
  123. 123.
    da Silva PHL, de Castro KKG, Mendes MA, Leal-Calvo T, Leal JMP et al. 2021. Presence of senescent and memory CD8+ leukocytes as immunocenescence markers in skin lesions of elderly leprosy patients. Front. Immunol. 12:647385
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091522-024759
Loading
/content/journals/10.1146/annurev-anchem-091522-024759
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error