1932

Abstract

Recent developments in ion mobility (IM) technology have expanded the capability to separate and characterize gas-phase ions of biomolecules, especially when paired with mass spectrometry. This next generation of IM technology has been ushered in by creative innovation focused on both instrument architectures and how electric fields are applied. In this review, we focus on the application of high-resolution and multidimensional IM to biomolecular analyses, encompassing the fields of glycomics, lipidomics, peptidomics, and proteomics. We highlight selected research that demonstrates the application of the new IM toolkit to challenging biomolecular systems. Through our review of recently published literature, we outline the current strengths of respective technologies and perspectives for future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091522-031329
2023-06-14
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091522-031329.html?itemId=/content/journals/10.1146/annurev-anchem-091522-031329&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Zeleny J. 1898. VI. On the ratio of the velocities of the two ions produced in gases by Röntgen radiation; and on some related phenomena. Lond. Edinb. Dublin Philos. Mag. J. Sci. 46:278120–54
    [Google Scholar]
  2. 2.
    Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JLP et al. 2019. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom. Rev. 38:3291–320
    [Google Scholar]
  3. 3.
    Revercomb HE, Mason EA. 1975. Theory of plasma chromatography/gaseous electrophoresis. Rev. Anal. Chem. 47:7970–83
    [Google Scholar]
  4. 4.
    Mason EA, McDaniel EW. 1988. Transport Properties of Ions in Gases New York: Wiley
  5. 5.
    Gabelica V, Marklund E. 2018. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 42:51–59
    [Google Scholar]
  6. 6.
    Puton J, Namieśnik J. 2016. Ion mobility spectrometry: current status and application for chemical warfare agents detection. Trends Anal. Chem. 85:10–20
    [Google Scholar]
  7. 7.
    Ewing R. 2001. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:3515–29
    [Google Scholar]
  8. 8.
    Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M. 2011. Ion-mobility spectrometry for environmental analysis. Trends Anal. Chem. 30:5677–90
    [Google Scholar]
  9. 9.
    Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr. 2008. Ion mobility-mass spectrometry. J. Mass Spectrom. 43:11–22
    [Google Scholar]
  10. 10.
    Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. 2015. Review on ion mobility spectrometry. Part 1: current instrumentation. Analyst 140:51376–90
    [Google Scholar]
  11. 11.
    May JC, McLean JA. 2015. Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal. Chem. 87:31422–36
    [Google Scholar]
  12. 12.
    Dodds JN, Baker ES. 2019. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J. Am. Soc. Mass Spectrom. 30:112185–95
    [Google Scholar]
  13. 13.
    Eldrid C, Thalassinos K. 2020. Developments in tandem ion mobility mass spectrometry. Biochem. Soc. Trans. 48:62457–66
    [Google Scholar]
  14. 14.
    Hoaglund CS, Valentine SJ, Sporleder CR, Reilly JP, Clemmer DE. 1998. Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70:112236–42
    [Google Scholar]
  15. 15.
    Wittmer D, Chen YH, Luckenbill BK, Hill HH Jr. 1994. Electrospray ionization ion mobility spectrometry. Anal. Chem. 66:142348–55
    [Google Scholar]
  16. 16.
    Clemmer DE, Hudgins RR, Jarrold MF. 1995. Naked protein conformations: cytochrome c in the gas phase. J. Am. Chem. Soc. 117:4010141–42
    [Google Scholar]
  17. 17.
    Wyttenbach T, von Helden G, Bowers MT. 1996. Gas-phase conformation of biological molecules: bradykinin. J. Am. Chem. Soc. 118:358355–64
    [Google Scholar]
  18. 18.
    Shelimov KB, Clemmer DE, Hudgins RR, Jarrold MF. 1997. Protein structure in vacuo: gas-phase conformations of BPTI and cytochrome c. J. Am. Chem. Soc. 119:92240–48
    [Google Scholar]
  19. 19.
    Liu Y, Clemmer DE. 1997. Characterizing oligosaccharides using injected-ion mobility/mass spectrometry. Anal. Chem. 69:132504–9
    [Google Scholar]
  20. 20.
    Wu C, Siems WF, Asbury GR, Hill HH Jr. 1998. Electrospray ionization high-resolution ion mobility spectrometry–mass spectrometry. Anal. Chem. 70:234929–38
    [Google Scholar]
  21. 21.
    Kirk AT, Bohnhorst A, Raddatz C-R, Allers M, Zimmermann S 2019. Ultra-high-resolution ion mobility spectrometry—current instrumentation, limitations, and future developments. Anal. Bioanal. Chem. 411:246229–46
    [Google Scholar]
  22. 22.
    Gillig KJ, Ruotolo BT, Stone EG, Russell DH. 2004. An electrostatic focusing ion guide for ion mobility-mass spectrometry. Int. J. Mass Spectrom. 239:143–49
    [Google Scholar]
  23. 23.
    Silveira JA, Gamage CM, Blase RC, Russell DH. 2010. Gas-phase ion dynamics in a periodic-focusing DC ion guide. Int. J. Mass Spectrom. 296:1–336–42
    [Google Scholar]
  24. 24.
    Allen SJ, Bush MF. 2016. Radio-frequency (rf) confinement in ion mobility spectrometry: apparent mobilities and effective temperatures. J. Am. Soc. Mass Spectrom. 27:122054–63
    [Google Scholar]
  25. 25.
    Koeniger SL, Merenbloom SI, Valentine SJ, Jarrold MF, Udseth HR et al. 2006. An IMS−IMS analogue of MS−MS. Anal. Chem. 78:124161–74
    [Google Scholar]
  26. 26.
    Merenbloom SI, Koeniger SL, Valentine SJ, Plasencia MD, Clemmer DE. 2006. IMS–IMS and IMS–IMS–IMS/MS for separating peptide and protein fragment ions. Anal. Chem. 78:82802–9
    [Google Scholar]
  27. 27.
    Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. 2004. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18:202401–14
    [Google Scholar]
  28. 28.
    Ridgeway ME, Lubeck M, Jordens J, Mann M, Park MA. 2018. Trapped ion mobility spectrometry: a short review. Int. J. Mass Spectrom. 425:22–35
    [Google Scholar]
  29. 29.
    Fernandez-Lima FA, Kaplan DA, Park MA. 2011. Note: integration of trapped ion mobility spectrometry with mass spectrometry. Rev. Sci. Instrum. 82:12126106
    [Google Scholar]
  30. 30.
    Webb IK, Garimella SVB, Tolmachev AV, Chen T-C, Zhang X et al. 2014. Experimental evaluation and optimization of structures for lossless ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry. Anal. Chem. 86:189169–76
    [Google Scholar]
  31. 31.
    Hamid AM, Ibrahim YM, Garimella SVB, Webb IK, Deng L et al. 2015. Characterization of traveling wave ion mobility separations in structures for lossless ion manipulations. Anal. Chem. 87:2211301–8
    [Google Scholar]
  32. 32.
    Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K et al. 2019. A cyclic ion mobility-mass spectrometry system. Anal. Chem. 91:138564–73
    [Google Scholar]
  33. 33.
    Baker ES, Clowers BH, Li F, Tang K, Tolmachev AV et al. 2007. Ion mobility spectrometry—mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18:71176–87
    [Google Scholar]
  34. 34.
    Zhong Y, Hyung S-J, Ruotolo BT. 2011. Characterizing the resolution and accuracy of a second-generation traveling-wave ion mobility separator for biomolecular ions. Analyst 136:173534–41
    [Google Scholar]
  35. 35.
    Davidson KL, Bush MF. 2017. Effects of drift gas selection on the ambient-temperature, ion mobility mass spectrometry analysis of amino acids. Anal. Chem. 89:32017–23
    [Google Scholar]
  36. 36.
    Campuzano IDG, Giles K. 2019. Historical, current and future developments of travelling wave ion mobility mass spectrometry: a personal perspective. Trends Anal. Chem. 120:115620
    [Google Scholar]
  37. 37.
    Jeanne Dit Fouque K, Fernandez-Lima F 2019. Recent advances in biological separations using trapped ion mobility spectrometry–mass spectrometry. Trends Anal. Chem. 116:308–15
    [Google Scholar]
  38. 38.
    Guevremont R. 2004. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J. Chromatogr. A 1058:1–23–19
    [Google Scholar]
  39. 39.
    Merenbloom SI, Glaskin RS, Henson ZB, Clemmer DE. 2009. High-resolution ion cyclotron mobility spectrometry. Anal. Chem. 81:41482–87
    [Google Scholar]
  40. 40.
    Kurulugama RT, Nachtigall FM, Lee S, Valentine SJ, Clemmer DE. 2009. Overtone mobility spectrometry: part 1. Experimental observations. J. Am. Soc. Mass Spectrom. 20:5729–37
    [Google Scholar]
  41. 41.
    Gamero-Castaño M, Fernández de la Mora J. 2000. Mechanisms of electrospray ionization of singly and multiply charged salt clusters. Anal. Chim. Acta 406:167–91
    [Google Scholar]
  42. 42.
    Flagan RC. 2014. Continuous-flow differential mobility analysis of nanoparticles and biomolecules. Annu. Rev. Chem. Biomol. Eng. 5:255–79
    [Google Scholar]
  43. 43.
    Tolmachev AV, Webb IK, Ibrahim YM, Garimella SVB, Zhang X et al. 2014. Characterization of ion dynamics in structures for lossless ion manipulations. Anal. Chem. 86:189162–68
    [Google Scholar]
  44. 44.
    Garimella SVB, Ibrahim YM, Webb IK, Tolmachev AV, Zhang X et al. 2014. Simulation of electric potentials and ion motion in planar electrode structures for lossless ion manipulations (SLIM). J. Am. Soc. Mass Spectrom. 25:111890–96
    [Google Scholar]
  45. 45.
    Webb IK, Garimella SVB, Tolmachev AV, Chen T-C, Zhang X et al. 2014. Mobility-resolved ion selection in uniform drift field ion mobility spectrometry/mass spectrometry: dynamic switching in structures for lossless ion manipulations. Anal. Chem. 86:199632–37
    [Google Scholar]
  46. 46.
    Zhang X, Garimella SVB, Prost SA, Webb IK, Chen T-C et al. 2015. Ion trapping, storage, and ejection in structures for lossless ion manipulations. Anal. Chem. 87:126010–16
    [Google Scholar]
  47. 47.
    Chen T-C, Ibrahim YM, Webb IK, Garimella SVB, Zhang X et al. 2016. Mobility-selected ion trapping and enrichment using structures for lossless ion manipulations. Anal. Chem. 88:31728–33
    [Google Scholar]
  48. 48.
    Allen SJ, Eaton RM, Bush MF. 2016. Analysis of native-like ions using structures for lossless ion manipulations. Anal. Chem. 88:189118–26
    [Google Scholar]
  49. 49.
    Eaton RM, Allen SJ, Bush MF. 2019. Principles of ion selection, alignment, and focusing in tandem ion mobility implemented using structures for lossless ion manipulations (SLIM). J. Am. Soc. Mass Spectrom. 30:61115–25
    [Google Scholar]
  50. 50.
    Allen SJ, Eaton RM, Bush MF. 2017. Structural dynamics of native-like ions in the gas phase: results from tandem ion mobility of cytochrome c. Anal. Chem. 89:147527–34
    [Google Scholar]
  51. 51.
    Hamid AM, Garimella SVB, Ibrahim YM, Deng L, Zheng X et al. 2016. Achieving high resolution ion mobility separations using traveling waves in compact multiturn structures for lossless ion manipulations. Anal. Chem. 88:188949–56
    [Google Scholar]
  52. 52.
    Deng L, Ibrahim YM, Hamid AM, Garimella SVB, Webb IK et al. 2016. Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Anal. Chem. 88:188957–64
    [Google Scholar]
  53. 53.
    Deng L, Webb IK, Garimella SVB, Hamid AM, Zheng X et al. 2017. Serpentine ultralong path with extended routing (SUPER) high resolution traveling wave ion mobility-MS using structures for lossless ion manipulations. Anal. Chem. 89:84628–34
    [Google Scholar]
  54. 54.
    Garimella SVB, Nagy G, Ibrahim YM, Smith RD. 2019. Opening new paths for biological applications of ion mobility–mass spectrometry using structures for lossless ion manipulations. Trends Anal. Chem. 116:300–7
    [Google Scholar]
  55. 55.
    Deng L, Ibrahim YM, Baker ES, Aly NA, Hamid AM et al. 2016. Ion mobility separations of isomers based upon long path length structures for lossless ion manipulations combined with mass spectrometry. ChemistrySelect 1:102396–99
    [Google Scholar]
  56. 56.
    Nagy G, Attah IK, Conant CR, Liu W, Garimella SVB et al. 2020. Rapid and simultaneous characterization of drug conjugation in heavy and light chains of a monoclonal antibody revealed by high-resolution ion mobility separations in SLIM. Anal. Chem. 92:75004–12
    [Google Scholar]
  57. 57.
    Deng L, Garimella SVB, Hamid AM, Webb IK, Attah IK et al. 2017. Compression ratio ion mobility programming (CRIMP) accumulation and compression of billions of ions for ion mobility-mass spectrometry using traveling waves in structures for lossless ion manipulations (SLIM). Anal. Chem. 89:126432–39
    [Google Scholar]
  58. 58.
    Nagy G, Kedia K, Attah IK, Garimella SVB, Ibrahim YM et al. 2019. Separation of β-amyloid tryptic peptide species with isomerized and racemized l-aspartic residues with ion mobility in structures for lossless ion manipulations. Anal. Chem. 91:74374–80
    [Google Scholar]
  59. 59.
    Hollerbach AL, Li A, Prabhakaran A, Nagy G, Harrilal CP et al. 2020. Ultra-high-resolution ion mobility separations over extended path lengths and mobility ranges achieved using a multilevel structures for lossless ion manipulations module. Anal. Chem. 92:117972–79
    [Google Scholar]
  60. 60.
    Hollerbach AL, Norheim RV, Kwantwi-Barima P, Smith RD, Ibrahim YM. 2022. A miniature multilevel structures for lossless ion manipulations ion mobility spectrometer with wide mobility range separation capabilities. Anal. Chem. 94:42180–88
    [Google Scholar]
  61. 61.
    May JC, Leaptrot KL, Rose BS, Moser KLW, Deng L et al. 2021. Resolving power and collision cross section measurement accuracy of a prototype high-resolution ion mobility platform incorporating structures for lossless ion manipulation. J. Am. Soc. Mass Spectrom. 32:41126–37
    [Google Scholar]
  62. 62.
    Wormwood Moser KL, Van Aken G, DeBord D, Hatcher NG, Maxon L et al. 2021. High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics. Anal. Chim. Acta 1146:77–87
    [Google Scholar]
  63. 63.
    Arndt JR, Wormwood Moser KL, Van Aken G, Doyle RM, Talamantes T et al. 2021. High-resolution ion-mobility-enabled peptide mapping for high-throughput critical quality attribute monitoring. J. Am. Soc. Mass Spectrom. 32:82019–32
    [Google Scholar]
  64. 64.
    Ben Faleh A, Warnke S, Rizzo TR. 2019. Combining ultrahigh-resolution ion-mobility spectrometry with cryogenic infrared spectroscopy for the analysis of glycan mixtures. Anal. Chem. 91:74876–82
    [Google Scholar]
  65. 65.
    Warnke S, Ben Faleh A, Scutelnic V, Rizzo TR 2019. Separation and identification of glycan anomers using ultrahigh-resolution ion-mobility spectrometry and cryogenic ion spectroscopy. J. Am. Soc. Mass Spectrom. 30:112204–11
    [Google Scholar]
  66. 66.
    Abikhodr AH, Yatsyna V, Ben Faleh A, Warnke S, Rizzo TR 2021. Identifying mixtures of isomeric human milk oligosaccharides by the decomposition of IR spectral fingerprints. Anal. Chem. 93:4414730–36
    [Google Scholar]
  67. 67.
    Warnke S, Ben Faleh A, Rizzo TR 2021. Toward high-throughput cryogenic IR fingerprinting of mobility-separated glycan isomers. ACS Meas. Sci. Au 1:3157–64
    [Google Scholar]
  68. 68.
    Dyukova I, Ben Faleh A, Warnke S, Yalovenko N, Yatsyna V et al. 2021. A new approach for identifying positional isomers of glycans cleaved from monoclonal antibodies. Analyst 146:154789–95
    [Google Scholar]
  69. 69.
    Bansal P, Yatsyna V, AbiKhodr AH, Warnke S, Ben Faleh A et al. 2020. Using SLIM-based IMS-IMS together with cryogenic infrared spectroscopy for glycan analysis. Anal. Chem. 92:139079–85
    [Google Scholar]
  70. 70.
    Bansal P, Ben Faleh A, Warnke S, Rizzo TR 2022. Identification of N-glycan positional isomers by combining IMS and vibrational fingerprinting of structurally determinant CID fragments. Analyst 147:4704–11
    [Google Scholar]
  71. 71.
    Pellegrinelli RP, Yue L, Carrascosa E, Ben Faleh A, Warnke S et al. 2022. A new strategy coupling ion-mobility-selective CID and cryogenic IR spectroscopy to identify glycan anomers. J. Am. Soc. Mass Spectrom. 33:5859–64
    [Google Scholar]
  72. 72.
    Ben Faleh A, Warnke S, Bansal P, Pellegrinelli RP, Dyukova I, Rizzo TR. 2022. Identification of mobility-resolved N-glycan isomers. Anal. Chem. 94:2810101–8
    [Google Scholar]
  73. 73.
    Pringle SD, Giles K, Wildgoose JL, Williams JP, Slade SE et al. 2007. An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. Int. J. Mass Spectrom. 261:11–12
    [Google Scholar]
  74. 74.
    Giles K, Williams JP, Campuzano I. 2011. Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25:111559–66
    [Google Scholar]
  75. 75.
    Higton D, Palmer ME, Vissers JPC, Mullin LG, Plumb RS, Wilson ID. 2021. Use of cyclic ion mobility spectrometry (cIM)-mass spectrometry to study the intramolecular transacylation of diclofenac acyl glucuronide. Anal. Chem. 93:207413–21
    [Google Scholar]
  76. 76.
    Peterson TL, Nagy G. 2021. Rapid cyclic ion mobility separations of monosaccharide building blocks as a first step toward a high-throughput reaction screening platform for carbohydrate syntheses. RSC Adv 11:6339742–47
    [Google Scholar]
  77. 77.
    Cooper-Shepherd DA, Olivos HJ, Wu Z, Palmer ME. 2022. Exploiting self-association to evaluate enantiomeric composition by cyclic ion mobility-mass spectrometry. Anal. Chem. 94:238441–48
    [Google Scholar]
  78. 78.
    Williamson DL, Bergman AE, Nagy G. 2021. Investigating the structure of α/β carbohydrate linkage isomers as a function of group I metal adduction and degree of polymerization as revealed by cyclic ion mobility separations. J. Am. Soc. Mass Spectrom. 32:102573–82
    [Google Scholar]
  79. 79.
    Favreau B, Yeni O, Ollivier S, Boustie J, Dévéhat FL et al. 2021. Synthesis of an exhaustive library of naturally occurring Galf-Manp and Galp-Manp disaccharides. Toward fingerprinting according to ring size by advanced mass spectrometry-based IM-MS and IRMPD. J. Org. Chem. 86:96390–405
    [Google Scholar]
  80. 80.
    Ropartz D, Fanuel M, Ollivier S, Lissarrague A, Benkoulouche M et al. 2022. Combination of high-resolution multistage ion mobility and tandem MS with high energy of activation to resolve the structure of complex chemoenzymatically synthesized glycans. Anal. Chem. 94:42279–87
    [Google Scholar]
  81. 81.
    Sanda M, Morrison L, Goldman R. 2021. N- and O-glycosylation of the SARS-CoV-2 spike protein. Anal. Chem. 93:42003–9
    [Google Scholar]
  82. 82.
    Ujma J, Ropartz D, Giles K, Richardson K, Langridge D et al. 2019. Cyclic ion mobility mass spectrometry distinguishes anomers and open-ring forms of pentasaccharides. J. Am. Soc. Mass Spectrom. 30:61028–37
    [Google Scholar]
  83. 83.
    Tomczyk N, Giles K, Richardson K, Ujma J, Palmer M et al. 2021. Mapping isomeric peptides derived from biopharmaceuticals using high-resolution ion mobility mass spectrometry. Anal. Chem. 93:4916379–84
    [Google Scholar]
  84. 84.
    Kenderdine T, Nemati R, Baker A, Palmer M, Ujma J et al. 2020. High-resolution ion mobility spectrometry-mass spectrometry of isomeric/isobaric ribonucleotide variants. J. Mass Spectrom. 55:2e4465
    [Google Scholar]
  85. 85.
    McKenna KR, Li L, Baker AG, Ujma J, Krishnamurthy R et al. 2019. Carbohydrate isomer resolution via multi-site derivatization cyclic ion mobility-mass spectrometry. Analyst 144:247220–26
    [Google Scholar]
  86. 86.
    Ollivier S, Tarquis L, Fanuel M, Li A, Durand J et al. 2021. Anomeric retention of carbohydrates in multistage cyclic ion mobility (IMSn): de novo structural elucidation of enzymatically produced mannosides. Anal. Chem. 93:156254–61
    [Google Scholar]
  87. 87.
    Peterson TL, Nagy G. 2021. Toward sequencing the human milk glycome: high-resolution cyclic ion mobility separations of core human milk oligosaccharide building blocks. Anal. Chem. 93:279397–407
    [Google Scholar]
  88. 88.
    Ollivier S, Fanuel M, Rogniaux H, Ropartz D. 2021. Molecular networking of high-resolution tandem ion mobility spectra: a structurally relevant way of organizing data in glycomics?. Anal. Chem. 93:3110871–78
    [Google Scholar]
  89. 89.
    Ropartz D, Fanuel M, Ujma J, Palmer M, Giles K, Rogniaux H 2019. Structure determination of large isomeric oligosaccharides of natural origin through multipass and multistage cyclic traveling-wave ion mobility mass spectrometry. Anal. Chem. 91:1812030–37
    [Google Scholar]
  90. 90.
    Oganesyan I, Hajduk J, Harrison JA, Marchand A, Czar MF, Zenobi R. 2022. Exploring gas-phase MS methodologies for structural elucidation of branched N-glycan isomers. Anal. Chem. 94:2910531–39
    [Google Scholar]
  91. 91.
    Deslignière E, Ollivier S, Ehkirch A, Martelet A, Ropartz D et al. 2022. Combination of IM-based approaches to unravel the coexistence of two conformers on a therapeutic multispecific mAb. Anal. Chem. 94:227981–89
    [Google Scholar]
  92. 92.
    Eldrid C, Ben-Younis A, Ujma J, Britt H, Cragnolini T et al. 2021. Cyclic ion mobility-collision activation experiments elucidate protein behavior in the gas phase. J. Am. Soc. Mass Spectrom. 32:61545–52
    [Google Scholar]
  93. 93.
    Sisley EK, Ujma J, Palmer M, Giles K, Fernandez-Lima FA, Cooper HJ 2020. LESA cyclic ion mobility mass spectrometry of intact proteins from thin tissue sections. Anal. Chem. 92:96321–26
    [Google Scholar]
  94. 94.
    Shaw JB, Cooper-Shepherd DA, Hewitt D, Wildgoose JL, Beckman JS et al. 2022. Enhanced top-down protein characterization with electron capture dissociation and cyclic ion mobility spectrometry. Anal. Chem. 94:93888–96
    [Google Scholar]
  95. 95.
    Snyder DT, Jones BJ, Lin Y-F, Cooper-Shepherd DA, Hewitt D et al. 2021. Surface-induced dissociation of protein complexes on a cyclic ion mobility spectrometer. Analyst 146:226861–73
    [Google Scholar]
  96. 96.
    Riches E, Palmer ME. 2020. Application of a novel cyclic ion mobility-mass spectrometer to the analysis of synthetic polymers: a preliminary evaluation. Rapid Commun. Mass Spectrom. 34:S2e8710
    [Google Scholar]
  97. 97.
    Rüger CP, Le Maître J, Maillard J, Riches E, Palmer M et al. 2021. Exploring complex mixtures by cyclic ion mobility high-resolution mass spectrometry: application toward petroleum. Anal. Chem. 93:145872–81
    [Google Scholar]
  98. 98.
    Cho E, Riches E, Palmer M, Giles K, Ujma J, Kim S 2019. Isolation of crude oil peaks differing by m/z ∼0.1 via tandem mass spectrometry using a cyclic ion mobility-mass spectrometer. Anal. Chem. 91:2214268–74
    [Google Scholar]
  99. 99.
    Deslignière E, Botzanowski T, Diemer H, Cooper-Shepherd DA, Wagner-Rousset E et al. 2021. High-resolution IMS-MS to assign additional disulfide bridge pairing in complementarity-determining regions of an IgG4 monoclonal antibody. J. Am. Soc. Mass Spectrom. 32:102505–12
    [Google Scholar]
  100. 100.
    Eldrid C, Ujma J, Kalfas S, Tomczyk N, Giles K et al. 2019. Gas phase stability of protein ions in a cyclic ion mobility spectrometry traveling wave device. Anal. Chem. 91:127554–61
    [Google Scholar]
  101. 101.
    Harrison JA, Pruška A, Bittner P, Muck A, Cooper-Shepherd DA, Zenobi R. 2022. Advancing cyclic ion mobility mass spectrometry methods for studying biomolecules: toward the conformational dynamics of mega Dalton protein aggregates. Anal. Chem. 94:3612435–43
    [Google Scholar]
  102. 102.
    Michelmann K, Silveira JA, Ridgeway ME, Park MA. 2015. Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26:114–24
    [Google Scholar]
  103. 103.
    Hernandez DR, DeBord JD, Ridgeway ME, Kaplan DA, Park MA, Fernandez-Lima F. 2014. Ion dynamics in a trapped ion mobility spectrometer. Analyst 139:81913–21
    [Google Scholar]
  104. 104.
    Adams KJ, Montero D, Aga D, Fernandez-Lima F. 2016. Isomer separation of polybrominated diphenyl ether metabolites using nanoESI-TIMS-MS. Int. J. Ion Mobil. Spectrom. 19:2–369–76
    [Google Scholar]
  105. 105.
    Ridgeway ME, Silveira JA, Meier JE, Park MA. 2015. Microheterogeneity within conformational states of ubiquitin revealed by high resolution trapped ion mobility spectrometry. Analyst 140:206964–72
    [Google Scholar]
  106. 106.
    Vasilopoulou CG, Sulek K, Brunner A-D, Meitei NS, Schweiger-Hufnagel U et al. 2020. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat. Commun. 11:1331
    [Google Scholar]
  107. 107.
    Fincher JA, Djambazova KV, Klein DR, Dufresne M, Migas LG et al. 2021. Molecular mapping of neutral lipids using silicon nanopost arrays and TIMS imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 32:102519–27
    [Google Scholar]
  108. 108.
    Helmer PO, Nordhorn ID, Korf A, Behrens A, Buchholz R et al. 2021. Complementing matrix-assisted laser desorption ionization-mass spectrometry imaging with chromatography data for improved assignment of isobaric and isomeric phospholipids utilizing trapped ion mobility-mass spectrometry. Anal. Chem. 93:42135–43
    [Google Scholar]
  109. 109.
    Tose LV, Ramirez CE, Michalkova V, Nouzova M, Noriega FG, Fernandez-Lima F. 2022. Coupling stable isotope labeling and liquid chromatography-trapped ion mobility spectrometry-time-of-flight-tandem mass spectrometry for de novo mosquito ovarian lipid studies. Anal. Chem. 94:166139–45
    [Google Scholar]
  110. 110.
    Gao Z, Li L, Chen W, Ma Z, Li Y et al. 2021. Distinguishment of glycan isomers by trapped ion mobility spectrometry. Anal. Chem. 93:269209–17
    [Google Scholar]
  111. 111.
    Przybylski C, Bonnet V. 2021. Discrimination of isomeric trisaccharides and their relative quantification in honeys using trapped ion mobility spectrometry. Food Chem 341:128182
    [Google Scholar]
  112. 112.
    Ogata K, Ishihama Y. 2020. Extending the separation space with trapped ion mobility spectrometry improves the accuracy of isobaric tag-based quantitation in proteomic LC/MS/MS. Anal. Chem. 92:128037–40
    [Google Scholar]
  113. 113.
    Charkow J, Röst HL. 2021. Trapped ion mobility spectrometry reduces spectral complexity in mass spectrometry-based proteomics. Anal. Chem. 93:5016751–58
    [Google Scholar]
  114. 114.
    Borotto NB, Graham KA. 2021. Fragmentation and mobility separation of peptide and protein ions in a trapped-ion mobility device. Anal. Chem. 93:299959–64
    [Google Scholar]
  115. 115.
    Ihling CH, Piersimoni L, Kipping M, Sinz A. 2021. Cross-linking/mass spectrometry combined with ion mobility on a timsTOF Pro instrument for structural proteomics. Anal. Chem. 93:3311442–50
    [Google Scholar]
  116. 116.
    Larson EJ, Roberts DS, Melby JA, Buck KM, Zhu Y et al. 2021. High-throughput multi-attribute analysis of antibody-drug conjugates enabled by trapped ion mobility spectrometry and top-down mass spectrometry. Anal. Chem. 93:2910013–21
    [Google Scholar]
  117. 117.
    Brunner A, Thielert M, Vasilopoulou C, Ammar C, Coscia F et al. 2022. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol. Syst. Biol. 18:3e10798
    [Google Scholar]
  118. 118.
    Panczyk EM, Snyder DT, Ridgeway ME, Somogyi Á, Park MA, Wysocki VH. 2021. Surface-induced dissociation of protein complexes selected by trapped ion mobility spectrometry. Anal. Chem. 93:135513–20
    [Google Scholar]
  119. 119.
    Jeanne Dit Fouque K, Kaplan D, Voinov VG, Holck FHV, Jensen ON, Fernandez-Lima F 2021. Proteoform differentiation using tandem trapped ion mobility, electron capture dissociation, and ToF mass spectrometry. Anal. Chem. 93:279575–82
    [Google Scholar]
  120. 120.
    Miller SA, Jeanne Dit Fouque K, Ridgeway ME, Park MA, Fernandez-Lima F 2022. Trapped ion mobility spectrometry, ultraviolet photodissociation, and time-of-flight mass spectrometry for gas-phase peptide isobars/isomers/conformers discrimination. J. Am. Soc. Mass Spectrom. 33:71267–75
    [Google Scholar]
  121. 121.
    Wei J, Tang Y, Ridgeway ME, Park MA, Costello CE, Lin C. 2020. Accurate identification of isomeric glycans by trapped ion mobility spectrometry-electronic excitation dissociation tandem mass spectrometry. Anal. Chem. 92:1913211–20
    [Google Scholar]
  122. 122.
    Benigni P, Porter J, Ridgeway ME, Park MA, Fernandez-Lima F. 2018. Increasing analytical separation and duty cycle with nonlinear analytical mobility scan functions in TIMS-FT-ICR MS. Anal. Chem. 90:42446–50
    [Google Scholar]
  123. 123.
    Jeanne Dit Fouque K, Garabedian A, Leng F, Tse-Dinh Y-C, Ridgeway ME et al. 2021. Trapped ion mobility spectrometry of native macromolecular assemblies. Anal. Chem. 93:52933–41
    [Google Scholar]
  124. 124.
    Jeanne Dit Fouque K, Sipe SN, Garabedian A, Mejia G, Su L et al. 2022. Exploring the conformational and binding dynamics of HMGA2·DNA complexes using trapped ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 33:71103–12
    [Google Scholar]
  125. 125.
    Liu FC, Ridgeway ME, Park MA, Bleiholder C. 2018. Tandem trapped ion mobility spectrometry. Analyst 143:102249–58
    [Google Scholar]
  126. 126.
    Liu FC, Ridgeway ME, Park MA, Bleiholder C. 2022. Tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS): a promising analytical method for investigating heterogenous samples. Analyst 147:112317–37
    [Google Scholar]
  127. 127.
    Liu FC, Kirk SR, Caldwell KA, Pedrete T, Meier F, Bleiholder C. 2022. Tandem trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) reveals sequence-specific determinants of top-down protein fragment ion cross sections. Anal. Chem. 94:238146–55
    [Google Scholar]
  128. 128.
    Liu FC, Ridgeway ME, Winfred JSRV, Polfer NC, Lee J et al. 2021. Tandem-trapped ion mobility spectrometry/mass spectrometry coupled with ultraviolet photodissociation. Rapid Commun. Mass Spectrom. 35:22e9192
    [Google Scholar]
  129. 129.
    Fernandez-Lima F, Kaplan DA, Suetering J, Park MA. 2011. Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 14:2–393–98
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091522-031329
Loading
/content/journals/10.1146/annurev-anchem-091522-031329
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error