1932

Abstract

Despite the fact that oil chemistry and oils spills have been studied for many years, there are still emerging techniques and unknown processes to be explored. The 2010 Deepwater Horizon oil spill in the Gulf of Mexico resulted in a revival of oil spill research across a wide range of fields. These studies provided many new insights, but unanswered questions remain. Over 1,000 journal articles related to the Deepwater Horizon spill are indexed by the Chemical Abstract Service. Numerous ecological, human health, and organismal studies were published. Analytical tools applied to the spill include mass spectrometry, chromatography, and optical spectroscopy. Owing to the large scale of studies, this review focuses on three emerging areas that have been explored but remain underutilized in oil spill characterization: excitation-emission matrix spectroscopy, black carbon analysis, and trace metal analysis using inductively coupled plasma mass spectrometry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091522-110825
2023-06-14
2025-04-30
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091522-110825.html?itemId=/content/journals/10.1146/annurev-anchem-091522-110825&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Keizer P, Gordon D Jr. 1973. Detection of trace amounts of oil in sea water by fluorescence spectroscopy. J. Fish. Board Can. 30:1039–46
    [Google Scholar]
  2. 2.
    Bugden JBC, Yeung CW, Kepkay PE, Lee K. 2008. Application of ultraviolet fluorometry and excitation–emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater. Mar. Pollut. Bull. 56:677–85
    [Google Scholar]
  3. 3.
    Martín M, Yarovenko NV, Gómez CP, Legido Soto JL, Torres Palenzuela JM. 2015. Oil pollution detection using spectral fluorescent signatures (SFS). Environ. Earth Sci. 73:2909–15
    [Google Scholar]
  4. 4.
    Li J, Fuller S, Cattle J, Way CP, Hibbert DB. 2004. Matching fluorescence spectra of oil spills with spectra from suspect sources. Anal. Chim. Acta 514:51–56
    [Google Scholar]
  5. 5.
    Fortes F, Ctvrtnícková T, Mateo M, Cabalín L, Nicolas G, Laserna J 2010. Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy. Anal. Chim. Acta 683:52–57
    [Google Scholar]
  6. 6.
    Hou Y, Li Y, Li G, Xu M, Jia Y. 2021. Species identification and effects of aromatic hydrocarbons on the fluorescence spectra of different oil samples in seawater. J. Spectrosc. 2021:6677219
    [Google Scholar]
  7. 7.
    Jiang W, Li J, Yao X, Forsberg E, He S. 2018. Fluorescence hyperspectral imaging of oil samples and its quantitative applications in component analysis and thickness estimation. Sensors 18:4415
    [Google Scholar]
  8. 8.
    Fedotov YV, Kravtsov D, Belov S, Gorodnichev V. 2019. Experimental studies of efficient sensing fluorescence radiation bands to detect oil and petroleum product spills. Proc. J. Phys. Conf. Ser. 1399:055037
    [Google Scholar]
  9. 9.
    Michel APM, Morrison AE, Marx CT, White HK. 2019. Rapid identification of Deepwater Horizon oil residues using X-ray fluorescence. Environ. Sci. Technol. Lett. 6:34–37
    [Google Scholar]
  10. 10.
    Wang C, Shi X, Li W, Wang L, Zhang J et al. 2016. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy. Mar. Pollut. Bull. 104:322–28
    [Google Scholar]
  11. 11.
    Huang X-D, Wang C-Y, Fan X-M, Zhang J-L, Yang C, Wang Z-D 2018. Oil source recognition technology using concentration-synchronous-matrix-fluorescence spectroscopy combined with 2D wavelet packet and probabilistic neural network. Sci. Total Environ. 616:632–38
    [Google Scholar]
  12. 12.
    Conmy RN, Hall A, Sundaravadivelu D, Schaeffer BA, Murray AR. 2022. Fluorescence-estimated oil concentration (Foil) in the Deepwater Horizon subsea oil plume. Mar. Pollut. Bull. 180:113808
    [Google Scholar]
  13. 13.
    Diercks AR, Highsmith RC, Asper VL, Joung D, Zhou Z et al. 2010. Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophys. Res. Lett. 37:L20602
    [Google Scholar]
  14. 14.
    Wade TL, Sweet ST, Walpert JN, Sericano JL, Singer JJ, Guinasso NL Jr. 2011. Evaluation of possible inputs of oil from the Deepwater Horizon spill to the Loop Current and associated eddies in the Gulf of Mexico. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise Y Liu, A MacFadyen, ZG Li, RH Weisberg 83–90. Geophysical Monograph 195 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  15. 15.
    Mendoza WG, Riemer DD, Zika RG. 2013. Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill. Environ. Sci. Process. Impacts 15:1017–30
    [Google Scholar]
  16. 16.
    Conmy RN, Coble PG, Farr J, Wood AM, Lee K et al. 2014. Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring. Environ. Sci. Technol. 48:1803–10
    [Google Scholar]
  17. 17.
    Coble PG, Del Castillo CE, Avril B 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res. II Top. Stud. Oceanogr. 45:2195–223
    [Google Scholar]
  18. 18.
    Del Vecchio R, Blough NV. 2004. On the origin of the optical properties of humic substances. Environ. Sci. Technol. 38:3885–91
    [Google Scholar]
  19. 19.
    Fellman JB, Hood E, Spencer RG. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr. 55:2452–62
    [Google Scholar]
  20. 20.
    Jaffé R, McKnight D, Maie N, Cory R, McDowell W, Campbell J 2008. Spatial and temporal variations in DOM composition in ecosystems: the importance of long-term monitoring of optical properties. J. Geophys. Res. Biogeosci. 113:G04032
    [Google Scholar]
  21. 21.
    Mann PJ, Spencer RG, Hernes PJ, Six J, Aiken GR et al. 2016. Pan-Arctic trends in terrestrial dissolved organic matter from optical measurements. Front. Earth Sci. 4:25
    [Google Scholar]
  22. 22.
    Kellerman AM, Kothawala DN, Dittmar T, Tranvik LJ. 2015. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat. Geosci. 8:454–57
    [Google Scholar]
  23. 23.
    Osburn CL, Boyd TJ, Montgomery MT, Bianchi TS, Coffin RB, Paerl HW. 2016. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters. Front. Mar. Sci. 2:127
    [Google Scholar]
  24. 24.
    Wünsch UJ, Murphy KR, Stedmon CA. 2017. The one-sample PARAFAC approach reveals molecular size distributions of fluorescent components in dissolved organic matter. Environ. Sci. Technol. 51:11900–8
    [Google Scholar]
  25. 25.
    Yamashita Y, Boyer JN, Jaffé R. 2013. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy. Cont. Shelf Res. 66:136–44
    [Google Scholar]
  26. 26.
    Spencer RG, Aiken GR, Butler KD, Dornblaser MM, Striegl RG, Hernes PJ. 2009. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: a case study of the Yukon River, Alaska. Geophys. Res. Lett. 36:L06401
    [Google Scholar]
  27. 27.
    Spencer RG, Butler KD, Aiken GR. 2012. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA. J. Geophys. Res. Biogeosci. 117:G03001
    [Google Scholar]
  28. 28.
    Murphy KR, Stedmon CA, Graeber D, Bro R. 2013. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 5:6557–66
    [Google Scholar]
  29. 29.
    Murphy KR, Hambly A, Singh S, Henderson RK, Baker A et al. 2011. Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model. Environ. Sci. Technol. 45:2909–16
    [Google Scholar]
  30. 30.
    Murphy KR, Stedmon CA, Waite TD, Ruiz GM. 2008. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108:1–240–58
    [Google Scholar]
  31. 31.
    Dvorski SEM, Gonsior M, Hertkorn N, Uhl J, Müller H et al. 2016. Geochemistry of dissolved organic matter in a spatially highly resolved groundwater petroleum hydrocarbon plume cross-section. Environ. Sci. Technol. 50:115536–46
    [Google Scholar]
  32. 32.
    Podgorski DC, Zito P, Kellerman AM, Bekins BA, Cozzarelli IM et al. 2021. Hydrocarbons to carboxyl-rich alicyclic molecules: a continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes. J. Hazard. Mater. 402:123998
    [Google Scholar]
  33. 33.
    Zito P, Podgorski DC, Johnson J, Chen H, Rodgers RP et al. 2019. Molecular-level composition and acute toxicity of photosolubilized petrogenic carbon. Environ. Sci. Technol. 53:148235–43
    [Google Scholar]
  34. 34.
    Wünsch UJ, Geuer JK, Lechtenfeld OJ, Koch BP, Murphy KR, Stedmon CA. 2018. Quantifying the impact of solid-phase extraction on chromophoric dissolved organic matter composition. Mar. Chem. 207:33–41
    [Google Scholar]
  35. 35.
    Murphy KR, Stedmon CA, Wenig P, Bro R. 2014. OpenFluor—an online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6:658–61
    [Google Scholar]
  36. 36.
    Zhou Z, Guo L. 2012. Evolution of the optical properties of seawater influenced by the Deepwater Horizon oil spill in the Gulf of Mexico. Environ. Res. Lett. 7:301–12
    [Google Scholar]
  37. 37.
    Bianchi TS, Osburn C, Shields MR, Yvon-Lewis S, Young J et al. 2014. Deepwater Horizon oil in Gulf of Mexico waters after 2 years: transformation into the dissolved organic matter pool. Environ. Sci. Technol. 48:9288–97
    [Google Scholar]
  38. 38.
    Zhou Z, Guo L, Shiller AM, Lohrenz SE, Asper VL, Osburn CL. 2013. Characterization of oil components from the Deepwater Horizon oil spill in the Gulf of Mexico using fluorescence EEM and PARAFAC techniques. Mar. Chem. 148:10–21
    [Google Scholar]
  39. 39.
    Zhou Z, Liu Z, Guo L. 2013. Chemical evolution of Macondo crude oil during laboratory degradation as characterized by fluorescence EEMs and hydrocarbon composition. Mar. Pollut. Bull. 66:164–75
    [Google Scholar]
  40. 40.
    Deleted in proof
  41. 41.
    Podgorski DC, Zito P, McGuire JT, Martinovic-Weigelt D, Cozzarelli IM et al. 2018. Examining natural attenuation and acute toxicity of petroleum-derived dissolved organic matter with optical spectroscopy. Environ. Sci. Technol. 52:6157–66
    [Google Scholar]
  42. 42.
    Brüenjes J, Seidel M, Dittmar T, Niggemann J, Schubotz F. 2022. Natural asphalt seeps are potential sources for recalcitrant oceanic dissolved organic sulfur and dissolved black carbon. Environ. Sci. Technol. 56:9092–102
    [Google Scholar]
  43. 43.
    D'Sa EJ, Overton EB, Lohrenz SE, Maiti K, Turner RE, Freeman A 2016. Changing dynamics of dissolved organic matter fluorescence in the northern Gulf of Mexico following the Deepwater Horizon oil spill. Environ. Sci. Technol. 50:4940–50
    [Google Scholar]
  44. 44.
    Fichot CG, Benner R. 2011. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophys. Res. Lett. 38:L03610
    [Google Scholar]
  45. 45.
    Ohno T, Chorover J, Omoike A, Hunt J. 2007. Molecular weight and humification index as predictors of adsorption for plant- and manure-derived dissolved organic matter to goethite. Eur. J. Soil Sci. 58:125–32
    [Google Scholar]
  46. 46.
    Podgorski DC, Zito P, McGuire JT, Martinovic-Weigelt D, Cozzarelli IM et al. 2018. Rebuttal to comment on “Examining Natural Attenuation and Acute Toxicity of Petroleum-Derived Dissolved Organic Matter with Optical Spectroscopy. .” Environ. Sci. Technol. 52:11962–63
    [Google Scholar]
  47. 47.
    Gonnelli M, Galletti Y, Marchetti E, Mercadante L, Retelletti Brogi S et al. 2016. Dissolved organic matter dynamics in surface waters affected by oil spill pollution: results from the Serious Game exercise. Deep Sea Res. II Top. Stud. Oceanogr. 133:88–99
    [Google Scholar]
  48. 48.
    Hansen AM, Kraus TEC, Pellerin BA, Fleck JA, Downing BD, Bergamaschi BA. 2016. Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnol. Oceanogr. 61:1015–32
    [Google Scholar]
  49. 49.
    Coble PG. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51:325–46
    [Google Scholar]
  50. 50.
    Coppola AI, Druffel ER. 2016. Cycling of black carbon in the ocean. Geophys. Res. Lett. 43:4477–82
    [Google Scholar]
  51. 51.
    Fang Y, Chen Y, Huang G, Hu L, Tian C et al. 2021. Particulate and dissolved black carbon in coastal China seas: spatiotemporal variations, dynamics, and potential implications. Environ. Sci. Technol. 55:788–96
    [Google Scholar]
  52. 52.
    Chen H, Oliver BG, Pant A, Olivera A, Poronnik P et al. 2022. Effects of air pollution on human health—mechanistic evidence suggested by in vitro and in vivo modelling. Environ. Res. Lett. 212:113378
    [Google Scholar]
  53. 53.
    Marris C, Kompella SN, Miller M, Incardona JP, Brette F et al. 2020. Polyaromatic hydrocarbons in pollution: a heart-breaking matter. J. Physiol. 598:227–47
    [Google Scholar]
  54. 54.
    Janssen NAH, Gerlofs-Nijland ME, Lanki T, Salonen RO, Cassee F et al. 2012. Health Effects of Black Carbon Copenhagen: WHO Reg. Off. Eur.
    [Google Scholar]
  55. 55.
    Zhang R, Sun B, Song Y, Chen X, Song C et al. 2021. Evaluating the phytotoxicity of dissolved organic matter derived from black carbon. Sci. Total Environ. 778:146231
    [Google Scholar]
  56. 56.
    Zhang Y, Zhang Q, Wu N, Ding A. 2022. Weakened haze mitigation induced by enhanced aging of black carbon in China. Environ. Sci. Technol. 56:7629–36
    [Google Scholar]
  57. 57.
    Wang J, Wang S, Wang J, Hua Y, Liu C et al. 2022. Significant contribution of coarse black carbon particles to light absorption in North China Plain. Environ. Sci. Technol. Lett. 9:134–39
    [Google Scholar]
  58. 58.
    Soni A, Gupta T. 2022. Alternative approach for the in situ measurement of absorption enhancement of atmospheric black carbon due to atmospheric mixing. ACS Earth Space Chem 6:261–67
    [Google Scholar]
  59. 59.
    Cordero RR, Sepulveda E, Feron S, Damiani A, Fernandoy F et al. 2022. Black carbon footprint of human presence in Antarctica. Nat. Commun. 13:984
    [Google Scholar]
  60. 60.
    NOAA (Natl. Ocean. Atmos. Assoc.) 2019. In situ burning Off. Response Restor., NOAA Silver Spring, MD: https://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/resources/in-situ-burning.html
    [Google Scholar]
  61. 61.
    NOAA (Natl. Ocean. Atmos. Assoc.) 2012. In situ burn (ISB) emissions comparisons Off. Response Restor., NOAA Silver Spring, MD: https://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/resources/in-situ-burn-emissions-comparisons.html
    [Google Scholar]
  62. 62.
    Barnea N. 1999. Health and safety aspects of in-situ burning of oil Rep. Natl. Ocean. Atmos. Assoc. Silver Spring, MD: https://response.restoration.noaa.gov/sites/default/files/health-safety-ISB.pdf
    [Google Scholar]
  63. 63.
    NOAA (Natl. Ocean. Atmos. Assoc.) 2019. Residues from in situ burning of oil on water Off. Response Restor., NOAA Silver Spring, MD: https://response.restoration.noaa.gov/oil-and-chemical-spills/oil-spills/resources/residues-in-situ-burning-oil-water.html
    [Google Scholar]
  64. 64.
    Perring A, Schwarz J, Spackman J, Bahreini R, De Gouw J et al. 2011. Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill. Geophys. Res. Lett. 38:L17809
    [Google Scholar]
  65. 65.
    Middlebrook AM, Murphy DM, Ahmadov R, Atlas EL, Bahreini R et al. 2012. Air quality implications of the Deepwater Horizon oil spill. PNAS 109:20280–85
    [Google Scholar]
  66. 66.
    Gullett BK, Hays MD, Tabor D, Vander Wal R. 2016. Characterization of the particulate emissions from the BP Deepwater Horizon surface oil burns. Mar. Pollut. Bull. 107:216–23
    [Google Scholar]
  67. 67.
    Gullett BK, Aurell J, Holder A, Mitchell W, Greenwell D et al. 2017. Characterization of emissions and residues from simulations of the Deepwater Horizon surface oil burns. Mar. Pollut. Bull. 117:392–405
    [Google Scholar]
  68. 68.
    Fingas MF, Li K, Ackerman F, Campagna PR, Turpin RD et al. 1996. Emissions from mesoscale in situ oil fires: the mobile 1991 experiments. Spill Sci. Technol. Bull. 3:123–37
    [Google Scholar]
  69. 69.
    Aurell J, Gullett BK. 2010. Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns. Environ. Sci. Technol. 44:9431–37
    [Google Scholar]
  70. 70.
    Wagner S, Harvey E, Baetge N, McNair H, Arrington E, Stubbins A. 2021. Investigating atmospheric inputs of dissolved black carbon to the Santa Barbara Channel during the Thomas Fire (California, USA). J. Geophys. Res. Biogeosci. 126:e2021JG006442
    [Google Scholar]
  71. 71.
    DeMarini DM, Warren SH, Lavrich K, Flen A, Aurell J et al. 2017. Mutagenicity and oxidative damage induced by an organic extract of the particulate emissions from a simulation of the Deepwater Horizon surface oil burns. Environ. Mol. Mutagen. 58:162–71
    [Google Scholar]
  72. 72.
    Tomco PL, Duddleston KN, Driskill A, Hatton JJ, Grond K et al. 2022. Dissolved organic matter production from herder application and in-situ burning of crude oil at high latitudes: Bioavailable molecular composition patterns and microbial community diversity effects. J. Hazard. Mater. 424:127598
    [Google Scholar]
  73. 73.
    Whisenhant EA, Zito P, Podgorski DC, McKenna AM, Redman ZC, Tomco PL. 2022. Unique molecular features of water-soluble photo-oxidation products among refined fuels, crude oil, and herded burnt residue under high latitude conditions. ACS EST Water 2:994–1002
    [Google Scholar]
  74. 74.
    Stout SA, Payne JR, Emsbo-Mattingly SD, Baker G 2016. Weathering of field-collected floating and stranded Macondo oils during and shortly after the Deepwater Horizon oil spill. Mar. Pollut. Bull. 105:7–22
    [Google Scholar]
  75. 75.
    Zito P, Tarr MA. 2014. Solar production of singlet oxygen from crude oil films on water. J. Photobiol. A Chem. 286:22–28
    [Google Scholar]
  76. 76.
    Zito P, Tarr MA. 2015. Formation of organic triplets from solar irradiation of petroleum. Mar. Chem. 168:135–39
    [Google Scholar]
  77. 77.
    Zito P, Tarr MA. 2014. Petroleum films exposed to sunlight produce hydroxyl radical. Chemosphere 103:220–27
    [Google Scholar]
  78. 78.
    Stubbins A, Niggemann J, Dittmar T. 2012. Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9:1661–70
    [Google Scholar]
  79. 79.
    Tu Y, Liu H, Li Y, Zhang Z, Lei Y et al. 2022. Radical chemistry of dissolved black carbon under sunlight irradiation: quantum yield prediction and effects on sulfadiazine photodegradation. Environ. Sci. Pollut. Res. 29:21517–27
    [Google Scholar]
  80. 80.
    King SM, Leaf PA, Olson AC, Ray PZ, Tarr MA. 2014. Photolytic and photocatalytic degradation of surface oil from the Deepwater Horizon spill. Chemosphere 95:415–22
    [Google Scholar]
  81. 81.
    Lian F, Zhang Y, Gu S, Han Y, Cao X et al. 2021. Photochemical transformation and catalytic activity of dissolved black nitrogen released from environmental black carbon. Environ. Sci. Technol. 55:6476–84
    [Google Scholar]
  82. 82.
    Zhou Z, Chen B, Qu X, Fu H, Zhu D. 2018. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-estradiol in aqueous solution. Environ. Sci. Technol. 52:10391–99
    [Google Scholar]
  83. 83.
    Zhang G, Fu Y, Peng X, Sun W, Shi Z et al. 2021. Black carbon involved photochemistry enhances the formation of sulfate in the ambient atmosphere: evidence from in situ individual particle investigation. J. Geophys. Res. Atmos. 126:e2021JD035226
    [Google Scholar]
  84. 84.
    Dittmar T. 2008. The molecular level determination of black carbon in marine dissolved organic matter. Org. Geochem. 39:396–407
    [Google Scholar]
  85. 85.
    Goranov AI, Schaller MF, Long JA Jr., Podgorski DC, Wagner S. 2021. Characterization of asphaltenes and petroleum using benzenepolycarboxylic acids (BPCAs) and compound-specific stable carbon isotopes. Energy Fuels 35:18135–45
    [Google Scholar]
  86. 86.
    Barton R, Wagner S. 2022. Measuring dissolved black carbon in water via aqueous, inorganic, high-performance liquid chromatography of benzenepolycarboxylic acid (BPCA) molecular markers. PLOS ONE 17:e0268059
    [Google Scholar]
  87. 87.
    Lai Y, Sheng X, Dong L, Li P, Li Q et al. 2021. Digestive elimination of coexisting microplastics for determination of particulate black carbon in environmental waters. Anal. Chem. 93:11184–90
    [Google Scholar]
  88. 88.
    Caponi L, Cazzuli G, Gargioni G, Massabo D, Brotto P, Prati P. 2022. A new PM sampler with a built-in black carbon continuous monitor. Atmosphere 13:299
    [Google Scholar]
  89. 89.
    Overton EB, Wade TL, Radović JR, Meyer BM, Miles MS, Larter SR. 2016. Chemical composition of Macondo and other crude oils and compositional alterations during oil spills. Oceanography 29:50–63
    [Google Scholar]
  90. 90.
    Treibs A. 1934. Chlorophyll- und Häminderivate in bituminösen Gesteinen, Erdölen, Erdwachsen und Asphalten. Ein Beitrag zur Entstehung des Erdöls. Justus Liebigs Ann. Chem. 510:42–62
    [Google Scholar]
  91. 91.
    Shah KR, Filby RH, Haller WA. 1970. Determination of trace elements in petroleum by neutron activation analysis. J. Radioanal. Chem. 6:185–92
    [Google Scholar]
  92. 92.
    Zhang Y, Schulz F, Rytting BM, Walters CC, Kaiser K et al. 2019. Elucidating the geometric substitution of petroporphyrins by spectroscopic analysis and atomic force microscopy molecular imaging. Energy Fuels 33:6088–97
    [Google Scholar]
  93. 93.
    Spilsbury F, McDonald B, Rankenburg K, Evans NJ, Grice K, Gagnon MM. 2022. Multivariate analysis of otolith microchemistry can discriminate the source of oil contamination in exposed fish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 254:109253
    [Google Scholar]
  94. 94.
    Wright JS Sr., Thift N, Walkinshaw B, Barnes KW 2019. Heavy metal concentrations in the Gulf of Mexico using ICP-OES. Proc. AGU Fall Meeting 2019:OS33B–1799 ( Abstr. )
    [Google Scholar]
  95. 95.
    Hastings DW, Bartlett T, Brooks GR, Larson RA, Quinn KA et al. 2020. Changes in redox conditions of surface sediments following the Deepwater Horizon and Ixtoc 1 events. Deep Oil Spills: Facts, Fate, and Effects SA Murawski, CH Ainsworth, S Gilbert, DJ Hollander, CB Paris et al.269–84. Cham, Switz: Springer
    [Google Scholar]
  96. 96.
    Godoy-Lozano EE, Escobar-Zepeda A, Raggi L, Merino E, Gutierrez-Rios RM et al. 2018. Bacterial diversity and the geochemical landscape in the southwestern Gulf of Mexico. Front. Microbiol. 9:2528
    [Google Scholar]
  97. 97.
    White HK, Morrison AE, Dhoonmoon C, Caballero-Gomez H, Luu M et al. 2020. Identification of persistent oil residues in Prince William Sound, Alaska using rapid spectroscopic techniques. Mar. Pollut. Bull. 161:111718
    [Google Scholar]
  98. 98.
    Liu Z, Liu J, Zhu Q, Wu W. 2012. The weathering of oil after the Deepwater Horizon oil spill: insights from the chemical composition of the oil from the sea surface, salt marshes and sediments. Environ. Res. Lett. 7:035302
    [Google Scholar]
  99. 99.
    Joung D, Shiller AM. 2013. Trace element distributions in the water column near the Deepwater Horizon well blowout. Environ. Sci. Technol. 47:2161–68
    [Google Scholar]
  100. 100.
    Wise JP, Wise JTF, Wise CF, Wise SS, Gianios C et al. 2014. Concentrations of the genotoxic metals, chromium and nickel, in whales, tar balls, oil slicks, and released oil from the Gulf of Mexico in the immediate aftermath of the Deepwater Horizon oil crisis: Is genotoxic metal exposure part of the Deepwater Horizon legacy?. Environ. Sci. Technol. 48:2997–3006
    [Google Scholar]
  101. 101.
    Heilmann J, Boulyga SF, Heumann KG. 2009. Development of an isotope dilution laser ablation ICP-MS method for multi-element determination in crude and fuel oil samples. J. Anal. At. Spectrom. 24:385–90
    [Google Scholar]
  102. 102.
    Vorapalawut N, Pohl P, Bouyssiere B, Shiowatana J, Lobinski R. 2011. Multielement analysis of petroleum samples by laser ablation double focusing sector field inductively coupled plasma mass spectrometry (LA-ICP MS). J. Anal. At. Spectrom. 26:618–22
    [Google Scholar]
  103. 103.
    Vorapalawut N, Martinez Labrador M, Pohl P, Caetano M, Chirinos J et al. 2012. Application of TLC and LA ICP SF MS for speciation of S, Ni and V in petroleum samples. Talanta 97:574–78
    [Google Scholar]
  104. 104.
    Keevan J. 2012. Assessing transformation of trace metals and crude oil in Mississippi and Louisiana coastal wetlands in response to the Deepwater Horizon oil spill Master's Thesis Auburn Univ. Auburn, AL:
    [Google Scholar]
  105. 105.
    Islam A, Cho Y, Yim UH, Shim WJ, Kim YH, Kim S 2013. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS. J. Hazard. Mater. 263:404–11
    [Google Scholar]
  106. 106.
    Shi Q, Hou D, Chung KH, Xu C, Zhao S, Zhang Y. 2010. Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 24:2545–53
    [Google Scholar]
  107. 107.
    Boulyga SF, Heilmann J, Heumann KG. 2005. Isotope dilution ICP-MS with laser-assisted sample introduction for direct determination of sulfur in petroleum products. Anal. Bioanal. Chem. 382:1808–14
    [Google Scholar]
  108. 108.
    Gutiérrez Sama S, Farenc M, Barrère-Mangote C, Lobinski R, Afonso C et al. 2018. Molecular fingerprints and speciation of crude oils and heavy fractions revealed by molecular and elemental mass spectrometry: keystone between petroleomics, metallopetroleomics, and petrointeractomics. Energy Fuels 32:4593–605
    [Google Scholar]
  109. 109.
    Maryutina TA, Soin AV. 2009. Novel approach to the elemental analysis of crude and diesel oil. Anal. Chem. 81:5896–901
    [Google Scholar]
  110. 110.
    Duyck C, Miekeley N, Porto da Silveira CL, Aucélio RQ, Campos RC et al. 2007. The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry. Spectrochim. Acta B At. Spectrosc. 62:939–51
    [Google Scholar]
  111. 111.
    Chacón-Patiño ML, Nelson J, Rogel E, Hench K, Poirier L et al. 2022. Vanadium and nickel distributions in selective-separated n-heptane asphaltenes of heavy crude oils. Fuel 312:122939
    [Google Scholar]
  112. 112.
    Nelson J, Saunders A, Poirier L, Rogel E, Ovalles C et al. 2020. Detection of iron oxide nanoparticles in petroleum hydrocarbon media by single-particle inductively coupled plasma mass spectrometry (spICP-MS). J. Nanopart. Res. 22:304
    [Google Scholar]
  113. 113.
    Nelson J, Poirier L, Lopez-Linares F. 2019. Determination of chloride in crude oils by direct dilution using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). J. Anal. At. Spectrom. 34:1433–38
    [Google Scholar]
  114. 114.
    Nelson J, Saunders A, Poirier L, Lopez-Linares F. 2021. Analysis of gold nanoparticles in a hydrocarbon solvent by single particle-inductively coupled plasma mass spectrometry (spICP-MS) and TEM. SN Appl. Sci. 3:161
    [Google Scholar]
  115. 115.
    Caumette G, Lienemann C-P, Merdrignac I, Paucot H, Bouyssiere B, Lobinski R. 2009. Sensitivity improvement in ICP MS analysis of fuels and light petroleum matrices using a microflow nebulizer and heated spray chamber sample introduction. Talanta 80:1039–43
    [Google Scholar]
  116. 116.
    Ruhland D, Nwoko K, Perez M, Feldmann Jr., Krupp EM. 2018. AF4-UV-MALS-ICP-MS/MS, spICP-MS, and STEM-EDX for the characterization of metal-containing nanoparticles in gas condensates from petroleum hydrocarbon samples. Anal. Chem. 91:1164–70
    [Google Scholar]
  117. 117.
    Poirier L, Nelson J, Leong D, Berhane L, Hajdu P, Lopez-Linares F. 2016. Application of ICP-MS and ICP-OES on the determination of nickel, vanadium, iron, and calcium in petroleum crude oils via direct dilution. Energy Fuels 30:3783–90
    [Google Scholar]
  118. 118.
    Laborda F, Javier JL, Bolea E, Castillo JR. 2012. Identification, characterization and determination of nanoparticles by ICP-MS: challenges and limitations. Abstr. Pap. Am. Chem. Soc.243 Abstr. )
    [Google Scholar]
  119. 119.
    Caumette G, Lienemann C-P, Merdrignac I, Bouyssiere B, Lobinski R. 2009. Element speciation analysis of petroleum and related materials. J. Anal. At. Spectrom. 24:263–76
    [Google Scholar]
  120. 120.
    Caumette G, Lienemann C-P, Merdrignac I, Bouyssiere B, Lobinski R. 2010. Fractionation and speciation of nickel and vanadium in crude oils by size exclusion chromatography-ICP MS and normal phase HPLC-ICP MS. J. Anal. At. Spectrom. 25:1123–29
    [Google Scholar]
  121. 121.
    Pie HV, Schott EJ, Mitchelmore CL. 2015. Investigating physiological, cellular and molecular effects in juvenile blue crab, Callinectus sapidus, exposed to field-collected sediments contaminated by oil from the Deepwater Horizon Incident. Sci. Total Environ. 532:528–39
    [Google Scholar]
  122. 122.
    Steffy DA, Nichols AC, Morgan LJ, Gibbs R. 2013. Evidence that the Deepwater Horizon oil spill caused a change in the nickel, chromium, and lead average seasonal concentrations occurring in sea bottom sediment collected from the Eastern Gulf of Mexico continental shelf between the years 2009 and 2011. Water Air Soil Pollut 224:1756
    [Google Scholar]
  123. 123.
    Botello AV, Soto LA, Ponce-Vélez G, Villanueva FS. 2015. Baseline for PAHs and metals in NW Gulf of Mexico related to the Deepwater Horizon oil spill. Estuar. Coast. Shelf Sci. 156:124–33
    [Google Scholar]
  124. 124.
    Hastings DW, Schwing PT, Brooks GR, Larson RA, Morford JL et al. 2016. Changes in sediment redox conditions following the BP DWH blowout event. Deep Sea Res. II Top. Stud. Oceanogr. 129:167–78
    [Google Scholar]
  125. 125.
    Yan B, Passow U, Chanton JP, Nöthig E-M, Asper V et al. 2016. Sustained deposition of contaminants from the Deepwater Horizon spill. PNAS 113:E3332–40
    [Google Scholar]
  126. 126.
    Atoufi HD, Lampert DJ. 2020. Impacts of oil and gas production on contaminant levels in sediments. Curr. Pollut. Rep. 6:43–53
    [Google Scholar]
  127. 127.
    Nowell LH, Ludtke AS, Mueller DK, Scott JC. 2011. Organic contaminants, trace and major elements, and nutrients in water and sediment sampled in response to the Deepwater Horizon oil spill Open-File Rep. 2011-1271 US Geol. Surv. Reston, VA: https://doi.org/10.3133/ofr20111271
    [Google Scholar]
  128. 128.
    Steffy D, Nichols A, Morgan J 2016. Investigating the impact of the BP Deepwater Horizon oil spill on trace metal concentrations in bottom sediments retrieved from the outer continental shelf (OCS) of Alabama and Western Florida, Gulf of Mexico. Int. J. Adv. Earth Sci. Eng. 5:430–42
    [Google Scholar]
  129. 129.
    Landers SC, Nichols AC, Schimmer CA, Stewart PM, Ramroop S et al. 2014. Meiofauna and trace metals from sediment collections in Florida after the Deepwater Horizon oil spill. Gulf Mex. Sci. 32: https://doi.org/10.18785/goms.3201.01
    [Google Scholar]
  130. 130.
    Barron MG, Awkerman J, Raimondo S. 2015. Oil characterization and distribution in Florida estuary sediments following the Deepwater Horizon spill. J. Mar. Sci. Eng. 3:1136–48
    [Google Scholar]
  131. 131.
    Black JC, Welday JN, Buckley B, Ferguson A, Gurian PL et al. 2016. Risk assessment for children exposed to beach sands impacted by oil spill chemicals. Int. J. Environ. Res. Lett. Public Health 13:853
    [Google Scholar]
  132. 132.
    Donahoe R, Bej A, Raulerson A, Rentschler E. 2011. Experimental microcosm study of the effects of Deepwater Horizon MC-252 oil on the geochemistry and microbiology of Gulf Coast sediment. Proc. AGU Fall Meeting 2011:B13E–0626 ( Abstr. )
    [Google Scholar]
  133. 133.
    Shiller AM, Joung D. 2012. Nutrient depletion as a proxy for microbial growth in Deepwater Horizon subsurface oil/gas plumes. Environ. Res. Lett. Lett. 7:045301
    [Google Scholar]
  134. 134.
    Rentschler EK. 2013. Deepwater Horizon oil spill: using microcosms to study effects of crude oil in coastal sediments Master's Thesis Univ. Alabama Tuscaloosa:
    [Google Scholar]
  135. 135.
    Fitzgerald TP, Gohlke JM. 2014. Contaminant levels in Gulf of Mexico reef fish after the Deepwater Horizon oil spill as measured by a fishermen-led testing program. Environ. Sci. Technol. 48:1993–2000
    [Google Scholar]
  136. 136.
    Guerra K. 2013. A geochemical and hydrological assessment of oil and related compounds from the 2010 Deepwater Horizon oil spill in Gulf coastal saltmarshes Master's Thesis Auburn Univ. Auburn, AL:
    [Google Scholar]
  137. 137.
    Carmichael RH, Jones AL, Patterson HK, Walton WC, Pérez-Huerta A et al. 2012. Assimilation of oil-derived elements by oysters due to the Deepwater Horizon oil spill. Environ. Sci. Technol. 46:12787–95
    [Google Scholar]
  138. 138.
    Nelson TR, DeVries DR, Wright RA, Gagnon JE. 2015. Fundulus grandis otolith microchemistry as a metric of estuarine discrimination and oil exposure. Estuar. Coasts 38:2044–58
    [Google Scholar]
  139. 139.
    López-Duarte PC, Fodrie FJ, Jensen OP, Whitehead A, Galvez F et al. 2016. Is exposure to Macondo oil reflected in the otolith chemistry of marsh-resident fish?. PLOS ONE 11:e0162699
    [Google Scholar]
  140. 140.
    Granneman JE, Jones DL, Peebles EB. 2017. Associations between metal exposure and lesion formation in offshore Gulf of Mexico fishes collected after the Deepwater Horizon oil spill. Mar. Pollut. Bull. 117:462–77
    [Google Scholar]
  141. 141.
    Granneman JE. 2018. Evaluation of trace-metal and isotopic records as techniques for tracking lifetime movement patterns in fishes Ph.D. Thesis Univ. S. Fla. Tampa:
    [Google Scholar]
  142. 142.
    Shiller AM, Chan EW, Joung DJ, Redmond MC, Kessler JD. 2017. Light rare earth element depletion during Deepwater Horizon blowout methanotrophy. Sci. Rep. 7:10389
    [Google Scholar]
  143. 143.
    Orcutt BN, Lapham LL, Delaney J, Sarode N, Marshall KS et al. 2017. Microbial response to oil enrichment in Gulf of Mexico sediment measured using a novel long-term benthic lander system. Elementa 5:18
    [Google Scholar]
  144. 144.
    Wise JP, Wise JTF, Wise CF, Wise SS, Gianios C et al. 2018. A three year study of metal levels in skin biopsies of whales in the Gulf of Mexico after the Deepwater Horizon oil crisis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 205:15–25
    [Google Scholar]
  145. 145.
    Perrot V, Landing WM, Grubbs RD, Salters VJM. 2019. Mercury bioaccumulation in tilefish from the northeastern Gulf of Mexico 2 years after the Deepwater Horizon oil spill: insights from Hg, C, N and S stable isotopes. Sci. Total Environ. 666:828–38
    [Google Scholar]
  146. 146.
    Champoux L, Rail J-F, Houde M, Giraudo M, Lacaze É et al. 2020. An investigation of physiological effects of the Deepwater Horizon oil spill on a long-distance migratory seabird, the northern gannet. Mar. Pollut. Bull. 153:110953
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091522-110825
Loading
/content/journals/10.1146/annurev-anchem-091522-110825
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error