1932

Abstract

Traditional microfabrication techniques suffer from several disadvantages, including the inability to create truly three-dimensional (3D) architectures, expensive and time-consuming processes when changing device designs, and difficulty in transitioning from prototyping fabrication to bulk manufacturing. 3D printing is an emerging technique that could overcome these disadvantages. While most 3D printed fluidic devices and features to date have been on the millifluidic size scale, some truly microfluidic devices have been shown. Currently, stereolithography is the most promising approach for routine creation of microfluidic structures, but several approaches under development also have potential. Microfluidic 3D printing is still in an early stage, similar to where polydimethylsiloxane was two decades ago. With additional work to advance printer hardware and software control, expand and improve resin and printing material selections, and realize additional applications for 3D printed devices, we foresee 3D printing becoming the dominant microfluidic fabrication method.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091619-102649
2020-06-12
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-091619-102649.html?itemId=/content/journals/10.1146/annurev-anchem-091619-102649&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Dixit CK, Kadimisetty K, Rusling J 2018. 3D-printed miniaturized fluidic tools in chemistry and biology. Trends Anal. Chem. 106:37–52
    [Google Scholar]
  2. 2. 
    Layani M, Wang X, Magdassi S 2018. Novel materials for 3D printing by photopolymerization. Adv. Mater. 30:1706344
    [Google Scholar]
  3. 3. 
    Bhattacharjee N, Urrios A, Kang S, Folch A 2016. The upcoming 3D-printing revolution in microfluidics. Lab Chip 16:1720–42
    [Google Scholar]
  4. 4. 
    Au AK, Huynh W, Horowitz LF, Folch A 2016. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55:3862–81
    [Google Scholar]
  5. 5. 
    Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM et al. 2016. 3D printed microfluidic devices: enablers and barrier. Lab Chip 16:1993–2013
    [Google Scholar]
  6. 6. 
    Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J 2016. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid. Nanofluid. 20:50
    [Google Scholar]
  7. 7. 
    Amin R, Knowloton S, Hart A, Yenilmez B, Ghaderinezhad F et al. 2016. 3D-printed microfluidic devices. Biofabrication 8:022001
    [Google Scholar]
  8. 8. 
    Chen C, Mehl BT, Munshi AS, Townsend AD, Spence DM, Martin RS 2016. 3D-printed microfluidic devices: fabrication, advantages and limitations—a mini review. Anal. Methods 8:6005–12
    [Google Scholar]
  9. 9. 
    He Y, Wu Y, Fu J, Gao Q, Qiu J 2016. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis 28:1658–78
    [Google Scholar]
  10. 10. 
    Ho CMB, Ng SH, Li KHH, Yoon Y 2015. 3D printed microfluidics for biological applications. Lab Chip 15:3627–37
    [Google Scholar]
  11. 11. 
    Huang Y, Leu MC, Mazumder J, Donmez A 2015. Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J. Manuf. Sci. Eng. 137:014001
    [Google Scholar]
  12. 12. 
    Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM 2014. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–53
    [Google Scholar]
  13. 13. 
    Beauchamp MJ, Nordin GP, Woolley AT 2017. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal. Bioanal. Chem. 409:4311–19
    [Google Scholar]
  14. 14. 
    Si Y, Wang T, Li C, Li N, Gao C et al. 2018. Liquids unidirectional transport on dual-scale arrays. ACS Nano 12:9214–22
    [Google Scholar]
  15. 15. 
    Lazarus N, Bedair SS, Smith GL 2019. Creating 3D printed magnetic devices with ferrofluids and liquid metals. Addit. Manuf. 26:15–21
    [Google Scholar]
  16. 16. 
    Loessberg-Zahl J, van der Meer AD, van den Berg A, Eijkel JCT 2019. Flow focusing through gels as a tool to generate 3D concentration profiles in hydrogel-filled microfluidic chips. Lab Chip 19:206–13
    [Google Scholar]
  17. 17. 
    Venkateswaran PS, Sharma A, Dubey S, Aarwal A, Goel S 2016. Rapid and automated measurement of milk adulteration using a 3D printed optofluidic microviscometer (OMV). IEEE Sens 16:3000–7
    [Google Scholar]
  18. 18. 
    Oh S, Kim B, Lee JK, Choi S 2018. 3D-printed capillary circuits for rapid, low-cost, portable analysis of blood viscosity. Sens. Actuators B 259:103–13
    [Google Scholar]
  19. 19. 
    Plevniak K, Campbell M, Myers T, Hodges A, He M 2016. 3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia. Biomicrofluidics 10:054113
    [Google Scholar]
  20. 20. 
    Lee JM, Zhang M, Yeong WY 2016. Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid. Nanofluid. 20:5
    [Google Scholar]
  21. 21. 
    Patrick WG, Nielsen AAK, Keating SJ, Levy TJ, Wang CW et al. 2015. DNA assembly in 3D printed fluidics. PLOS ONE 10:e0143636
    [Google Scholar]
  22. 22. 
    Lee KG, Park KJ, Seok S, Shin S, Kim DH et al. 2014. 3D printed modules for integrated microfluidic devices. RSC Adv 4:32876–80
    [Google Scholar]
  23. 23. 
    Borro BC, Bohr A, Bucciarelli S, Boetker JP, Foged C et al. 2019. Microfluidics-based self-assembly of peptide-loaded microgels: effect of three dimensional (3D) printed micromixer design. J. Colloid Interface Sci. 538:559–68
    [Google Scholar]
  24. 24. 
    Tang CK, Vaze A, Rusling JF 2017. Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins. Lab Chip 17:484–89
    [Google Scholar]
  25. 25. 
    Mattio E, Robert-Peillard F, Vassalo L, Branger C, Margaillan A et al. 2018. 3D-printed lab-on-valve for fluorescent determination of cadmium and lead in water. Talanta 183:201–8
    [Google Scholar]
  26. 26. 
    Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC 2014. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal. Chem. 86:3124–30
    [Google Scholar]
  27. 27. 
    Kuo AP, Bhattacharjee N, Lee YS, Castro K, Kim YT, Folch A 2019. High-precision stereolithography of biomicrofluidic devices. Adv. Mater. Technol. 4:1800395
    [Google Scholar]
  28. 28. 
    Bhargava KC, Thompson B, Malmstadt N 2014. Discrete elements for 3D microfluidics. PNAS 111:15013–18
    [Google Scholar]
  29. 29. 
    Gaal G, Mendes M, de Almeida TP, Piazzetta MHO, Gobbi AL et al. 2017. Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing. Sens. Actuators B 242:35–40
    [Google Scholar]
  30. 30. 
    Macdonald NP, Cabot JM, Smejkal P, Guijt RM, Paull B, Breadmore MC 2017. Comparing microfluidic performance of three-dimensional (3D) printing platforms. Anal. Chem. 89:3858–66
    [Google Scholar]
  31. 31. 
    Walczak R, Adamski K. 2015. Inkjet 3D printing of microfluidic structures—on the selection of the printer towards printing your own microfluidic chips. J. Micromech. Microeng. 25:085013
    [Google Scholar]
  32. 32. 
    Li F, Macdonald NP, Guijt RM, Breadmore MC 2017. Using printing orientation for tuning fluidic behavior in microfluidic chips made by fused deposition modeling 3D printing. Anal. Chem. 89:12805–11
    [Google Scholar]
  33. 33. 
    Faud NM, Carve M, Kaslin J, Wlodkowic D 2018. Characterization of 3D-printed moulds for soft lithography of millifluidic devices. Micromachines 9:116
    [Google Scholar]
  34. 34. 
    Männel MJ, Weigel N, Thiele J 2019. Multifunctional microfluidic devices from tailored photopolymer formulations. Proc. SPIE 10875: Microfluid., BioMEMS, Medi. Microsyst. XVII 1087507
    [Google Scholar]
  35. 35. 
    Lee YS, Bhattacharjee N, Folch A 2018. 3D-printed quake-style microvalves and micropumps. Lab Chip 18:1207–14
    [Google Scholar]
  36. 36. 
    Rogers CI, Qaderi K, Woolley AT, Nordin GP 2015. 3D printed microfluidic devices with integrated valves. Biomicrofluidics 9:016501
    [Google Scholar]
  37. 37. 
    Begolo S, Zhukov DV, Selck DA, Li L, Ismagilov RF 2014. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications. Lab Chip 14:4616–28
    [Google Scholar]
  38. 38. 
    Chan HN, Shu Y, Xiong B, Chen Y, Chen Y et al. 2016. Simple, cost-effective 3D printed microfluidic components for disposable, point-of-care colorimetric analysis. ACS Sens 1:227–34
    [Google Scholar]
  39. 39. 
    Duarte LC, Chagas CLS, Ribeiro LEB, Coltro WKT 2017. 3D printing of microfluidic devices with embedded sensing electrodes for generating and measuring the size of microdroplets based on contactless conductivity detection. Sens. Actuators B 251:427–32
    [Google Scholar]
  40. 40. 
    Donvito L, Galluccio L, Lombardo A, Morabito G, Nicolosi A, Reno M 2015. Experimental validation of a simple, low-cost, T-junction droplet generator fabricated through 3D printing. J. Micromech. Microeng. 25:035013
    [Google Scholar]
  41. 41. 
    Zhang JM, Li EQ, Aguirre-Pablo AA, Thoroddsen ST 2016. A simple and low-cost fully 3D-printed non-planar emulsion generator. RSC Adv 6:2793–99
    [Google Scholar]
  42. 42. 
    Ji Q, Zhang JM, Liu Y, Li X, Lv P et al. 2018. A modular microfluidic device via multimaterial 3D printing for emulsion generation. Sci. Rep. 8:4791
    [Google Scholar]
  43. 43. 
    Femmer T, Jans A, Eswein R, Anwar N, Moeller M et al. 2015. High-throughput generation of emulsions and microgels in parallelized microfluidic drop-makers prepared by rapid prototyping. ACS Appl. Mater. Interfaces 7:12635–38
    [Google Scholar]
  44. 44. 
    Morgan AJL, San Jose LH, Jamieson WD, Wymant JM, Song B et al. 2015. Simple and versatile 3D printed microfluidics using fused filament fabrication. PLOS ONE 11:e0152023
    [Google Scholar]
  45. 45. 
    Alessandri K, Feyeux M, Gurchenkov B, Delgado C, Trushko A et al. 2016. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human neuronal stem cells (hNSC). Lab Chip 16:1593–604
    [Google Scholar]
  46. 46. 
    Monaghan T, Harding MJ, Harris RA, Friel RJ, Christie SDR 2016. Customizable 3D printed microfluidics for integrated analysis and optimization. Lab Chip 16:3362–73
    [Google Scholar]
  47. 47. 
    Hampson SM, Rowe W, Christie SDR, Platt M 2018. 3D printed microfluidic device with integrated optical sensing for particle analysis. Sens. Actuators B 256:1030–37
    [Google Scholar]
  48. 48. 
    Bishop GW, Satterwhite-Warden JE, Bist I, Chen E, Rusling JF 2016. Electrochemiluminescence at bare and DNA-coated graphite electrodes in 3D-printed fluidic devices. ACS Sens 1:197–202
    [Google Scholar]
  49. 49. 
    Kadimisetty K, Spak AP, Bhalerao KS, Sharafeldin M, Mosa IM et al. 2018. Automated 4-sample protein immunoassays using 3D-printed microfluidics. Anal. Methods 10:4000–6
    [Google Scholar]
  50. 50. 
    Santangelo MF, Libertino S, Turner APF, Filippini D, Mak WC 2018. Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection. Biosens. Bioelectron. 99:464–70
    [Google Scholar]
  51. 51. 
    Sun Q, Wang J, Tang M, Huang L, Zhang Z et al. 2017. A new electrochemical system based on a flow-field shaped solid electrode and 3D-printed thin-layer flow cell: detection of Pb2+ ions by continuous flow accumulation square-wave anodic stripping voltammetry. Anal. Chem. 89:5024–29
    [Google Scholar]
  52. 52. 
    McDonough JR, Law R, Reay DA, Zivkovic V 2019. Fluidization in small-scale gas-solid 3D-printed fluidized beds. Chem. Eng. Sci. 200:294–309
    [Google Scholar]
  53. 53. 
    Eberlin MN, Augusto F, Poppi RJ, Gobbi AL, Hantao LW 2017. Simple, expendable, 3D-printed microfluidic systems for sample preparation of petroleum. Anal. Chem. 89:3460–67
    [Google Scholar]
  54. 54. 
    Calderilla C, Maya F, Cerda V, Leal LO 2018. 3D printed device for the automated preconcentration and determination of chromium (VI). Talanta 184:15–22
    [Google Scholar]
  55. 55. 
    Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A et al. 2016. 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 16:668–78
    [Google Scholar]
  56. 56. 
    Li F, Smejkal P, Macdonald NP, Guijt RM, Breadmore MC 2017. One-step fabrication of a microfluidic device with an integrated membrane and embedded reagents by multimaterial 3D printing. Anal. Chem. 89:4701–7
    [Google Scholar]
  57. 57. 
    Urrios A, Parra-Cabrera C, Bhattacharjee N, Gonzalez-Suarez AM, Rigat-Brugarolas LG et al. 2016. 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 16:2287–94
    [Google Scholar]
  58. 58. 
    Takenaga S, Schneider B, Erbay E, Biselli M, Schnitzler T et al. 2015. Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process. Phys. Status Solidi A 212:1347–52
    [Google Scholar]
  59. 59. 
    Salentijn GIJ, Oomen PE, Grajewski M, Verpoorte E 2017. Fused deposition modeling 3D printing for (bio)analytical device fabrication: procedures, materials, and applications. Anal. Chem. 89:7053–61
    [Google Scholar]
  60. 60. 
    Lee W, Kwon D, Chung B, Yung GY, Au A et al. 2014. Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Anal. Chem. 86:6683–88
    [Google Scholar]
  61. 61. 
    Duartea LC, Figueredo F, Ribeiro LEB, Cortón E, Coltro WKT 2019. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection. Anal. Chim. Acta 1071:36–43
    [Google Scholar]
  62. 62. 
    Beckwith AL, Borenstein JT, Velasquez-Garcia LF 2018. Monolithic, 3D-printed microfluidic platform for recapitulation of dynamic tumor microenvironments. J. Microelectromech. Syst. 27:1009–22
    [Google Scholar]
  63. 63. 
    Anderson KB, Lockwood SY, Martin RS, Spence DM 2013. A 3D printed fluidic device that enables integrated features. Anal. Chem. 85:5622–26
    [Google Scholar]
  64. 64. 
    Erkal JL, Selimovic A, Gross BC, Lockwood SY, Walton EL et al. 2014. 3D printed microfluidic devices with integrated versatile and reusable electrodes. Lab Chip 14:2023–32
    [Google Scholar]
  65. 65. 
    Walczak R, Adamski K, Kubicki W 2018. Inkjet 3D printed chip for capillary gel electrophoresis. Sens. Actuators B 261:474–80
    [Google Scholar]
  66. 66. 
    Li F, Macdonald NP, Guijt RM, Breadmore MC 2019. Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids. Anal. Chem. 91:1758–63
    [Google Scholar]
  67. 67. 
    Lim C, Lee Y, Kulinsky L 2018. Fabrication of a malaria-Ab ELISA bioassay platform with utilization of syringe-based and 3D printed assay automation. Micromachines 9:502
    [Google Scholar]
  68. 68. 
    Hwang Y, Paydar OH, Chandler RN 2015. 3D printed molds for non-planar PDMS microfluidic channels. Sens. Actuators A 226:137–42
    [Google Scholar]
  69. 69. 
    Brooks JC, Ford KI, Holder DH, Holtan MD, Easley CJ 2016. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue. Analyst 141:5714–21
    [Google Scholar]
  70. 70. 
    Cairone F, Gagliano S, Carbone DC, Recca G, Bucolo M 2016. Micro optofluidic switch realized by 3D printing technology. Microfluid. Nanofluid. 20:61
    [Google Scholar]
  71. 71. 
    Comina G, Suska A, Filippini D 2014. PDMS lab-on-a-chip fabrication using 3D printed templates. Lab Chip 14:424–30
    [Google Scholar]
  72. 72. 
    Kang K, Oh S, Yi H, Han S, Hwang Y 2018. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold. Biomicrofluidics 12:014105
    [Google Scholar]
  73. 73. 
    Qiu J, Gao Q, Zhao H, Fu J, He Y 2017. Rapid customization of 3D integrated microfluidic chips via modular structure-based design. ACS Biomater. Sci. Eng. 3:2606–16
    [Google Scholar]
  74. 74. 
    Stumberger G, Vihar B. 2018. Freeform perfusable microfluidics embedded in hydrogel matrices. Materials 11:2529
    [Google Scholar]
  75. 75. 
    Chan HN, Chen Y, Shu Y, Chen Y, Tian Q, Wu H 2015. Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid. Nanofluid. 19:9–18
    [Google Scholar]
  76. 76. 
    Saggiomo V, Velders AH. 2015. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci. 2:1500125
    [Google Scholar]
  77. 77. 
    Goh WH, Hashimoto M. 2018. Dual sacrificial molding: fabricating 3D microchannels with overhang and helical features. Micromachines 9:523
    [Google Scholar]
  78. 78. 
    Hamad EM, Bilatto SER, Adly NY, Correa DS, Wolfrum B et al. 2016. Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices. Lab Chip 16:70–74
    [Google Scholar]
  79. 79. 
    Bressan LP, Robles-Najar J, Adamo CB, Quero RF, Costa BMC et al. 2019. 3D-printed microfluidic device for the synthesis of silver and gold nanoparticles. Microchem. J. 146:1083–89
    [Google Scholar]
  80. 80. 
    Bressan LP, Adamo CB, Quero RF, de Jesus DP, da Silva JAF 2019. A simple procedure to produce FDM-based 3D-printed microfluidic devices with an integrated PMMA optical window. Anal. Methods 11:1014–20
    [Google Scholar]
  81. 81. 
    Comina G, Suska A, Filippini D 2015. 3D printed unibody lab-on-a-chip: features survey and check-valves integration dagger. Micromachines 6:437–51
    [Google Scholar]
  82. 82. 
    Kise DP, Reddish MJ, Dyer RB 2015. Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis. J. Micromech. Microeng. 25:124002
    [Google Scholar]
  83. 83. 
    Kadimissetty K, Song J, Doto AM, Hwang Y, Peng J et al. 2018. Fully 3D printed integrated reactor array for point-of-care molecular diagnostics. Biosens. Bioelectron. 109:156–63
    [Google Scholar]
  84. 84. 
    Anciaux SK, Geiger M, Bowser MT 2016. 3D printed micro free-flow electrophoresis device. Anal. Chem. 88:7675–82
    [Google Scholar]
  85. 85. 
    Yuen PK. 2016. Embedding objects during 3D printing to add new functionalities. Biomicrofluidics 10:044104
    [Google Scholar]
  86. 86. 
    Marschewski J, Brenner L, Ebejer N, Ruch P, Michel B, Poulikakos D 2017. 3D-printed fluidic networks for high-power-density heat-managing miniaturized redox flow batteries. Energy Environ. Sci. 10:780–87
    [Google Scholar]
  87. 87. 
    Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP 2015. Optical approach to resin formulation for 3D printed microfluidics. RSC Adv 5:106621
    [Google Scholar]
  88. 88. 
    Gong H, Woolley AT, Nordin GP 2016. High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip 16:2450–58
    [Google Scholar]
  89. 89. 
    Schmid MC, Wussler D, Kotz F, Rapp BE 2019. Wavelength-selective negative photoresist for photolithography suitable for generating microstructures with up to three distinct height levels. Proc. SPIE 10915: Organic Photonic Mat. Devices XXI 1091511
    [Google Scholar]
  90. 90. 
    Jonusauskas L, Gailevicius D, Rekstyte S, Juodkazis S, Malinauskas M 2018. Synchronization of linear stages and galvo-scanners for efficient direct laser fabrication of polymeric 3D meso-scale structures. Proc. SPIE 10523: Laser 3D Manuf. V 105230X
    [Google Scholar]
  91. 91. 
    Juskova P, Ollitrault A, Serra M, Viovy JL, Malaquin L 2018. Resolution improvement of 3D stereo-lithography through the direct laser trajectory programming: application to microfluidic deterministic lateral displacement device. Anal. Chim. Acta 1000:239–47
    [Google Scholar]
  92. 92. 
    Mannel MJ, Selzer L, Bernhardt R, Thiele J 2018. Optimizing process parameters in commercial micro-stereolithography for forming emulsions and polymer microparticles in nonplanar microfluidic devices. Adv. Mater. Technol. 4:1800408
    [Google Scholar]
  93. 93. 
    Gong H, Bickham BP, Woolley AT, Nordin GP 2017. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip 17:2899–909
    [Google Scholar]
  94. 94. 
    Beauchamp MJ, Gong H, Woolley AT, Nordin GP 2018. 3D printed microfluidic features using dose control in X, Y, and Z dimensions. Micromachines 9:326
    [Google Scholar]
  95. 95. 
    Gong H, Woolley AT, Nordin GP 2018. 3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab Chip 18:639–47
    [Google Scholar]
  96. 96. 
    Gong H, Woolley AT, Nordin GP 2019. 3D printed selectable dilution mixer pumps. Biomicrofluidics 13:014106
    [Google Scholar]
  97. 97. 
    Parker EK, Nielsen AV, Beauchamp MJ, Almughamsi HM, Nielsen JB et al. 2019. 3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers. Anal. Bioanal. Chem. 411:5405–13
    [Google Scholar]
  98. 98. 
    Beauchamp MJ, Nielsen AV, Gong H, Nordin GP, Woolley AT 2019. 3D printed microfluidic devices for microchip electrophoresis of preterm birth biomarkers. Anal. Chem. 91:7418–25
    [Google Scholar]
  99. 99. 
    Gal-Or E, Gershoni Y, Scotti G, Nilsson SME, Saarinen J et al. 2019. Chemical analysis using 3D printed glass microfluidics. Anal. Methods 11:1802–10
    [Google Scholar]
  100. 100. 
    Chen L, Tang X, Xie P, Xu J, Chen Z et al. 2018. 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction. Chem. Mater. 30:799–806
    [Google Scholar]
  101. 101. 
    Castiaux AD, Pinger CW, Hayter EA, Bunn ME, Martin RS, Spence DM 2019. PolyJet 3D-printed enclosed microfluidic channels without photocurable supports. Anal. Chem. 91:6910–17
    [Google Scholar]
  102. 102. 
    Bückmann T, Stenger N, Kadic M, Kashke J, Frölich A et al. 2012. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24:2710–14
    [Google Scholar]
  103. 103. 
    Mayer F, Richter S, Westhauser J, Blasco E, Barner-Kowollik C, Wegener M 2019. Multimaterial 3D laser microprinting using an integrated microfluidic system. Sci. Adv. 5:eaau91
    [Google Scholar]
  104. 104. 
    di Giacomo R, Krödel S, Maresca B, Benzoni P, Rusconi R et al. 2017. Deployable micro-traps to sequester motile bacteria. Sci. Rep. 7:45897
    [Google Scholar]
  105. 105. 
    Son AI, Opfermann JD, McCue C, Ziobro J, Abrahams JH III et al. 2017. An implantable micro-caged device for direct local delivery of agents. Sci. Rep. 7:17624
    [Google Scholar]
  106. 106. 
    Perrucci F, Bertana V, Marasso SL, Scordo G, Ferrero S et al. 2018. Optimization of a suspended two photon polymerized microfluidic filtration system. Microelectron. Eng. 195:95–100
    [Google Scholar]
  107. 107. 
    Alsharhan AT, Acevedo R, Warren R, Sochol RD 2019. 3D microfluidics via cyclic olefin polymer-based in situ direct laser writing. Lab Chip 19:2799–810
    [Google Scholar]
  108. 108. 
    Lamont AC, Alsharhan AT, Sochol RD 2019. Geometric determinants of in-situ direct laser writing. Sci. Rep. 9:394
    [Google Scholar]
  109. 109. 
    Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR et al. 2015. Continuous liquid interface production of 3D objects. Science 347:1349–52
    [Google Scholar]
  110. 110. 
    Ware HOT, Farsheed AC, Akar B, Duan C, Chen X et al. 2018. High-speed on-demand 3D printed bioresorbable vascular scaffolds. Mater. Today Chem. 7:25–34
    [Google Scholar]
  111. 111. 
    Shao G, Ware HOT, Chen X, Li L, Sun C 2019. High-resolution 3D printing magnetically-active microstructures using micro-CLIP process. Proc. SPIE 10969, Nano-, Bio-, Info-Tech Sensors and 3D Systems III, 109690M
    [Google Scholar]
  112. 112. 
    Kuang X, Zhao Z, Chen K, Fang D, Kang G, Qi HJ 2018. High-speed 3D printing of high-performance thermosetting polymers via two-stage curing. Macromol. Rapid Commun. 39:1700809
    [Google Scholar]
  113. 113. 
    de Beer MP, van der Laan HL, Cole MA, Whelan RJ, Burns MA, Scott TF 2019. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv. 5:eaau8723
    [Google Scholar]
  114. 114. 
    Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK 2019. Volumetric additive manufacturing via tomographic reconstruction. Science 363:1075–79
    [Google Scholar]
  115. 115. 
    Friddin MS, Elani Y, Trantidou T, Ces O 2019. New directions for artificial cells using rapid prototyped biosystems. Anal. Chem. 91:4921–28
    [Google Scholar]
  116. 116. 
    Kuang X, Chen K, Dunn CK, Wu J, Li VCF, Qi HJ 2018. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl. Mater. Interfaces 10:7381–88
    [Google Scholar]
  117. 117. 
    Romanov V, Samuel R, Chaharland M, Jafek AR, Frost A, Gale BK 2018. FDM 3D printing of high-pressure, heat-resistant, transparent microfluidic devices. Anal. Chem. 90:10450–56
    [Google Scholar]
  118. 118. 
    Zheng X, Deotte J, Alonso MP, Farquar GR, Weisgraber TH et al. 2012. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83:125001
    [Google Scholar]
  119. 119. 
    Lehtinen P, Kaivola M, Korhonen H, Seppälä J, Partanen J 2017. Producing parts with multiple layer thicknesses by projection stereolithography. Int. J. Rapid Manuf. 6:087542
    [Google Scholar]
  120. 120. 
    Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A 2018. Desktop‐stereolithography 3D‐printing of a poly(dimethylsiloxane)‐based material with Sylgard‐184 properties. Adv. Mat. 30:1800001
    [Google Scholar]
  121. 121. 
    Voet VSD, Strating T, Schnelting GHM, Dijkstra P, Tietema M et al. 2018. Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega 3:1403–8
    [Google Scholar]
  122. 122. 
    Pearre BW, Michas C, Tsang JM, Gardner TJ, Otchy TM 2019. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope. Addit. Manuf. 30:100887
    [Google Scholar]
  123. 123. 
    Waldbaur A, Carneiro B, Hettich P, Wilhelm E, Rapp BE 2013. Computer-aided microfluidics (CAMF): from digital 3D-CAD models to physical structures within a day. Microfluid. Nanofluid. 15:625–35
    [Google Scholar]
  124. 124. 
    Bertana V, Potrich C, Pirri CF, Pedezolli C, Cocuzza M, Marasso SL 2018. 3D-printed microfluidics on thin poly(methyl methacrylate) substrates for genetic applications. J. Vac. Sci. Technol. B 36:01A106
    [Google Scholar]
  125. 125. 
    Kowsari K, Akbari S, Wang D, Fang NX, Ge Q 2018. High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. Addit. Manuf. 5:185–93
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091619-102649
Loading
/content/journals/10.1146/annurev-anchem-091619-102649
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error