1932

Abstract

Label-free electrochemical biosensing leverages the advantages of label-free techniques, low cost, and fewer user steps, with the sensitivity and portability of electrochemical analysis. In this review, we identify four label-free electrochemical biosensing mechanisms: () blocking the electrode surface, () allowing greater access to the electrode surface, () changing the intercalation or electrostatic affinity of a redox probe to a biorecognition unit, and () modulating ion or electron transport properties due to conformational and surface charge changes. Each mechanism is described, recent advancements are summarized, and relative advantages and disadvantages of the techniques are discussed. Furthermore, two avenues for gaining further diagnostic information from label-free electrochemical biosensors, through multiplex analysis and incorporating machine learning, are examined.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091622-085754
2023-06-14
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091622-085754.html?itemId=/content/journals/10.1146/annurev-anchem-091622-085754&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Putzbach W, Ronkainen N. 2013. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13:44811–40
    [Google Scholar]
  2. 2.
    Wehmeyer KR, White RJ, Kissinger PT, Heineman WR. 2021. Electrochemical affinity assays/sensors: brief history and current status. Annu. Rev. Anal. Chem. 14:109–31
    [Google Scholar]
  3. 3.
    Zhu L, Liu X, Yang J, He Y, Li Y. 2020. Application of multiplex microfluidic electrochemical sensors in monitoring hematological tumor biomarkers. Anal Chem. 92:1711981–86
    [Google Scholar]
  4. 4.
    Ebrahimi G, Samadi Pakchin P, Shamloo A, Mota A, de la Guardia M et al. 2022. Label-free electrochemical microfluidic biosensors: futuristic point-of-care analytical devices for monitoring diseases. Microchim. Acta 189:7252
    [Google Scholar]
  5. 5.
    Bazin I, Tria SA, Hayat A, Marty J-L. 2017. New biorecognition molecules in biosensors for the detection of toxins. Biosens. Bioelectron. 87:285–98
    [Google Scholar]
  6. 6.
    Labib M, Sargent EH, Kelley SO. 2016. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev. 116:169001–90
    [Google Scholar]
  7. 7.
    Sang S, Wang Y, Feng Q, Wei Y, Ji J, Zhang W 2015. Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol. 36:3465–81
    [Google Scholar]
  8. 8.
    Daniels JS, Pourmand N. 2007. Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19:121239–57
    [Google Scholar]
  9. 9.
    Li B, Yu Q, Duan Y 2015. Fluorescent labels in biosensors for pathogen detection. Crit. Rev. Biotechnol. 35:182–93
    [Google Scholar]
  10. 10.
    Kokkinos C. 2019. Electrochemical DNA biosensors based on labeling with nanoparticles. Nanomaterials 9:101361
    [Google Scholar]
  11. 11.
    Farzin MA, Abdoos H. 2021. A critical review on quantum dots: from synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta 224:121828
    [Google Scholar]
  12. 12.
    Rhouati A, Marty J-L, Vasilescu A. 2021. Electrochemical biosensors combining aptamers and enzymatic activity: challenges and analytical opportunities. Electrochim. Acta 390:138863
    [Google Scholar]
  13. 13.
    Koyappayil A, Lee M-H. 2020. Ultrasensitive materials for electrochemical biosensor labels. Sensors 21:189
    [Google Scholar]
  14. 14.
    Cesewski E, Johnson BN. 2020. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159:112214
    [Google Scholar]
  15. 15.
    Justino CIL, Rocha-Santos TA, Duarte AC. 2010. Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends Anal. Chem. 29:101172–83
    [Google Scholar]
  16. 16.
    Peveler WJ, Yazdani M, Rotello VM. 2016. Selectivity and specificity: pros and cons in sensing. ACS Sens. 1:111282–85
    [Google Scholar]
  17. 17.
    Berendsen WE, Lapin A, Reuss M. 2006. Investigations of reaction kinetics for immobilized enzymes—identification of parameters in the presence of diffusion limitation. Biotechnol. Prog. 22:51305–12
    [Google Scholar]
  18. 18.
    Anandan V, Yang X, Kim E, Rao YL, Zhang G. 2007. Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes. J. Biol. Eng. 1:15
    [Google Scholar]
  19. 19.
    Squires TM, Messinger RJ, Manalis SR. 2008. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat. Biotechnol. 26:4417–26
    [Google Scholar]
  20. 20.
    German N, Ramanavicius A, Voronovic J, Ramanaviciene A. 2012. Glucose biosensor based on glucose oxidase and gold nanoparticles of different sizes covered by polypyrrole layer. Colloids Surf. A Physicochem. Eng. Asp. 413:224–30
    [Google Scholar]
  21. 21.
    Movilli J, Kolkman RW, Rozzi A, Corradini R, Segerink LI, Huskens J. 2020. Increasing the sensitivity of electrochemical DNA detection by a micropillar-structured biosensing surface. Langmuir 36:164272–79
    [Google Scholar]
  22. 22.
    Rafique S, Bin W, Bhatti AS. 2015. Electrochemical immunosensor for prostate-specific antigens using a label-free second antibody based on silica nanoparticles and polymer brush. Bioelectrochemistry 101:75–83
    [Google Scholar]
  23. 23.
    Morales MA, Halpern JM. 2018. Guide to selecting a biorecognition element for biosensors. Bioconjug. Chem. 29:103231–39
    [Google Scholar]
  24. 24.
    Sfragano PS, Moro G, Polo F, Palchetti I. 2021. The role of peptides in the design of electrochemical biosensors for clinical diagnostics. Biosensors 11:8246
    [Google Scholar]
  25. 25.
    Lichtenberg JY, Ling Y, Kim S 2019. Non-specific adsorption reduction methods in biosensing. Sensors 19:112488
    [Google Scholar]
  26. 26.
    Hayat A, Marty JL. 2014. Aptamer based electrochemical sensors for emerging environmental pollutants. Front. Chem. 2:41
    [Google Scholar]
  27. 27.
    Du Y, Li B, Wang E 2013.. “ Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc. Chem. Res. 46:2203–13
    [Google Scholar]
  28. 28.
    Fojta M, Havran L, Fulnečová J, Kubičárová T 2000. Adsorptive transfer stripping AC voltammetry of DNA complexes with intercalators. Electroanalysis 12:12926–34
    [Google Scholar]
  29. 29.
    Jamei HR, Rezaei B, Ensafi AA. 2021. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C60/MWCNTs-polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry 138:107701
    [Google Scholar]
  30. 30.
    Guan J, He K, Gunasekaran S. 2022. Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta 243:123292
    [Google Scholar]
  31. 31.
    Fan K, Zhu J, Wu X, Zhang X, Wang S, Wen W 2022. A flexible label-free electrochemical aptasensor based on target-induced conjunction of two split aptamers and enzyme amplification. Sens. Actuators B 363:131766
    [Google Scholar]
  32. 32.
    Capatina D, Lupoi T, Feier B, Blidar A, Hosu O et al. 2022. Label-free electrochemical aptasensor for the detection of the 3-O-C12-HSL quorum-sensing molecule in Pseudomonas aeruginosa. Biosensors 12:7440
    [Google Scholar]
  33. 33.
    Yousef H, Liu Y, Zheng L. 2022. Nanomaterial-based label-free electrochemical aptasensors for the detection of thrombin. Biosensors 12:4253
    [Google Scholar]
  34. 34.
    Ricci F, Plaxco KW. 2008. E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Microchim. Acta 163:3–4149–55
    [Google Scholar]
  35. 35.
    Radi A-E, Abd-Ellatief MR. 2021. Electrochemical aptasensors: current status and future perspectives. Diagnostics 11:1104
    [Google Scholar]
  36. 36.
    Majdinasab M, Marty JL. 2022. Recent advances in electrochemical aptasensors for detection of biomarkers. Pharmaceuticals 15:8995
    [Google Scholar]
  37. 37.
    Díaz-Fernández A, Lorenzo-Gómez R, Miranda-Castro R, de-los-Santos-Álvarez N, Lobo-Castañón MJ. 2020. Electrochemical aptasensors for cancer diagnosis in biological fluids—a review. Anal. Chim. Acta 1124:1–19
    [Google Scholar]
  38. 38.
    Forouzanfar S, Alam F, Pala N, Wang C. 2020. A review of electrochemical aptasensors for label-free cancer diagnosis. J. Electrochem. Soc. 167:6067511
    [Google Scholar]
  39. 39.
    Liu N, Liu R, Zhang J. 2022. CRISPR-Cas12a-mediated label-free electrochemical aptamer-based sensor for SARS-CoV-2 antigen detection. Bioelectrochemistry 146:108105
    [Google Scholar]
  40. 40.
    Vestergaard M, Kerman K, Tamiya E. 2007. An overview of label-free electrochemical protein sensors. Sensors 7:3442–58
    [Google Scholar]
  41. 41.
    Radecka H, Radecki J. 2015. Label-free electrochemical immunosensors for viruses and antibodies detection-review. J. Mex. Chem. Soc. 59:4269–75
    [Google Scholar]
  42. 42.
    Feng K, Li T, Ye C, Gao X, Yang T et al. 2021. A label-free electrochemical immunosensor for rapid detection of salmonella in milk by using CoFe-MOFs-graphene modified electrode. Food Control 130:108357
    [Google Scholar]
  43. 43.
    Wang A, You X, Liu H, Zhou J, Chen Y et al. 2022. Development of a label free electrochemical sensor based on a sensitive monoclonal antibody for the detection of tiamulin. Food Chem. 366:130573
    [Google Scholar]
  44. 44.
    Biswas S, Lan Q, Xie Y, Sun X, Wang Y. 2021. Label-free electrochemical immunosensor for ultrasensitive detection of carbohydrate antigen 125 based on antibody-immobilized biocompatible MOF-808/CNT. ACS Appl. Mater. Interfaces 13:23295–302
    [Google Scholar]
  45. 45.
    Cui B, Liu P, Liu X, Liu S, Zhang Z. 2020. Molecularly imprinted polymers for electrochemical detection and analysis: progress and perspectives. J. Mat. Res. Technol. 5:612568–84
    [Google Scholar]
  46. 46.
    Kröger S, Turner APF, Mosbach K, Haupt K. 1999. Imprinted polymer-based sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes. Anal. Chem. 71:173698–3702
    [Google Scholar]
  47. 47.
    Sharma PS, Garcia-Cruz A, Cieplak M, Noworyta KR, Kutner W. 2019.. ‘ Gate effect’ in molecularly imprinted polymers: the current state of understanding. Curr. Opin. Electrochem. 16:50–56
    [Google Scholar]
  48. 48.
    Li G, Qi X, Wu J, Xu L, Wan X et al. 2022. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J. Hazard. Mater. 436:129107
    [Google Scholar]
  49. 49.
    Ratautaite V, Boguzaite R, Brazys E, Ramanaviciene A, Ciplys E et al. 2022. Molecularly imprinted polypyrrole based sensor for the detection of SARS-CoV-2 spike glycoprotein. Electrochim. Acta 403:139581
    [Google Scholar]
  50. 50.
    Raziq A, Kidakova A, Boroznjak R, Reut J, Öpik A, Syritski V. 2021. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 178:113029
    [Google Scholar]
  51. 51.
    Wang R, Wang L, Yan J, Luan D, Sun T et al. 2021. Rapid, sensitive and label-free detection of pathogenic bacteria using a bacteria-imprinted conducting polymer film-based electrochemical sensor. Talanta 226:122135
    [Google Scholar]
  52. 52.
    Hanpanich O, Lomae A, Maruyama A, Palaga T, Chailapakul O, Ngamrojanavanich N. 2023. Label-free detection of HPV mRNA with an artificial chaperone-enhanced MNAzyme (ACEzyme)-based electrochemical sensor. Biosens. Bioelectron. 221:114352
    [Google Scholar]
  53. 53.
    Tang C, Zou Z, Liang T, Yuan C, Gao J et al. 2022. Methylene blue intercalated aptamer to amplify signals toward sensitively electrochemical detection of dopamine released from living Parkinson's disease model cells. Sens. Actuators Rep. 4:100080
    [Google Scholar]
  54. 54.
    Pothipor C, Aroonyadet N, Bamrungsap S, Jakmunee J, Ounnunkad K. 2021. A highly sensitive electrochemical microRNA-21 biosensor based on intercalating methylene blue signal amplification and a highly dispersed gold nanoparticles/graphene/polypyrrole composite. Analyst 146:82679–88
    [Google Scholar]
  55. 55.
    Liao X, Zhang C, Shi Z, Shi H, Qian Y, Gao F. 2020. Signal-on and label-free electrochemical detection of amyloid β oligomers based on dual amplification induced hemin/G-quadruplex formation. J. Electroanal. Chem. 878:114604
    [Google Scholar]
  56. 56.
    Zhao L-L, Pan H-Y, Zhang X-X, Zhou Y-L. 2020. Ultrasensitive detection of microRNA based on a homogeneous label-free electrochemical platform using G-triplex/methylene blue as a signal generator. Anal. Chim. Acta 1116:62–69
    [Google Scholar]
  57. 57.
    Bi Q, Qiu F, Yuan R, Xiang Y. 2021. In situ formation of G-quadruplex/hemin nanowires for sensitive and label-free electrochemical sensing of acid phosphatase. Sens. Actuators B 330:129272
    [Google Scholar]
  58. 58.
    Hai X, Li Y, Zhu C, Song W, Cao J, Bi S. 2020. DNA-based label-free electrochemical biosensors: from principles to applications. Trends Anal. Chem. 133:116098
    [Google Scholar]
  59. 59.
    Li H, Qi H, Chang J, Gai P, Li F. 2022. Recent progress in homogeneous electrochemical sensors and their designs and applications. Trends Anal. Chem. 156:116712
    [Google Scholar]
  60. 60.
    Nano A, Furst AL, Hill MG, Barton JK. 2021. DNA electrochemistry: charge-transport pathways through DNA films on gold. J. Am. Chem. Soc. 143:3011631–40
    [Google Scholar]
  61. 61.
    Wasiewska LA, Diaz FG, Shao H, Burgess CM, Duffy G, O'Riordan A. 2022. Highly sensitive electrochemical sensor for the detection of Shiga toxin-producing E. coli (STEC) using interdigitated micro-electrodes selectively modified with a chitosan-gold nanocomposite. Electrochim. Acta 426:140748
    [Google Scholar]
  62. 62.
    Moccia M, Caratelli V, Cinti S, Pede B, Avitabile C et al. 2020. Paper-based electrochemical peptide nucleic acid (PNA) biosensor for detection of miRNA-492: a pancreatic ductal adenocarcinoma biomarker. Biosens. Bioelectron. 165:112371
    [Google Scholar]
  63. 63.
    He Y, Cheng L, Yang Y, Chen P, Qiu B et al. 2020. Label-free homogeneous electrochemical biosensor for HPV DNA based on entropy-driven target recycling and hyperbranched rolling circle amplification. Sens. Actuators B 320:128407
    [Google Scholar]
  64. 64.
    Zheng J, Xu X, Zhu H, Pan Z, Li X et al. 2022. Label-free and homogeneous electrochemical biosensor for flap endonuclease 1 based on the target-triggered difference in electrostatic interaction between molecular indicators and electrode surface. Biosensors 12:7528
    [Google Scholar]
  65. 65.
    Liao X, Zhang C, Machuki JO, Wen X, Chen D et al. 2021. Proximity hybridization triggered hybridization chain reaction for label-free electrochemical homogeneous aptasensors. Talanta 226:122058
    [Google Scholar]
  66. 66.
    Yang L, Yin X, Gai P, Li F. 2020. A label-free homogeneous electrochemical cytosensor for the ultrasensitive detection of cancer cells based on multiaptamer-functionalized DNA tetrahedral nanostructures. Chem. Commun. 56:273883–86
    [Google Scholar]
  67. 67.
    Yang L, Yin X, An B, Li F 2021. Precise capture and direct quantification of tumor exosomes via a highly efficient dual-aptamer recognition-assisted ratiometric immobilization-free electrochemical strategy. Anal. Chem. 93:31709–16
    [Google Scholar]
  68. 68.
    Lam B, Das J, Holmes RD, Live L, Sage A et al. 2013. Solution-based circuits enable rapid and multiplexed pathogen detection. Nat. Commun. 4:2001
    [Google Scholar]
  69. 69.
    Cai SL, Zheng YB, Cao SH, Cai XH, Li YQ. 2016. A conformation and charge co-modulated ultrasensitive biomimetic ion channel. Chem. Commun. 52:8412450–53
    [Google Scholar]
  70. 70.
    de Moraes ACM, Kubota LT. 2016. Recent trends in field-effect transistors-based immunosensors. Chemosensors 4:420
    [Google Scholar]
  71. 71.
    Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov AP, Edel JB. 2020. Solid-state nanopore sensors. Nat. Rev. Mater. 5:12931–51
    [Google Scholar]
  72. 72.
    Shi W, Friedman AK, Baker LA. 2017. Nanopore sensing. Anal. Chem. 89:1157–88
    [Google Scholar]
  73. 73.
    Varongchayakul N, Song J, Meller A, Grinstaff MW. 2018. Single-molecule protein sensing in a nanopore: a tutorial. Chem. Soc. Rev. 47:238512–24
    [Google Scholar]
  74. 74.
    Rosenstein JK, Wanunu M, Merchant CA, Drndic M, Shepard KL. 2012. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9:5487–92
    [Google Scholar]
  75. 75.
    Kasianowicz JJ, Brandin E, Branton D, Deamer DW. 1996. Characterization of individual polynucleotide molecules using a membrane channel. PNAS 13:13770–73
    [Google Scholar]
  76. 76.
    Akhtarian S, Miri S, Doostmohammadi A, Brar SK, Rezai P. 2021. Nanopore sensors for viral particle quantification: current progress and future prospects. Bioengineered 12:29189–215
    [Google Scholar]
  77. 77.
    Zhang M, Chen C, Zhang Y, Geng J. 2022. Biological nanopores for sensing applications. Proteins 90:101786–99
    [Google Scholar]
  78. 78.
    Das N, Chakraborty B, RoyChaudhuri C. 2022. A review on nanopores based protein sensing in complex analyte. Talanta 243:123368
    [Google Scholar]
  79. 79.
    He Y, Tsutsui M, Zhou Y, Miao X-S. 2021. Solid-state nanopore systems: from materials to applications. NPG Asia Mater. 13:148
    [Google Scholar]
  80. 80.
    Christensen ST, Ott CM. 2007. A ciliary signaling switch. Science 317:5836330–31
    [Google Scholar]
  81. 81.
    Cui M, Ge Y, Zhuge X, Zhou X, Xi D, Zhang S. 2021. Recent advances in nanopore sensing. Chin. J. Chem. 39:72035–43
    [Google Scholar]
  82. 82.
    Taniguchi M, Minami S, Ono C, Hamajima R, Morimura A et al. 2021. Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection. Nat. Commun. 12:3726
    [Google Scholar]
  83. 83.
    Vörös J, Momotenko D, Nakatsuka N, Faillétaz A, Eggemann D, Forró C. 2021. Aptamer conformational change enables serotonin biosensing with nanopipettes. Anal. Chem. 93:84033–41
    [Google Scholar]
  84. 84.
    Duleba D, Johnson RP. 2022. Sensing with ion current rectifying solid-state nanopores. Curr. Opin. Electrochem. 34:100989
    [Google Scholar]
  85. 85.
    Wen C, Zeng S, Li S, Zhang Z, Zhang SL. 2019. On rectification of ionic current in nanopores. Anal. Chem. 91:2214597–604
    [Google Scholar]
  86. 86.
    Zhang S, Chen W, Song L, Wang X, Sun W et al. 2021. Recent advances in ionic current rectification based nanopore sensing: a mini-review. Sens. Actuators Rep. 3:100042
    [Google Scholar]
  87. 87.
    Cai SL, Cao SH, Zheng YB, Zhao S, Yang JL, Li YQ. 2015. Surface charge modulated aptasensor in a single glass conical nanopore. Biosens. Bioelectron. 71:37–43
    [Google Scholar]
  88. 88.
    Zhao D, Tang H, Wang H, Yang C, Li Y 2020. Analytes triggered conformational switch of i-motif DNA inside gold-decorated solid-state nanopores. ACS Sens. 5:72177–83
    [Google Scholar]
  89. 89.
    Devarakonda S, Ganapathysubramanian B, Shrotriya P. 2022. Impedance-based nanoporous anodized alumina/ITO platforms for label-free biosensors. ACS Appl. Mater Interfaces 14:1150–58
    [Google Scholar]
  90. 90.
    Sensale S, Ramshani Z, Senapati S, Chang HC. 2021. Universal features of non-equilibrium ionic currents through perm-selective membranes: gating by charged nanoparticles/macromolecules for robust biosensing applications. J. Phys. Chem. B 125:71906–15
    [Google Scholar]
  91. 91.
    Yin Z, Ramshani Z, Waggoner JJ, Pinsky BA, Senapati S, Chang HC. 2020. A non-optical multiplexed PCR diagnostic platform for serotype-specific detection of dengue virus. Sens. Actuators B 310:127854
    [Google Scholar]
  92. 92.
    Slouka Z, Senapati S, Shah S, Lawler R, Shi Z et al. 2015. Integrated, DC voltage-driven nucleic acid diagnostic platform for real sample analysis: detection of oral cancer. Talanta 145:35–42
    [Google Scholar]
  93. 93.
    Senapati S, Slouka Z, Shah SS, Behura SK, Shi Z et al. 2014. An ion-exchange nanomembrane sensor for detection of nucleic acids using a surface charge inversion phenomenon. Biosens. Bioelectron. 60:92–100
    [Google Scholar]
  94. 94.
    Ramshani Z, Zhang C, Richards K, Chen L, Xu G et al. 2019. Extracellular vesicle microRNA quantification from plasma using an integrated microfluidic device. Commun. Biol. 2:1189
    [Google Scholar]
  95. 95.
    Sung D, Koo J 2021. A review of BioFET's basic principles and materials for biomedical applications. Biomed. Eng. Lett. 11:285–96
    [Google Scholar]
  96. 96.
    Sadighbayan D, Hasanzadeh M, Ghafar-Zadeh E. 2020. Biosensing based on field-effect transistors (FET): recent progress and challenges. Trends Anal. Chem. 133:116067
    [Google Scholar]
  97. 97.
    Veeralingam S, Badhulika S. 2020. Surface functionalized β-Bi2O3 nanofibers based flexible, field-effect transistor-biosensor (BioFET) for rapid, label-free detection of serotonin in biological fluids. Sens. Actuators B 321:128540
    [Google Scholar]
  98. 98.
    Veeralingam S, Badhulika S. 2021. BiVO4 nanofiber-based field-effect transistors for detection of epinephrine/adrenaline hormones. Mater. Chem. Front. 5:248281–89
    [Google Scholar]
  99. 99.
    Baldacchini C, Montanarella AF, Francioso L, Signore MA, Cannistraro S, Bizzarri AR. 2020. A reliable BioFET immunosensor for detection of p53 tumour suppressor in physiological-like environment. Sensors 20:216364
    [Google Scholar]
  100. 100.
    Zhao W, Hu J, Liu J, Li X, Sun S et al. 2022. Si nanowire Bio-FET for electrical and label-free detection of cancer cell-derived exosomes. Microsyst. Nanoeng. 8:157
    [Google Scholar]
  101. 101.
    Chen PH, Huang CC, Wu CC, Chen PH, Tripathi A, Wang YL. 2022. Saliva-based COVID-19 detection: a rapid antigen test of SARS-CoV-2 nucleocapsid protein using an electrical-double-layer gated field-effect transistor-based biosensing system. Sens. Actuators B 357:131415
    [Google Scholar]
  102. 102.
    Seo G, Lee G, Kim MJ, Baek SH, Choi M et al. 2020. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14:45135–42
    [Google Scholar]
  103. 103.
    Könemund L, Neumann L, Hirschberg F, Biedendieck R, Jahn D et al. 2022. Functionalization of an extended-gate field-effect transistor (EGFET) for bacteria detection. Sci. Rep. 12:14397
    [Google Scholar]
  104. 104.
    Kim KH, Park SJ, Park CS, Seo SE, Lee J et al. 2020. High-performance portable graphene field-effect transistor device for detecting Gram-positive and -negative bacteria. Biosens. Bioelectron. 167:112514
    [Google Scholar]
  105. 105.
    Zheng Z, Zhang H, Zhai T, Xia F. 2021. Overcome Debye length limitations for biomolecule sensing based on field effective transistors. Chin. J. Chem. 39:4999–1008
    [Google Scholar]
  106. 106.
    Bhattacharyya IM, Shalev G. 2020. Electrostatically governed Debye screening length at the solution-solid interface for biosensing applications. ACS Sens. 5:1154–61
    [Google Scholar]
  107. 107.
    Chu C-H, Sarangadharan I, Regmi A, Chen Y-W, Hsu C-P et al. 2017. Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Sci. Rep. 7:15256
    [Google Scholar]
  108. 108.
    Gutiérrez-Sanz Ó, Andoy NM, Filipiak MS, Haustein N, Tarasov A. 2017. Direct, label-free, and rapid transistor-based immunodetection in whole serum. ACS Sens. 2:91278–86
    [Google Scholar]
  109. 109.
    Pakchin PS, Nakhjavani SA, Saber R, Ghanbari H, Omidi Y. 2017. Recent advances in simultaneous electrochemical multi-analyte sensing platforms. Trends Anal. Chem. 92:32–41
    [Google Scholar]
  110. 110.
    Grabowska I, Hepel M, Kurzątkowska-Adaszyńska K. 2021. Advances in design strategies of multiplex electrochemical aptasensors. Sensors 22:1161
    [Google Scholar]
  111. 111.
    Cotchim S, Thavarungkul P, Kanatharana P, Limbut W. 2020. Multiplexed label-free electrochemical immunosensor for breast cancer precision medicine. Anal. Chim. Acta 1130:60–71
    [Google Scholar]
  112. 112.
    Boonkaew S, Jang I, Noviana E, Siangproh W, Chailapakul O, Henry CS. 2021. Electrochemical paper-based analytical device for multiplexed, point-of-care detection of cardiovascular disease biomarkers. Sens. Actuators B 330:129336
    [Google Scholar]
  113. 113.
    Abdulkarim H, Siaj M. 2022. Label-free multiplex electrochemical immunosensor for early diagnosis of lysosomal storage disorders. Sci. Rep. 12:19334
    [Google Scholar]
  114. 114.
    Rahn KL, Anand RK. 2021. Recent advancements in bipolar electrochemical methods of analysis. Anal. Chem. 93:1103–23
    [Google Scholar]
  115. 115.
    Fosdick SE, Knust KN, Scida K, Crooks RM. 2013. Bipolar electrochemistry. Angew. Chem. Int. Ed. 52:4010438–56
    [Google Scholar]
  116. 116.
    Crooks RM. 2016. Principles of bipolar electrochemistry. ChemElectroChem 3:3357–59
    [Google Scholar]
  117. 117.
    Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. 2013. Bipolar electrochemistry: from materials science to motion and beyond. Acc. Chem. Res. 46:112513–23
    [Google Scholar]
  118. 118.
    Hsueh A-J, Mutalib NAA, Shirato Y, Suzuki H. 2022. Bipolar electrode arrays for chemical imaging and multiplexed sensing. ACS Omega 7:2320298–305
    [Google Scholar]
  119. 119.
    Borchers JS, Campbell CR, Van Scoy SB, MJ Clark, Anand RK. 2021. Redox cycling at an array of interdigitated bipolar electrodes for enhanced sensitivity in biosensing. ChemElectroChem 8:183482–91
    [Google Scholar]
  120. 120.
    Cui F, Yue Y, Zhang Y, Zhang Z, Zhou HS. 2020. Advancing biosensors with machine learning. ACS Sens. 5:113346–64
    [Google Scholar]
  121. 121.
    Castro ACH, Bezerra ÍRS, Pascon AM, da Silva GH, Philot EA et al. 2022. Modular label-free electrochemical biosensor loading nature-inspired peptide toward the widespread use of COVID-19 antibody tests. ACS Nano 16:914239–53
    [Google Scholar]
  122. 122.
    Liu Z, Shurin GV, Bian L, White DL, Shurin MR, Star A. 2022. A carbon nanotube sensor array for the label-free discrimination of live and dead cells with machine learning. Anal. Chem. 94:83565–73
    [Google Scholar]
  123. 123.
    Pal A, Biswas S, O Kare SP, Biswas P, Jana SK et al. 2021. Development of an impedimetric immunosensor for machine learning-based detection of endometriosis: a proof of concept. Sens. Actuators B 346:130460
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091622-085754
Loading
/content/journals/10.1146/annurev-anchem-091622-085754
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error