1932

Abstract

Single particle tracking (SPT) has proven to be a powerful technique in studying molecular dynamics in complicated systems. We review its recent development, including three-dimensional (3D) SPT and its applications in probing nanostructures and molecule-surface interactions that are important to analytical chemical processes. Several frequently used 3D SPT techniques are introduced. Especially of interest are those based on point spread function engineering, which are simple in instrumentation and can be easily adapted and used in analytical labs. Corresponding data analysis methods are briefly discussed. We present several important case studies, with a focus on probing mass transport and molecule-surface interactions in confined environments. The presented studies demonstrate the great potential of 3D SPT for understanding fundamental phenomena in confined space, which will enable us to predict basic principles involved in chemical recognition, separation, and analysis, and to optimize mass transport and responses by structural design and optimization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091819-100409
2020-06-12
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-091819-100409.html?itemId=/content/journals/10.1146/annurev-anchem-091819-100409&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Rust MJ, Bates M, Zhuang X 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–96
    [Google Scholar]
  2. 2. 
    Saxton MJ, Jacobson K. 1997. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26:373–99
    [Google Scholar]
  3. 3. 
    von Diezmann A, Shechtman Y, Moerner WE 2017. Three-dimensional localization of single molecules for super resolution imaging and single-particle tracking. Chem. Rev. 117:7244–75
    [Google Scholar]
  4. 4. 
    Stender AS, Marchuk K, Liu C, Sander S, Meyer MW et al. 2013. Single cell optical imaging and spectroscopy. Chem. Rev. 113:2469–527
    [Google Scholar]
  5. 5. 
    Sambur JB, Chen T-Y, Choudhary E, Chen G, Nissen EJ et al. 2016. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530:77–80
    [Google Scholar]
  6. 6. 
    Han R, Ha JW, Xiao CX, Pei YC, Qi ZY et al. 2014. Geometry-assisted three-dimensional superlocalization imaging of single-molecule catalysis on modular multilayer nanocatalysts. Angew. Chem. Int. Ed. 53:12865–69
    [Google Scholar]
  7. 7. 
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  8. 8. 
    Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ et al. 2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–22
    [Google Scholar]
  9. 9. 
    Wang C, Han B, Zhou R, Zhuang X 2016. Real-time imaging of translation on single mRNA transcripts in live cells. Cell 165:990–1001
    [Google Scholar]
  10. 10. 
    Zong C, Lu S, Chapman AR, Xie XS 2012. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–26
    [Google Scholar]
  11. 11. 
    Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M et al. 2010. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:533–38
    [Google Scholar]
  12. 12. 
    Gebhardt JCM, Suter DM, Roy R, Zhao ZW, Chapman AR et al. 2013. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10:421–26
    [Google Scholar]
  13. 13. 
    Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR 2005. Kinesin and dynein move a peroxisome in vivo: A tug-of-war or coordinated movement?. Science 308:1469–72
    [Google Scholar]
  14. 14. 
    Kural C, Serpinskaya AS, Chou Y-H, Goldman RD, Gelfand VI, Selvin PR 2007. Tracking melanosomes inside a cell to study molecular motors and their interaction. PNAS 104:5378–82
    [Google Scholar]
  15. 15. 
    Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK 2014. Tracking single molecules at work in living cells. Nat. Chem. Biol. 10:524–32
    [Google Scholar]
  16. 16. 
    Shen H, Tauzin LJ, Baiyasi R, Wang WX, Moringo N et al. 2017. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117:7331–76
    [Google Scholar]
  17. 17. 
    Axelrod D. 1981. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89:141–45
    [Google Scholar]
  18. 18. 
    Bevan MA, Prieve DC. 2000. Hindered diffusion of colloidal particles very near to a wall: revisited. J. Chem. Phys. 113:1228–36
    [Google Scholar]
  19. 19. 
    Eichmann SL, Anekal SG, Bevan MA 2008. Electrostatically confined nanoparticle interactions and dynamics. Langmuir 24:714–21
    [Google Scholar]
  20. 20. 
    Honciuc A, Harant AW, Schwartz DK 2008. Single-molecule observations of surfactant diffusion at the solution-solid interface. Langmuir 24:6562–66
    [Google Scholar]
  21. 21. 
    Skaug MJ, Mabry JN, Schwartz DK 2014. Single-molecule tracking of polymer surface diffusion. J. Am. Chem. Soc. 136:1327–32
    [Google Scholar]
  22. 22. 
    Walder R, Nelson N, Schwartz DK 2011. Single molecule observations of desorption-mediated diffusion at the solid-liquid interface. Phys. Rev. Lett. 107:156102
    [Google Scholar]
  23. 23. 
    Higgins DA, Park SC, Tran-Ba KH, Ito T 2015. Single-molecule investigations of morphology and mass transport dynamics in nanostructured materials. Annu. Rev. Anal. Chem. 8:193–216
    [Google Scholar]
  24. 24. 
    Higgins DA, Tran-Ba KH, Ito T 2013. Following single molecules to a better understanding of self-assembled one-dimensional nanostructures. J. Phys. Chem. Lett. 4:3095–103
    [Google Scholar]
  25. 25. 
    Han R, Wang GF, Qi SD, Ma CB, Yeung ES 2012. Electrophoretic migration and axial diffusion of individual nanoparticles in cylindrical nanopores. J. Phys. Chem. C 116:18460–68
    [Google Scholar]
  26. 26. 
    Ma CB, Han R, Qi SD, Yeung ES 2012. Selective transport of single protein molecules inside gold nanotubes. J. Chromatogr. A 1238:11–14
    [Google Scholar]
  27. 27. 
    Liao Y, Yang SK, Koh K, Matzger AJ, Biteen JS 2012. Heterogeneous single-molecule diffusion in one-, two-, and three-dimensional microporous coordination polymers: directional, trapped, and immobile guests. Nano Lett 12:3080–85
    [Google Scholar]
  28. 28. 
    Kisley L, Chen JX, Mansur AP, Shuang B, Kourentzi K et al. 2014. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations. PNAS 111:2075–80
    [Google Scholar]
  29. 29. 
    Cooper JT, Peterson EM, Harris JM 2013. Fluorescence imaging of single-molecule retention trajectories in reversed-phase chromatographic particles. Anal. Chem. 85:9363–70
    [Google Scholar]
  30. 30. 
    Dong B, Pei YC, Zhao F, Goh TW, Qi ZY et al. 2018. In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement. Nat. Catal. 1:135–40
    [Google Scholar]
  31. 31. 
    Speidel M, Jonáš A, Florin E-L 2003. Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt. Lett. 28:69–71
    [Google Scholar]
  32. 32. 
    Gu Y, Di XW, Sun W, Wang GF, Fang N 2012. Three-dimensional super-localization and tracking of single gold nanoparticles in cells. Anal. Chem. 84:4111–17
    [Google Scholar]
  33. 33. 
    Toprak E, Balci H, Blehm BH, Selvin PR 2007. Three-dimensional particle tracking via bifocal imaging. Nano Lett 7:2043–45
    [Google Scholar]
  34. 34. 
    Ram S, Prabhat P, Chao J, Ward ES, Ober RJ 2008. High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys. J. 95:6025–43
    [Google Scholar]
  35. 35. 
    Juette MF, Bewersdorf J. 2010. Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution. Nano Lett 10:4657–63
    [Google Scholar]
  36. 36. 
    Prabhat P, Ram S, Ward ES, Ober RJ 2004. Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions. IEEE Trans. NanoBiosci. 3:237–42
    [Google Scholar]
  37. 37. 
    Ram S, Prabhat P, Ward ES, Ober RJ 2009. Improved single particle localization accuracy with dual objective multifocal plane microscopy. Opt. Express 17:6881–98
    [Google Scholar]
  38. 38. 
    Wells NP, Lessard GA, Goodwin PM, Phipps ME, Cutler PJ et al. 2010. Time-resolved three-dimensional molecular tracking in live cells. Nano Lett 10:4732–37
    [Google Scholar]
  39. 39. 
    Perillo EP, Liu Y-L, Huynh K, Liu C, Chou C-K et al. 2015. Deep and high-resolution three-dimensional tracking of single particles using nonlinear and multiplexed illumination. Nat. Commun. 6:7874
    [Google Scholar]
  40. 40. 
    Lessard GA, Goodwin PM, Werner JH 2007. Three-dimensional tracking of individual quantum dots. Appl. Phys. Lett. 91:224106
    [Google Scholar]
  41. 41. 
    Cang H, Wong CM, Xu CS, Rizvi AH, Yang H 2006. Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts. Appl. Phys. Lett. 88:223901
    [Google Scholar]
  42. 42. 
    Ragan T, Huang H, So P, Gratton E 2006. 3D particle tracking on a two-photon microscope. J. Fluoresc. 16:325–36
    [Google Scholar]
  43. 43. 
    Sriram I, Walder R, Schwartz DK 2012. Stokes–Einstein and desorption-mediated diffusion of protein molecules at the oil–water interface. Soft Matter 8:6000–3
    [Google Scholar]
  44. 44. 
    Du K, Liddle JA, Berglund AJ 2012. Three-dimensional real-time tracking of nanoparticles at an oil–water interface. Langmuir 28:9181–88
    [Google Scholar]
  45. 45. 
    Dinsmore AD, Weeks ER, Prasad V, Levitt AC, Weitz DA 2001. Three-dimensional confocal microscopy of colloids. Appl. Opt. 40:4152–59
    [Google Scholar]
  46. 46. 
    Jiang C, Kaul N, Campbell J, Meyhofer E 2017. A novel dual-color bifocal imaging system for single-molecule studies. Rev. Sci. Instrum. 88:053705
    [Google Scholar]
  47. 47. 
    Sun W, Marchuk K, Wang G, Fang N 2010. Autocalibrated scanning-angle prism-type total internal reflection fluorescence microscopy for nanometer-precision axial position determination. Anal. Chem. 82:2441–47
    [Google Scholar]
  48. 48. 
    Kihm K, Banerjee A, Choi C, Takagi T 2004. Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM). Exp. Fluids 37:811–24
    [Google Scholar]
  49. 49. 
    Chen T, Dong B, Chen KC, Zhao F, Cheng XD et al. 2017. Optical super-resolution imaging of surface reactions. Chem. Rev. 117:7510–37
    [Google Scholar]
  50. 50. 
    Berndt M, Lorenz M, Enderlein J, Diez S 2010. Axial nanometer distances measured by fluorescence lifetime imaging microscopy. Nano Lett 10:1497–500
    [Google Scholar]
  51. 51. 
    Nitzsche B, Ruhnow F, Diez S 2008. Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nat. Nanotechnol. 3:552–56
    [Google Scholar]
  52. 52. 
    Huang B, Wang W, Bates M, Zhuang X 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–13
    [Google Scholar]
  53. 53. 
    Zhao L, Zhong Y, Wei Y, Ortiz N, Chen F, Wang G 2016. Microscopic movement of slow-diffusing nanoparticles in cylindrical nanopores studied with three-dimensional tracking. Anal. Chem. 88:5122–30
    [Google Scholar]
  54. 54. 
    Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N et al. 2009. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. PNAS 106:2995–99
    [Google Scholar]
  55. 55. 
    Thompson MA, Lew MD, Badieirostami M, Moerner W 2009. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Lett 10:211–18
    [Google Scholar]
  56. 56. 
    Yajima J, Mizutani K, Nishizaka T 2008. A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking. Nat. Struct. Mol. Biol. 15:1119–21
    [Google Scholar]
  57. 57. 
    Kao HP, Verkman AS. 1994. Tracking of single fluorescent particles in 3 dimensions—use of cylindrical optics to encode particle position. Biophys. J. 67:1291–300
    [Google Scholar]
  58. 58. 
    Zhong Y, Wang G. 2018. Three-dimensional heterogeneous structure formation on a supported lipid bilayer disclosed by single-particle tracking. Langmuir 34:11857–65
    [Google Scholar]
  59. 59. 
    Zhong Y, Zhao L, Tyrlik PM, Wang G 2017. Investigating diffusing on highly curved water–oil interface using three-dimensional single particle tracking. J. Phys. Chem. C 121:8023–32
    [Google Scholar]
  60. 60. 
    Grover G, Quirin S, Fiedler C, Piestun R 2011. Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging. Biomed. Opt. Express 2:3010–20
    [Google Scholar]
  61. 61. 
    Shechtman Y, Gustavssonn AK, Petrov PN, Dultz E, Lee MY et al. 2017. Observation of live chromatin dynamics in cells via 3D localization microscopy using Tetrapod point spread functions. Biomed. Opt. Express 8:5735–48
    [Google Scholar]
  62. 62. 
    Lew MD, Lee SF, Badieirostami M, Moerner WE 2011. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Opt. Lett. 36:202–4
    [Google Scholar]
  63. 63. 
    Jia S, Vaughan JC, Zhuang XW 2014. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat. Photon. 8:302–6
    [Google Scholar]
  64. 64. 
    Li H, Chen DN, Xu GX, Yu B, Niu HB 2015. Three dimensional multi-molecule tracking in thick samples with extended depth-of-field. Opt. Express 23:787–94
    [Google Scholar]
  65. 65. 
    Sun Y, McKenna JD, Murray JM, Ostap EM, Goldman YE 2009. Parallax: high accuracy three-dimensional single molecule tracking using split images. Nano Lett 9:2676–82
    [Google Scholar]
  66. 66. 
    Backer AS, Backlund MP, von Diezmann AR, Sahl SJ, Moerner WE 2014. A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy. Appl. Phys. Lett. 104:193701
    [Google Scholar]
  67. 67. 
    Wang GF, Stender AS, Sun W, Fang N 2010. Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst 135:215–21
    [Google Scholar]
  68. 68. 
    Holsteen AL, Lin DM, Kauvar I, Wetzstein G, Brongersma ML 2019. A light-field metasurface for high-resolution single-particle tracking. Nano Lett 19:2267–71
    [Google Scholar]
  69. 69. 
    Krishnan M, Mojarad N, Kukura P, Sandoghdar V 2010. Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467:692–95
    [Google Scholar]
  70. 70. 
    Lenc K, Vedaldi A. 2015. Understanding image representations by measuring their equivariance and equivalence Presented at the IEEE Conference on Computer Vision and Pattern Recognition June 7–12 Boston, MA: https://ieeexplore.ieee.org/document/7298701
    [Google Scholar]
  71. 71. 
    Jia Y, Shelhamer E, Donahue J, Karayev S, Long J et al. 2014. Caffe: convolutional architecture for fast feature embedding. MM’14: Proceedings of the 22nd ACM International Conference on Multimedia675–78 New York: ACM https://dl.acm.org/doi/10.1145/2647868.2654889
    [Google Scholar]
  72. 72. 
    Aguet F, Van De Ville D, Unser M 2005. A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles. Opt. Express 13:10503–22
    [Google Scholar]
  73. 73. 
    Small A, Stahlheber S. 2014. Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods 11:267–79
    [Google Scholar]
  74. 74. 
    Zhou YZ, Handley M, Caries G, Harvey AR 2019. Advances in 3D single particle localization microscopy. APL Photon 4:060901
    [Google Scholar]
  75. 75. 
    Cheezum MK, Walker WF, Guilford WH 2001. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys. J. 81:2378–88
    [Google Scholar]
  76. 76. 
    Abraham AV, Ram S, Chao J, Ward ES, Ober RJ 2009. Quantitative study of single molecule location estimation techniques. Opt. Express 17:23352–73
    [Google Scholar]
  77. 77. 
    Yu Y, Sundaresan V, Bandyopadhyay S, Zhang YL, Edwards MA et al. 2017. Three-dimensional super-resolution imaging of single nanoparticles delivered by pipettes. ACS Nano 11:10529–38
    [Google Scholar]
  78. 78. 
    Sheetz MP, Turney S, Qian H, Elson EL 1989. Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 340:284–88
    [Google Scholar]
  79. 79. 
    Mitchell T. 1997. Machine Learning New York: McGraw Hill
    [Google Scholar]
  80. 80. 
    Collins M, Schapire RE, Singer Y 2002. Logistic regression, AdaBoost and Bregman distances. Mach. Learn. 48:253–85
    [Google Scholar]
  81. 81. 
    Zhong YN, Li C, Zhou HY, Wang GF 2018. Developing noise-resistant three-dimensional single particle tracking using deep neural networks. Anal. Chem. 90:10748–57
    [Google Scholar]
  82. 82. 
    Krizhevsky A, Sutskever I, Hinton GE 2012. Imagenet classification with deep convolutional neural networks. NIPS’12: Proceedings of the 25th International Conference on Neural Information Processing Systems, Vol. 11097–1105 New York: ACM https://dl.acm.org/doi/10.5555/2999134.2999257
    [Google Scholar]
  83. 83. 
    He K, Zhang X, Ren S, Sun J 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification Presented at IEEE International Conference on Computer Vision Dec 7–13 Santiago: https://ieeexplore.ieee.org/document/7410480
    [Google Scholar]
  84. 84. 
    LeCun Y. 2012. Learning invariant feature hierarchies. In Computer Vision—ECCV 2012. Workshops and Demonstrations. ECCV 2012. Lecture Notes in Computer Science, Vol. 7583 A Fusiello, V Murino, R Cucchiara 496–505 Berlin: Springer
    [Google Scholar]
  85. 85. 
    Kasche V, Lindqvist L. 1964. Reactions between the triplet state of fluorescein and oxygen. J. Phys. Chem. 68:817–23
    [Google Scholar]
  86. 86. 
    Jackson EA, Hillmyer MA. 2010. Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano 4:3548–53
    [Google Scholar]
  87. 87. 
    Lebold T, Jung C, Michaelis J, Braeuchle C 2009. Nanostructured silica materials as drug-delivery systems for doxorubicin: single molecule and cellular studies. Nano Lett 9:2877–83
    [Google Scholar]
  88. 88. 
    Shao ZP, Haile SM. 2004. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–73
    [Google Scholar]
  89. 89. 
    Stocker M. 2008. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed. 47:9200–11
    [Google Scholar]
  90. 90. 
    Yang SY, Yang J-A, Kim E-S, Jeon G, Oh EJ et al. 2010. Single-file diffusion of protein drugs through cylindrical nanochannels. ACS Nano 4:3817–22
    [Google Scholar]
  91. 91. 
    Yuhas BD, Smeigh AL, Samuel APS, Shim Y, Bag S et al. 2011. Biomimetic multifunctional porous chalcogels as solar fuel catalysts. J. Am. Chem. Soc. 133:7252–55
    [Google Scholar]
  92. 92. 
    Zhang J, Yu J, Zhang Y, Li Q, Gong JR 2011. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett 11:4774–79
    [Google Scholar]
  93. 93. 
    Han J, Craighead HG. 2000. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288:1026–29
    [Google Scholar]
  94. 94. 
    Striemer CC, Gaborski TR, McGrath JL, Fauchet PM 2007. Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445:749–53
    [Google Scholar]
  95. 95. 
    Chen W, Wu ZQ, Xia XH, Xu JJ, Chen HY 2010. Anomalous diffusion of electrically neutral molecules in charged nanochannels. Angew. Chem. Int. Ed. 49:7943–47
    [Google Scholar]
  96. 96. 
    Zhang L, Feng Q, Wang JL, Sun JS, Shi XH, Jiang XY 2015. Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery. Angew. Chem. Int. Ed. 54:3952–56
    [Google Scholar]
  97. 97. 
    Nagumo R, Takaba H, Nakao SI 2008. Accelerated computation of extremely ‘slow’ molecular diffusivity in nanopores. Chem. Phys. Lett. 458:281–84
    [Google Scholar]
  98. 98. 
    Yamaguchi A, Mekawy MM, Chen Y, Suzuki S, Morita K, Teramae N 2008. Diffusion of metal complexes inside of silica-surfactant nanochannels within a porous alumina membrane. J. Phys. Chem. B 112:2024–30
    [Google Scholar]
  99. 99. 
    Kievsky YY, Carey B, Naik S, Mangan N, Ben-Avraham D, Sokolov I 2008. Dynamics of molecular diffusion of rhodamine 6G in silica nanochannels. J. Chem. Phys. 128:151102
    [Google Scholar]
  100. 100. 
    Pfenniger M, Calzaferri G. 2000. Intrazeolite diffusion kinetics of dye molecules in the nanochannels of zeolite L, monitored by energy transfer. ChemPhysChem 1:211–17
    [Google Scholar]
  101. 101. 
    Bluhm EA, Bauer E, Chamberlin RM, Abney KD, Young JS, Jarvinen GD 1999. Surface effects on cation transport across porous alumina membranes. Langmuir 15:8668–72
    [Google Scholar]
  102. 102. 
    Jiang XQ, Mishra N, Turner JN, Spencer MG 2008. Diffusivity of sub-1,000 Da molecules in 40 nm silicon-based alumina pores. Microfluid. Nanofluid. 5:695–701
    [Google Scholar]
  103. 103. 
    Kennard R, DeSisto WJ, Mason MD 2010. Molecular diffusivity measurement through an alumina membrane using time-resolved fluorescence imaging. Appl. Phys. Lett. 97:213701
    [Google Scholar]
  104. 104. 
    Ma CB, Yeung ES. 2010. Single molecule imaging of protein molecules in nanopores. Anal. Chem. 82:478–82
    [Google Scholar]
  105. 105. 
    Wang DP, Wu HC, Schwartz DK 2017. Three-dimensional tracking of interfacial hopping diffusion. Phys. Rev. Lett. 119:268001
    [Google Scholar]
  106. 106. 
    Gustavsson AK, Petrov PN, Moerner WE 2018. Light sheet approaches for improved precision in 3D localization-based super-resolution imaging in mammalian cells. Opt. Express 26:13122–47
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091819-100409
Loading
/content/journals/10.1146/annurev-anchem-091819-100409
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error