1932

Abstract

Since the early 1990s, single-molecule detection in solution at room temperature has enabled direct observation of single biomolecules at work in real time and under physiological conditions, providing insights into complex biological systems that the traditional ensemble methods cannot offer. In particular, recent advances in single-molecule tracking techniques allow researchers to follow individual biomolecules in their native environments for a timescale of seconds to minutes, revealing not only the distinct pathways these biomolecules take for downstream signaling but also their roles in supporting life. In this review, we discuss various single-molecule tracking and imaging techniques developed to date, with an emphasis on advanced three-dimensional (3D) tracking systems that not only achieve ultrahigh spatiotemporal resolution but also provide sufficient working depths suitable for tracking single molecules in 3D tissue models. We then summarize the observables that can be extracted from the trajectory data. Methods to perform single-molecule clustering analysis and future directions are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091922-073057
2023-06-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091922-073057.html?itemId=/content/journals/10.1146/annurev-anchem-091922-073057&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dovichi NJ, Martin JC, Jett JH, Trkula M, Keller RA. 1984. Laser-induced fluorescence of flowing samples as an approach to single-molecule detection in liquids. Anal. Chem. 56:348–54
    [Google Scholar]
  2. 2.
    Peck K, Stryer L, Glazer AN, Mathies RA. 1989. Single-molecule fluorescence detection—auto-correlation criterion and experimental realization with phycoerythrin. PNAS 86:4087–91
    [Google Scholar]
  3. 3.
    Keller RA, Ambrose WP, Goodwin PM, Jett JH, Martin JC, Wu M. 1996. Single-molecule fluorescence analysis in solution. Appl. Spectrosc. 50:12A–32A
    [Google Scholar]
  4. 4.
    Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA. 1990. Detection of single fluorescent molecules. Chem. Phys. Lett. 174:553–57
    [Google Scholar]
  5. 5.
    Soper SA, Shera EB, Martin JC, Jett JH, Hahn JH et al. 1991. Single-molecule detection of Rhodamine 6G in ethanolic solutions using continuous wave laser excitation. Anal. Chem. 63:432–37
    [Google Scholar]
  6. 6.
    Soper SA, Davis LM, Shera EB. 1992. Detection and identification of single molecules in solution. JOSA B 9:1761–69
    [Google Scholar]
  7. 7.
    Ambrose WP, Goodwin PM, Jett JH, Van Orden A, Werner JH, Keller RA. 1999. Single molecule fluorescence spectroscopy at ambient temperature. Chem. Rev. 99:2929–56
    [Google Scholar]
  8. 8.
    Zander C, Enderlein J, Keller RA. 2002. Single Molecule Detection in Solution: Methods and Applications Berlin/New York: Wiley-VHC
  9. 9.
    Moerner WE. 2002. A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J. Phys. Chem. B 106:910–27
    [Google Scholar]
  10. 10.
    Moerner W, Shechtman Y, Wang Q. 2015. Single-molecule spectroscopy and imaging over the decades. Faraday Discuss 184:9–36
    [Google Scholar]
  11. 11.
    Chen Y-I, Chang Y-J, Nguyen TD, Liu C, Phillion S et al. 2019. Measuring DNA hybridization kinetics in live cells using a time-resolved 3D single-molecule tracking method. J. Am. Chem. Soc. 141:1574750
    [Google Scholar]
  12. 12.
    Kasai RS, Kusumi A. 2014. Single-molecule imaging revealed dynamic GPCR dimerization. Curr. Opin. Cell Biol. 27:78–86
    [Google Scholar]
  13. 13.
    Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C et al. 2011. Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. J. Cell Biol. 192:46380
    [Google Scholar]
  14. 14.
    Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A. 2002. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157:1071–82
    [Google Scholar]
  15. 15.
    Kim M, Hong S, Yankeelov TE, Yeh H-C, Liu Y-L. 2022. Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics. Bioinformatics 38:243–49
    [Google Scholar]
  16. 16.
    Khater IM, Nabi IR, Hamarneh G 2020. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods. Patterns 1:100038
    [Google Scholar]
  17. 17.
    Liu Y-L, Chou C-K, Kim M, Vasisht R, Kuo Y-A et al. 2019. Assessing metastatic potential of breast cancer cells based on EGFR dynamics. Sci. Rep. 9:3395
    [Google Scholar]
  18. 18.
    Liu Y-L, Horning AM, Lieberman B, Lin C-K, Huang C-N et al. 2019. Spatial EGFR dynamics and metastatic phenotypes modulated by upregulated EPHB2 and SRC pathways predicting poor prognosis. Cancers 11:1910
    [Google Scholar]
  19. 19.
    Lowe AR, Siegel JJ, Kalab P, Siu M, Weis K, Liphardt JT. 2010. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467:600–3
    [Google Scholar]
  20. 20.
    Möller J, Isbilir A, Sungkaworn T, Osberg B, Karathanasis C et al. 2020. Single-molecule analysis reveals agonist-specific dimer formation of μ-opioid receptors. Nat. Chem. Biol. 16:946–54
    [Google Scholar]
  21. 21.
    Perillo E, Liu Y-L, Huynh K, Liu C, Chou C-K et al. 2015. Deep and high-resolution 3D tracking of single particles using nonlinear and multiplexed illumination. Nat. Commun. 6:7874
    [Google Scholar]
  22. 22.
    Liu Y-L, Perillo EP, Liu C, Yu P, Chou C-K et al. 2016. Segmentation of 3D trajectories acquired by TSUNAMI microscope: an application to EGFR trafficking. Biophys. J. 111:2214–27
    [Google Scholar]
  23. 23.
    Liu C, Obliosca JM, Liu YL, Chen YA, Jiang N, Yeh HC. 2017. 3D single-molecule tracking enables direct hybridization kinetics measurement in solution. Nanoscale 9:5664–70
    [Google Scholar]
  24. 24.
    Li CW, Lim SO, Chung EM, Kim YS, Park AH et al. 2018. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell 33:187–201
    [Google Scholar]
  25. 25.
    Liu Y-L, Perillo EP, Ang P, Kim M, Nguyen DT et al. 2020. Three-dimensional two-color dual-particle tracking microscope for monitoring DNA conformational changes and nanoparticle landings on live cells. ACS Nano 14:7927–39
    [Google Scholar]
  26. 26.
    Tsunoyama TA, Watanabe Y, Goto J, Naito K, Kasai RS et al. 2018. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol. 14:497–506
    [Google Scholar]
  27. 27.
    Kusumi A, Tsunoyama TA, Hirosawa KM, Kasai RS, Fujiwara TK. 2014. Tracking single molecules at work in living cells. Nat. Chem. Biol. 10:524–32
    [Google Scholar]
  28. 28.
    Deschout H, Zanacchi FC, Mlodzianoski M, Diaspro A, Bewersdorf J et al. 2014. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11:253–66
    [Google Scholar]
  29. 29.
    Liu Z, Lavis LD, Betzig E. 2015. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58:644–59
    [Google Scholar]
  30. 30.
    Liu C, Liu Y-L, Perillo EP, Dunn AK, Yeh H-C. 2016. Single-molecule tracking and its application in biomolecular binding detection. IEEE J. Sel. Top. Quantum Electron. 22:6804013
    [Google Scholar]
  31. 31.
    von Diezmann A, Shechtman Y, Moerner WE. 2017. Three-dimensional localization of single molecules for super resolution imaging and single-particle tracking. Chem. Rev. 117:7244–75
    [Google Scholar]
  32. 32.
    Shen H, Tauzin LJ, Baiyasi R, Wang WX, Moringo N et al. 2017. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117:7331–76
    [Google Scholar]
  33. 33.
    Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J et al. 2021. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1:39
    [Google Scholar]
  34. 34.
    Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR. 2003. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–65
    [Google Scholar]
  35. 35.
    Coleman RA, Liu Z, Darzacq X, Tjian R, Singer RH, Lionnet T. 2016. Imaging transcription: past, present, and future. Cold Spring Harb. Symp. Quant. Biol. 80:1–8
    [Google Scholar]
  36. 36.
    Chen H, Larson DR. 2016. What have single-molecule studies taught us about gene expression?. Genes Dev 30:1796–810
    [Google Scholar]
  37. 37.
    Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C et al. 2004. Single-molecule imaging analysis of Ras activation in living cells. PNAS 101:7317–22
    [Google Scholar]
  38. 38.
    Suzuki KGN, Kasai RS, Hirosawa KM, Nemoto YL, Ishibashi M et al. 2012. Transient GPI-anchored protein homodimers are units for raft organization and function. Nat. Chem. Biol. 8:774–83
    [Google Scholar]
  39. 39.
    Benke A, Olivier N, Gunzenhauser J, Manley S. 2012. Multicolor single molecule tracking of stochastically active synthetic dyes. Nano Lett 12:2619–24
    [Google Scholar]
  40. 40.
    Chen Z, Cao Y, Lin C-W, Alvarez S, Oh D et al. 2021. Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. PNAS 118:e2012229118
    [Google Scholar]
  41. 41.
    Fujiwara TK, Takeuchi S, Kalay Z, Nagai Y, Tsunoyama TA et al. 2021. Development of ultrafast camera-based imaging of single fluorescent molecules and live-cell PALM. bioRxiv 465864. https://doi.org/10.1101/2021.10.26.465864
    [Crossref]
  42. 42.
    Welsher K, Yang H. 2014. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat. Nanotechnol. 9:198–203
    [Google Scholar]
  43. 43.
    Hirschfeld T. 1976. Optical microscopic observation of single small molecules. Appl. Opt. 15:2965–66
    [Google Scholar]
  44. 44.
    Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S. 2008. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5:877–79
    [Google Scholar]
  45. 45.
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–46
    [Google Scholar]
  46. 46.
    Ghosh RP, Franklin JM, Draper WE, Shi Q, Beltran B et al. 2019. A fluorogenic array for temporally unlimited single-molecule tracking. Nat. Chem. Biol. 15:401–9
    [Google Scholar]
  47. 47.
    Presman DM, Ball DA, Paakinaho V, Grimm JB, Lavis LD et al. 2017. Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods 123:76–88
    [Google Scholar]
  48. 48.
    Obliosca JM, Babin MC, Liu C, Liu Y-L, Chen Y-A et al. 2014. A complementary palette of NanoCluster beacons. ACS Nano 8:10150–60
    [Google Scholar]
  49. 49.
    Grimm JB, Tkachuk AN, Xie L, Choi H, Mohar B et al. 2020. A general method to optimize and functionalize red-shifted rhodamine dyes. Nat. Methods 17:815–21
    [Google Scholar]
  50. 50.
    Kuo Y-A, Jung C, Chen Y-A, Kuo H-C, Zhao OS et al. 2022. Massively parallel selection of nanocluster beacons. Adv. Mater. 34:2204957
    [Google Scholar]
  51. 51.
    Frei MS, Tarnawski M, Roberti MJ, Koch B, Hiblot J, Johnsson K. 2022. Engineered HaloTag variants for fluorescence lifetime multiplexing. Nat. Methods 19:65–70
    [Google Scholar]
  52. 52.
    Lippincott-Schwartz J, Patterson GH. 2009. Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends Cell Biol 19:555–65
    [Google Scholar]
  53. 53.
    Lang K, Chin JW. 2014. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114:4764–806
    [Google Scholar]
  54. 54.
    Li H, Vaughan JC. 2018. Switchable fluorophores for single-molecule localization microscopy. Chem. Rev. 118:9412–54
    [Google Scholar]
  55. 55.
    Elf J, Li G-W, Xie XS. 2007. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–94
    [Google Scholar]
  56. 56.
    Gebhardt JCM, Suter DM, Roy R, Zhao ZW, Chapman AR et al. 2013. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10:421–26
    [Google Scholar]
  57. 57.
    Klein T, Proppert S, Sauer M. 2014. Eight years of single-molecule localization microscopy. Histochem. Cell Biol. 141:561–75
    [Google Scholar]
  58. 58.
    Speil J, Baumgart E, Siebrasse J-P, Veith R, Vinkemeier U, Kubitscheck U. 2011. Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus. Biophys. J. 101:2592–600
    [Google Scholar]
  59. 59.
    Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–45
    [Google Scholar]
  60. 60.
    Cai E, Ge PH, Lee SH, Jeyifous O, Wang Y et al. 2014. Stable small quantum dots for synaptic receptor tracking on live neurons. Angew. Chem. Int. Edit. 53:12484–88
    [Google Scholar]
  61. 61.
    Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N et al. 2008. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–82
    [Google Scholar]
  62. 62.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K. 2003. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21:86–89
    [Google Scholar]
  63. 63.
    Gautier A, Juillerat A, Heinis C, Corrêa IR Jr., Kindermann M et al. 2008. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15:128–36
    [Google Scholar]
  64. 64.
    Kompa J, Bruins J, Glogger M, Wilhelm J, Frei MS et al. 2023. Exchangeable HaloTag ligands for super-resolution fluorescence microscopy. J. Am. Chem. Soc. 145:53075–83
    [Google Scholar]
  65. 65.
    Lukinavicius G, Umezawa K, Olivier N, Honigmann A, Yang GY et al. 2013. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5:132–39
    [Google Scholar]
  66. 66.
    Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12:244–50
    [Google Scholar]
  67. 67.
    Liu Z, Legant WR, Chen B-C, Li L, Grimm JB et al. 2014. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3:e04236
    [Google Scholar]
  68. 68.
    Knight SC, Xie LQ, Deng WL, Guglielmi B, Witkowsky LB et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–26
    [Google Scholar]
  69. 69.
    Yanagawa M, Hiroshima M, Togashi Y, Abe M, Yamashita T et al. 2018. Single-molecule diffusion-based estimation of ligand effects on G protein–coupled receptors. Sci. Signal. 11:eaao1917
    [Google Scholar]
  70. 70.
    Weiss S. 1999. Fluorescence spectroscopy of single biomolecules. Science 283:1676–83
    [Google Scholar]
  71. 71.
    Wang Q, Moerner WE. 2014. Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat. Methods 11:555–58
    [Google Scholar]
  72. 72.
    Chen Y-I, Sripati MP, Nguyen TD, Chang Y-J, Kuo Y-A et al. 2021. Recent developments in the characterization of nucleic acid hybridization kinetics. Curr. Opin. Biomed. Eng. 19:100305
    [Google Scholar]
  73. 73.
    Deniz AA, Dahan M, Grunwell JR, Ha T, Faulhaber AE et al. 1999. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. PNAS 96:3670–75
    [Google Scholar]
  74. 74.
    Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S. 2004. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. PNAS 101:8936–41
    [Google Scholar]
  75. 75.
    Lipman EA, Schuler B, Bakajin O, Eaton WA. 2003. Single-molecule measurement of protein folding kinetics. Science 301:1233–35
    [Google Scholar]
  76. 76.
    Zhang CY, Yeh HC, Kuroki MT, Wang TH. 2005. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4:826–31
    [Google Scholar]
  77. 77.
    Yeh HC, Ho YP, Shih IM, Wang TH. 2006. Homogeneous point mutation detection by quantum dot-mediated two-color fluorescence coincidence analysis. Nucleic Acids Res 34:e35
    [Google Scholar]
  78. 78.
    Johnson-Buck A, Su X, Giraldez MD, Zhao M, Tewari M, Walter NG. 2015. Kinetic fingerprinting to identify and count single nucleic acids. Nat. Biotechnol. 33:730–32
    [Google Scholar]
  79. 79.
    Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A et al. 1999. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286:1722–24
    [Google Scholar]
  80. 80.
    Tokunaga M, Imamoto N, Sakata-Sogawa K. 2008. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5:159–61
    [Google Scholar]
  81. 81.
    Izeddin I, Récamier V, Bosanac L, Cissé II, Boudarene L et al. 2014. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3:e02230
    [Google Scholar]
  82. 82.
    Hu YS, Zimmerley M, Li Y, Watters R, Cang H. 2014. Single-molecule super-resolution light-sheet microscopy. ChemPhysChem 15:577–86
    [Google Scholar]
  83. 83.
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH. 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–9
    [Google Scholar]
  84. 84.
    Ritter JG, Veith R, Veenendaal A, Siebrasse JP, Kubitscheck U. 2010. Light sheet microscopy for single molecule tracking in living tissue. PLOS ONE 5:e11639
    [Google Scholar]
  85. 85.
    Zanacchi FC, Lavagnino Z, Donnorso MP, Del Bue A, Furia L et al. 2011. Live-cell 3D super-resolution imaging in thick biological samples. Nat. Methods 8:1047–49
    [Google Scholar]
  86. 86.
    Chen JJ, Zhang ZJ, Li L, Chen BC, Revyakin A et al. 2014. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156:1274–85
    [Google Scholar]
  87. 87.
    Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T. 1995. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374:555–59
    [Google Scholar]
  88. 88.
    Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T. 1997. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235:47–53
    [Google Scholar]
  89. 89.
    Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH. 2008. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–69
    [Google Scholar]
  90. 90.
    Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA et al. 2011. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8:417–23
    [Google Scholar]
  91. 91.
    Chen BC, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998
    [Google Scholar]
  92. 92.
    Prabhat P, Ram S, Ward ES, Ober RJ. 2004. Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions. IEEE Trans. Nanobiosci. 3:237–42
    [Google Scholar]
  93. 93.
    Toprak E, Balci H, Blehm BH, Selvin PR. 2007. Three-dimensional particle tracking via bifocal imaging. Nano Lett 7:2043–45
    [Google Scholar]
  94. 94.
    Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS et al. 2008. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5:527–29
    [Google Scholar]
  95. 95.
    Abrahamsson S, Chen JJ, Hajj B, Stallinga S, Katsov AY et al. 2013. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat. Methods 10:60–63
    [Google Scholar]
  96. 96.
    Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM et al. 2009. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. PNAS 106:3125–30
    [Google Scholar]
  97. 97.
    Aquino D, Schönle A, Geisler C, Middendorff CV, Wurm CA et al. 2011. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat. Methods 8:353–59
    [Google Scholar]
  98. 98.
    Ram S, Kim D, Ober RJ, Ward ES. 2012. 3D single molecule tracking with multifocal plane microscopy reveals rapid intercellular transferrin transport at epithelial cell barriers. Biophys. J. 103:1594–603
    [Google Scholar]
  99. 99.
    Tahmasbi A, Ram S, Chao J, Abraham AV, Tang FW et al. 2014. Designing the focal plane spacing for multifocal plane microscopy. Opt. Express 22:16706–21
    [Google Scholar]
  100. 100.
    Hajj B, Wisniewski J, El Beheiry M, Chen JJ, Revyakin A et al. 2014. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy. PNAS 111:17480–85
    [Google Scholar]
  101. 101.
    Smith CS, Preibisch S, Joseph A, Abrahamsson S, Rieger B et al. 2015. Nuclear accessibility of β-actin mRNA is measured by 3D single-molecule real-time tracking. J. Cell Biol. 209:609–19
    [Google Scholar]
  102. 102.
    Kao HP, Verkman AS. 1994. Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. Biophys. J. 67:1291–300
    [Google Scholar]
  103. 103.
    Izeddin I, El Beheiry M, Andilla J, Ciepielewski D, Darzacq X, Dahan M 2012. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt. Express 20:4957–67
    [Google Scholar]
  104. 104.
    Pavani SRP, Piestun R. 2008. High-efficiency rotating point spread functions. Opt. Express 16:3484–89
    [Google Scholar]
  105. 105.
    Huang B, Wang W, Bates M, Zhuang X. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–13
    [Google Scholar]
  106. 106.
    Jones SA, Shim S-H, He J, Zhuang X. 2011. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8:499–505
    [Google Scholar]
  107. 107.
    Lien C-H, Lin C-Y, Chen S-J, Chien F-C. 2014. Dynamic particle tracking via temporal focusing multiphoton microscopy with astigmatism imaging. Opt. Express 22:27290–99
    [Google Scholar]
  108. 108.
    Li Y, Hu Y, Cang H. 2013. Light sheet microscopy for tracking single molecules on the apical surface of living cells. J. Phys. Chem. B 117:15503–11
    [Google Scholar]
  109. 109.
    Spille J-H, Kaminski TP, Scherer K, Rinne JS, Heckel A, Kubitscheck U. 2015. Direct observation of mobility state transitions in RNA trajectories by sensitive single molecule feedback tracking. Nucleic Acids Res 43:e14
    [Google Scholar]
  110. 110.
    Thompson MA, Lew MD, Badieirostami M, Moerner WE. 2010. Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Lett 10:211–18
    [Google Scholar]
  111. 111.
    Thompson MA, Casolari JM, Badieirostami M, Brown PO, Moerner WE. 2010. Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. PNAS 107:17864–71
    [Google Scholar]
  112. 112.
    Badieirostami M, Lew MD, Thompson MA, Moerner W. 2010. Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. Appl. Phys. Lett. 97:161103
    [Google Scholar]
  113. 113.
    Shechtman Y, Weiss LE, Backer AS, Sahl SJ, Moerner W. 2015. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett 15:4194–99
    [Google Scholar]
  114. 114.
    Jia S, Vaughan JC, Zhuang X. 2014. Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat. Photon. 8:302–6
    [Google Scholar]
  115. 115.
    Lew MD, Lee SF, Badieirostami M, Moerner W. 2011. Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. Opt. Lett. 36:202–4
    [Google Scholar]
  116. 116.
    Backer AS, Backlund MP, von Diezmann AR, Sahl SJ, Moerner W. 2014. A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy. Appl. Phys. Lett. 104:193701
    [Google Scholar]
  117. 117.
    Gustavsson AK, Petrov PN, Lee MY, Shechtman Y, Moerner WE. 2018. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. 9:123
    [Google Scholar]
  118. 118.
    Gustavsson A-K, Ghosh RP, Petrov PN, Liphardt JT, Moerner W. 2022. Fast and parallel nanoscale three-dimensional tracking of heterogeneous mammalian chromatin dynamics. Mol. Biol. Cell 33:ar47
    [Google Scholar]
  119. 119.
    Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW et al. 2010. Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–84
    [Google Scholar]
  120. 120.
    Xia S, Lim YB, Zhang Z, Wang Y, Zhang S et al. 2019. Nanoscale architecture of the cortical actin cytoskeleton in embryonic stem cells. Cell Rep 28:1251–67.e7
    [Google Scholar]
  121. 121.
    Wells NP, Lessard GA, Werner JH. 2008. Confocal, three-dimensional tracking of individual quantum dots in high-background environments. Anal. Chem. 80:9830–34
    [Google Scholar]
  122. 122.
    Wells NP, Lessard GA, Goodwin PM, Phipps ME, Cutler PJ et al. 2010. Time-resolved three-dimensional molecular tracking in live cells. Nano Lett 10:4732–37
    [Google Scholar]
  123. 123.
    DeVore M, Stich D, Keller A, Cleyrat C, Phipps M et al. 2015. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging. Rev. Sci. Instrum. 86:126102
    [Google Scholar]
  124. 124.
    Berg HC. 1971. How to track bacteria. Rev. Sci. Instrum. 42:868–71
    [Google Scholar]
  125. 125.
    Cang H, Xu CS, Montiel D, Yang H. 2007. Guiding a confocal microscope by single fluorescent nanoparticles. Opt. Lett. 32:2729–31
    [Google Scholar]
  126. 126.
    Xu CS, Cang H, Montiel D, Yang H. 2007. Rapid and quantitative sizing of nanoparticles using three-dimensional single-particle tracking. J. Phys. Chem. C 111:32–35
    [Google Scholar]
  127. 127.
    Lessard GA, Goodwin PM, Werner JH. 2007. Three-dimensional tracking of individual quantum dots. Appl. Phys. Lett. 91:224106
    [Google Scholar]
  128. 128.
    DeVore MS, Stich DG, Keller AM, Ghosh Y, Goodwin PM et al. 2015. Three dimensional time-gated tracking of non-blinking quantum dots in live cells. Proc. SPIE 9338, Int. Soc. Optics Photon. 933812: https://doi.org/10.1117/12.2082943
    [Google Scholar]
  129. 129.
    Berglund A, Mabuchi H. 2005. Tracking-FCS: fluorescence correlation spectroscopy of individual particles. Opt. Express 13:8069–82
    [Google Scholar]
  130. 130.
    McHale K, Berglund AJ, Mabuchi H. 2007. Quantum dot photon statistics measured by three-dimensional particle tracking. Nano Lett 7:3535–39
    [Google Scholar]
  131. 131.
    Katayama Y, Burkacky O, Meyer M, Bräuchle C, Gratton E, Lamb DC. 2009. Real-time nanomicroscopy via three-dimensional single-particle tracking. ChemPhysChem 10:2458–64
    [Google Scholar]
  132. 132.
    Du K, Liddle JA, Berglund AJ. 2012. Three-dimensional real-time tracking of nanoparticles at an oil–water interface. Langmuir 28:9181–88
    [Google Scholar]
  133. 133.
    Du K, Ko SH, Gallatin GM, Yoon HP, Liddle JA, Berglund AJ 2013. Quantum dot-DNA origami binding: a single particle, 3D, real-time tracking study. Chem. Commun. 49:907–9
    [Google Scholar]
  134. 134.
    Wang Q, Moerner WE. 2010. Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap. Appl. Phys. B 99:23–30
    [Google Scholar]
  135. 135.
    Germann JA, Davis LM. 2014. Three-dimensional tracking of a single fluorescent nanoparticle using four-focus excitation in a confocal microscope. Opt. Express 22:5641–50
    [Google Scholar]
  136. 136.
    Perillo E, Liu Y-L, Liu C, Yeh H-C, Dunn AK. 2015. Single particle tracking through highly scattering media with multiplexed two-photon excitation. Proc. SPIE 9331, Single Mol. Spectr. Superresolut. Imag. VIII, 933107. https://doi.org/10.1117/12.2079897
    [Google Scholar]
  137. 137.
    Liu C, Liu Y-L, Perillo E, Jiang N, Dunn A, Yeh H-C. 2015. Improving z-tracking accuracy in the two-photon single-particle tracking microscope. Appl. Phys. Lett. 107:153701
    [Google Scholar]
  138. 138.
    Sahl SJ, Leutenegger M, Hilbert M, Hell SW, Eggeling C. 2010. Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids. PNAS 107:6829–34
    [Google Scholar]
  139. 139.
    Sahl SJ, Leutenegger M, Hell SW, Eggeling C. 2014. High-resolution tracking of single-molecule diffusion in membranes by confocalized and spatially differentiated fluorescence photon stream recording. ChemPhysChem 15:771–83
    [Google Scholar]
  140. 140.
    Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J et al. 2020. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17:217–24
    [Google Scholar]
  141. 141.
    Pape JK, Stephan T, Balzarotti F, Büchner R, Lange F et al. 2020. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. PNAS 117:20607–14
    [Google Scholar]
  142. 142.
    Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–12
    [Google Scholar]
  143. 143.
    Masullo LA, Steiner F, Zähringer J, Lopez LF, Bohlen J et al. 2021. Pulsed interleaved minflux. Nano Lett 21:840–46
    [Google Scholar]
  144. 144.
    Pertsinidis A, Zhang Y, Chu S. 2010. Subnanometre single-molecule localization, registration and distance measurements. Nature 466:647–51
    [Google Scholar]
  145. 145.
    Manzo C, Garcia-Parajo MF. 2015. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Progress Phys. 78:124601
    [Google Scholar]
  146. 146.
    Saxton MJ. 2008. Single-particle tracking: connecting the dots. Nat. Methods 5:671–72
    [Google Scholar]
  147. 147.
    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S et al. 2008. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5:695–702
    [Google Scholar]
  148. 148.
    Chenouard N, Smal I, de Chaumont F, Maška M, Sbalzarini IF et al. 2014. Objective comparison of particle tracking methods. Nat. Methods 11:281–89
    [Google Scholar]
  149. 149.
    Das R, Cairo CW, Coombs D. 2009. A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLOS Comput. Biol. 5:e1000556
    [Google Scholar]
  150. 150.
    Persson F, Lindén M, Unoson C, Elf J. 2013. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10:265–69
    [Google Scholar]
  151. 151.
    Robson A, Burrage K, Leake MC. 2013. Inferring diffusion in single live cells at the single-molecule level. Philos. Trans. R. Soc. B 368:20120029
    [Google Scholar]
  152. 152.
    Masson J-B, Dionne P, Salvatico C, Renner M, Specht CG et al. 2014. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J. 106:74–83
    [Google Scholar]
  153. 153.
    Helmuth JA, Burckhardt CJ, Koumoutsakos P, Greber UF, Sbalzarini IF. 2007. A novel supervised trajectory segmentation algorithm identifies distinct types of human adenovirus motion in host cells. J. Struct. Biol. 159:347–58
    [Google Scholar]
  154. 154.
    Wagner T, Kroll A, Haramagatti CR, Lipinski H-G, Wiemann M. 2017. Classification and segmentation of nanoparticle diffusion trajectories in cellular micro environments. PLOS ONE 12:e0170165
    [Google Scholar]
  155. 155.
    Dosset P, Rassam P, Fernandez L, Espenel C, Rubinstein E et al. 2016. Automatic detection of diffusion modes within biological membranes using back-propagation neural network. BMC Bioinform. 17:197
    [Google Scholar]
  156. 156.
    Qian H, Sheetz MP, Elson EL. 1991. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60:910–21
    [Google Scholar]
  157. 157.
    Michalet X. 2010. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Phys. Rev. E 82:041914
    [Google Scholar]
  158. 158.
    Burov S, Tabei SA, Huynh T, Murrell MP, Philipson LH et al. 2013. Distribution of directional change as a signature of complex dynamics. PNAS 110:19689–94
    [Google Scholar]
  159. 159.
    Miné-Hattab J, Heltberg M, Villemeur M, Guedj C, Mora T et al. 2021. Single molecule microscopy reveals key physical features of repair foci in living cells. eLife 10:e60577
    [Google Scholar]
  160. 160.
    Cairo CW, Mirchev R, Golan DE. 2006. Cytoskeletal regulation couples LFA-1 conformational changes to receptor lateral mobility and clustering. Immunity 25:297–308
    [Google Scholar]
  161. 161.
    Eddy SR. 1996. Hidden Markov models. Curr. Opin. Struct. Biol. 6:361–65
    [Google Scholar]
  162. 162.
    Eddy SR. 2004. What is a hidden Markov model?. Nat. Biotechnol. 22:1315–16
    [Google Scholar]
  163. 163.
    Slator PJ, Burroughs NJ. 2018. A hidden Markov model for detecting confinement in single-particle tracking trajectories. Biophys. J. 115:1741–54
    [Google Scholar]
  164. 164.
    Elf J, Barkefors I. 2019. Single-molecule kinetics in living cells. Annu. Rev. Biochem. 88:635–59
    [Google Scholar]
  165. 165.
    Monnier N, Barry Z, Park HY, Su K-C, Katz Z et al. 2015. Inferring transient particle transport dynamics in live cells. Nat. Methods 12:838–40
    [Google Scholar]
  166. 166.
    van de Schoot R, Depaoli S, King R, Kramer B, Märtens K et al. 2021. Bayesian statistics and modelling. Nat. Rev. Methods Primers 1:1
    [Google Scholar]
  167. 167.
    Kowalek P, Loch-Olszewska H, Szwabiński J. 2019. Classification of diffusion modes in single-particle tracking data: feature-based versus deep-learning approach. Phys. Rev. E 100:032410
    [Google Scholar]
  168. 168.
    Hadzic MCAS, Börner R, König SLB, Kowerko D, Sigel RKO. 2018. Reliable state identification and state transition detection in fluorescence intensity-based single-molecule Förster resonance energy-transfer data. J. Phys. Chem. B 122:6134–47
    [Google Scholar]
  169. 169.
    Taylor WA. 2000. Change-Point Analysis: A Powerful New Tool for Detecting Changes Deerfield, IL: Baxter Healthcare Corp.
  170. 170.
    Shuang B, Cooper D, Taylor JN, Kisley L, Chen J et al. 2014. Fast step transition and state identification (STaSI) for discrete single-molecule data analysis. J. Phys. Chem. Lett. 5:3157–61
    [Google Scholar]
  171. 171.
    McKinney SA, Joo C, Ha T. 2006. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91:1941–51
    [Google Scholar]
  172. 172.
    Bronson JE, Fei J, Hofman JM, Gonzalez RL, Wiggins CH. 2009. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97:3196–205
    [Google Scholar]
  173. 173.
    van de Meent J-W, Bronson JE, Wiggins CH, Gonzalez RL. 2014. Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophys. J. 106:1327–37
    [Google Scholar]
  174. 174.
    Işbilir A, Serfling R, Möller J, Thomas R, De Faveri C et al. 2021. Determination of G-protein–coupled receptor oligomerization by molecular brightness analyses in single cells. Nat. Protoc. 16:1419–51
    [Google Scholar]
  175. 175.
    Ripley BD. 1977. Modelling spatial patterns. J. R. Stat. Soc. B 39:172–92
    [Google Scholar]
  176. 176.
    Owen DM, Rentero C, Rossy J, Magenau A, Williamson D et al. 2010. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J. Biophoton. 3:446–54
    [Google Scholar]
  177. 177.
    Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P et al. 2011. Chemically induced photoswitching of fluorescent probes—a general concept for super-resolution microscopy. Molecules 16:3106–18
    [Google Scholar]
  178. 178.
    Besag J. 1977. Contribution to the discussion on Dr Ripley's paper. J. R. Stat. Soc. B 39:193–95
    [Google Scholar]
  179. 179.
    Kiskowski MA, Hancock JF, Kenworthy AK. 2009. On the use of Ripley's K-function and its derivatives to analyze domain size. Biophys. J. 97:1095–103
    [Google Scholar]
  180. 180.
    Martens KJA, Turkowyd B, Endesfelder U. 2022. Raw data to results: a hands-on introduction and overview of computational analysis for single-molecule localization microscopy. Front. Bioinform. 1:817254
    [Google Scholar]
  181. 181.
    Ester M, Kriegel H-P, Sander J, Xu X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96)226–31. New York: Assoc. Comput. Mach.
    [Google Scholar]
  182. 182.
    Griffié J, Shannon M, Bromley CL, Boelen L, Burn GL et al. 2016. A Bayesian cluster analysis method for single-molecule localization microscopy data. Nat. Protocols 11:2499–514
    [Google Scholar]
  183. 183.
    Nino DF, Djayakarsana D, Milstein JN. 2020. FOCAL3D: a 3-dimensional clustering package for single-molecule localization microscopy. PLOS Comput. Biol. 16:e1008479
    [Google Scholar]
  184. 184.
    Levet F, Hosy E, Kechkar A, Butler C, Beghin A et al. 2015. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 12:1065–71
    [Google Scholar]
  185. 185.
    Andronov L, Orlov I, Lutz Y, Vonesch JL, Klaholz BP. 2016. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci. Rep. 6:24084
    [Google Scholar]
  186. 186.
    Rubin-Delanchy P, Burn GL, Griffié J, Williamson DJ, Heard NA et al. 2015. Bayesian cluster identification in single-molecule localization microscopy data. Nat. Methods 12:1072–76
    [Google Scholar]
  187. 187.
    Ha T, Tinnefeld P. 2012. Photophysics of fluorescence probes for single molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63:595–617
    [Google Scholar]
  188. 188.
    Peng CS, Zhang Y, Liu Q, Marti GE, Huang Y-WA et al. 2022. Nanometer-resolution long-term tracking of single cargos reveals dynein motor mechanisms. bioRxiv 475120. https://doi.org/10.1101/2022.01.05.475120
    [Crossref]
  189. 189.
    Kumarasinghe R, Higgins ED, Ito T, Higgins DA. 2016. Spectroscopic and polarization-dependent single-molecule tracking reveal the one-dimensional diffusion pathways in surfactant-templated mesoporous silica. J. Phys. Chem. C 120:715–23
    [Google Scholar]
  190. 190.
    Cutler PJ, Malik MD, Liu S, Byars JM, Lidke DS, Lidke KA. 2013. Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope. PLOS ONE 8:e64320
    [Google Scholar]
  191. 191.
    Scipioni L, Rossetta A, Tedeschi G, Gratton E. 2021. Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging. Nat. Methods 18:542–50
    [Google Scholar]
  192. 192.
    Goda K, Tsia K, Jalali B. 2009. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458:1145–49
    [Google Scholar]
  193. 193.
    Wu J, Liang Y, Chen S, Hsu C-L, Chavarha M et al. 2020. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 17:287–90
    [Google Scholar]
  194. 194.
    Karpf S, Riche CT, Di Carlo D, Goel A, Zeiger WA et al. 2020. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat. Commun. 11:2062
    [Google Scholar]
  195. 195.
    Lessard GA, Goodwin PM, Werner JH. 2006. Three-dimensional tracking of fluorescent particles. Proc. SPIE 6092 Ultrasens. Single-Mol. Detect. Technol. 60925. https://doi.org/10.1117/12.650191
    [Google Scholar]
  196. 196.
    Juette MF, Bewersdorf J. 2010. Three-dimensional tracking of single fluorescent particles with submillisecond temporal resolution. Nano Lett 10:4657–63
    [Google Scholar]
  197. 197.
    Levi V, Ruan QQ, Gratton E. 2005. 3-D particle tracking in a two-photon microscope: Application to the study of molecular dynamics in cells. Biophys. J. 88:2919–28
    [Google Scholar]
  198. 198.
    Levi V, Ruan Q, Kis-Petikova K, Gratton E. 2003. Scanning FCS, a novel method for three-dimensional particle tracking. Biochem. Soc. Trans. 31:997–1000
    [Google Scholar]
  199. 199.
    Annibale P, Dvornikov A, Gratton E. 2015. Electrically tunable lens speeds up 3D orbital tracking. Biomed. Opt. Express 6:2181–91
    [Google Scholar]
  200. 200.
    Lanzanò L, Gratton E. 2014. Orbital single particle tracking on a commercial confocal microscope using piezoelectric stage feedback. Methods Appl. Fluoresc. 2:024010
    [Google Scholar]
  201. 201.
    Hou S, Lang X, Welsher K. 2017. Robust real-time 3D single-particle tracking using a dynamically moving laser spot. Opt. Lett. 42:2390–93
    [Google Scholar]
  202. 202.
    Hou S, Johnson C, Welsher K. 2019. Real-time 3D single particle tracking: towards live cell spectroscopy. Molecules 24:2826
    [Google Scholar]
  203. 203.
    Hou S, Welsher K 2019. An adaptive real-time 3D single particle tracking method for monitoring viral first contacts. Small 15:1903039
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091922-073057
Loading
/content/journals/10.1146/annurev-anchem-091922-073057
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error