1932

Abstract

In situ water monitoring sensors are critical to gain an understanding of ocean biochemistry and ecosystem health. They enable the collection of high-frequency data and capture ecosystem spatial and temporal changes, which in turn facilitate long-term global predictions. They are used as decision support tools in emergency situations and for risk mitigation, pollution source tracking, and regulatory monitoring. Advanced sensing platforms exist to support various monitoring needs together with state-of-the-art power and communication capabilities. To be fit-for-purpose, sensors must withstand the challenging marine environment and provide data at an acceptable cost. Significant technological advancements have catalyzed the development of new and improved sensors for coastal and oceanographic applications. Sensors are becoming smaller, smarter, more cost-effective, and increasingly specialized and diversified. This article, therefore, provides a review of the state-of-the art oceanographic and coastal sensors. Progress in sensor development is discussed in terms of performance and the key strategies used for achieving robustness, marine rating, cost reduction, and antifouling protection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091922-085746
2023-06-14
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-091922-085746.html?itemId=/content/journals/10.1146/annurev-anchem-091922-085746&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Intergov. Panel Clim. Change 2014. Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change VR Barros, CB Field, DJ Dokken, MD Mastrandrea, KJ Mach et al. Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  2. 2.
    Gregg WW, Rousseaux CS. 2014. Decadal trends in global pelagic ocean chlorophyll: a new assessment integrating multiple satellites, in situ data, and models. J. Geophys. Res. Ocean 119:95921–33
    [Google Scholar]
  3. 3.
    FAO (Food Agric. Organ.) 2012. The State of World Fisheries and Aquaculture Rome: FAO
    [Google Scholar]
  4. 4.
    Lotze HK, Tittensor DP, Bryndum-Buchholz A, Eddy TD, Cheung WWL et al. 2019. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. PNAS 116:2612907–12
    [Google Scholar]
  5. 5.
    Cheng L, Abraham J, Hausfather Z, Trenberth KE. 2019. How fast are the oceans warming?. Science 363:6423128–29
    [Google Scholar]
  6. 6.
    Intergov. Panel Clim. Change 2022. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change H-O Pörtner, DC Roberts, M Tignor, ES Poloczanska, K Mintenbeck, et al Cambridge, UK/New York: Cambridge Univ. Press
    [Google Scholar]
  7. 7.
    Eur. Parliam 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) (Text with EEA relevance) L164/19 Eur. Parliam. Brussels: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0056
    [Google Scholar]
  8. 8.
    Eur. Parliam 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. L327/1 Eur. Parliam. Brussels: https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
    [Google Scholar]
  9. 9.
    Claustre H, Johnson KS, Takeshita Y. 2020. Observing the global ocean with Biogeochemical-Argo. Annu. Rev. Mar. Sci. 12:23–48
    [Google Scholar]
  10. 10.
    Adamo F, Attivissimo F, Carducci CGC, Lanzolla AML. 2015. A smart sensor network for sea water quality monitoring. IEEE Sens. J. 15:52514–22
    [Google Scholar]
  11. 11.
    Briciu-Burghina C, Sullivan T, Chapman J, Regan F. 2014. Continuous high-frequency monitoring of estuarine water quality as a decision support tool: a Dublin Port case study. Environ. Monit. Assess. 186:95561–80
    [Google Scholar]
  12. 12.
    Bailey SW, Werdell PJ. 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 102:1–212–23
    [Google Scholar]
  13. 13.
    Xu G, Shi Y, Sun X, Shen W. 2019. Internet of things in marine environment monitoring: a review. Sensors 19:71711
    [Google Scholar]
  14. 14.
    Delgado A, Briciu-Burghina C, Regan F. 2021. Antifouling strategies for sensors used in water monitoring: review and future perspectives. Sensors 21:2389
    [Google Scholar]
  15. 15.
    Duff G, Regan F, Duffy G. 2017. Recent developments in sensing methods for eutrophying nutrients with a focus on automation for environmental applications. Analyst 142:4355
    [Google Scholar]
  16. 16.
    Burnet JB, Dinh QT, Imbeault S, Servais P, Dorner S, Prévost M. 2019. Autonomous online measurement of β-d-glucuronidase activity in surface water: is it suitable for rapid E. coli monitoring?. Water Res. 152:241–50
    [Google Scholar]
  17. 17.
    Maguire I, Fitzgerald J, Heery B, Nwankire C, O'Kennedy R et al. 2018. Novel microfluidic analytical sensing platform for the simultaneous detection of three algal toxins in water. ACS Omega 3:66624–34
    [Google Scholar]
  18. 18.
    Pellerin BA, Stauffer BA, Young DA, Sullivan DJ, Bricker SB et al. 2016. Emerging tools for continuous nutrient monitoring networks: sensors advancing science and water resources protection. J. Am. Water Resour. Assoc. 52:4993–1008
    [Google Scholar]
  19. 19.
    Grand MM, Clinton-Bailey GS, Beaton AD, Schaap AM, Johengen TH et al. 2017. A lab-on-chip phosphate analyzer for long-term in situ monitoring at fixed observatories: Optimization and performance evaluation in estuarine and oligotrophic coastal waters. Front. Mar. Sci. 4:255
    [Google Scholar]
  20. 20.
    Morgan S, Luy E, Furlong A, Sieben V. 2022. A submersible phosphate analyzer for marine environments based on inlaid microfluidics. Anal. Methods 14:122–33
    [Google Scholar]
  21. 21.
    Birchill AJ, Beaton AD, Hull T, Kaiser J, Mowlem M et al. 2021. Exploring ocean biogeochemistry using a lab-on-chip phosphate analyser on an underwater glider. Front. Mar. Sci. 8:698102
    [Google Scholar]
  22. 22.
    Le Bris N, Sarradin PM, Birot D, Alayse-Danet AM 2000. A new chemical analyzer for in situ measurement of nitrate and total sulfide over hydrothermal vent biological communities. Mar. Chem. 72:11–15
    [Google Scholar]
  23. 23.
    Clinton-Bailey GS, Grand MM, Beaton AD, Nightingale AM, Owsianka DR et al. 2017. A lab-on-chip analyzer for in situ measurement of soluble reactive phosphate: improved phosphate blue assay and application to fluvial monitoring. Environ. Sci. Technol. 51:179989–95
    [Google Scholar]
  24. 24.
    Cao X, Zhang SW, Chu DZ, Wu N, Ma HK, Liu Y. 2017. A design of spectrophotometric microfluidic chip sensor for analyzing silicate in seawater. IOP Conf. Ser. Earth Environ. Sci. 82:1012080
    [Google Scholar]
  25. 25.
    Geißler F, Achterberg EP, Beaton AD, Hopwood MJ, Clarke JS et al. 2017. Evaluation of a ferrozine based autonomous in situ lab-on-chip analyzer for dissolved iron species in coastal waters. Front. Mar. Sci. 4:322
    [Google Scholar]
  26. 26.
    Vuillemin R, Le Roux D, Dorval P, Bucas K, Sudreau JP et al. 2009. CHEMINI: a new in situ CHEmical MINIaturized analyzer. Deep. Res. I Oceanogr. Res. Pap. 56:81391–99
    [Google Scholar]
  27. 27.
    Cuartero M, Crespo G, Cherubini T, Pankratova N, Confalonieri F et al. 2018. In situ detection of macronutrients and chloride in seawater by submersible electrochemical sensors. Anal. Chem. 90:74702–10
    [Google Scholar]
  28. 28.
    Briciu-Burghina C, Heery B, Regan F. 2017. Protocol for the recovery and detection of Escherichia coli in environmental water samples. Anal. Chim. Acta 964:178–86
    [Google Scholar]
  29. 29.
    Briciu-Burghina C, Heery B, Duffy G, Brabazon D, Regan F. 2019. Demonstration of an optical biosensor for the detection of faecal indicator bacteria in freshwater and coastal bathing areas. Anal. Bioanal. Chem. 411:297637–43
    [Google Scholar]
  30. 30.
    Heery B, Briciu-Burghina C, Zhang D, Duffy G, Brabazon D et al. 2016. ColiSense, today's sample today: a rapid on-site detection of β-d-Glucuronidase activity in surface water as a surrogate for E. coli.. Talanta 148:75–83
    [Google Scholar]
  31. 31.
    Tryland I, Eregno FE, Braathen H, Khalaf G, Sjølander I, Fossum M. 2015. On-line monitoring of Escherichia coli in raw water at Oset drinking water treatment plant, Oslo (Norway). Int. J. Environ. Res. Public Health 12:21788–802
    [Google Scholar]
  32. 32.
    Koschelnik J, Vogl W, Epp M, Lackner M. 2015. Rapid analysis of β-d-glucuronidase activity in water using fully automated technology. Water Resour. Manag. 1:471–81
    [Google Scholar]
  33. 33.
    Stadler P, Blöschl G, Vogl W, Koschelnik J, Epp M et al. 2016. Real-time monitoring of β-d-glucuronidase activity in sediment laden streams: a comparison of prototypes. Water Res. 101:252–61
    [Google Scholar]
  34. 34.
    Burnet JB, Sylvestre É, Jalbert J, Imbeault S, Servais P et al. 2019. Tracking the contribution of multiple raw and treated wastewater discharges at an urban drinking water supply using near real-time monitoring of β-d-glucuronidase activity. Water Res. 164:114869
    [Google Scholar]
  35. 35.
    Cazals M, Stott R, Fleury C, Proulx F, Prévost M et al. 2020. Near real-time notification of water quality impairments in recreational freshwaters using rapid online detection of β-d-glucuronidase activity as a surrogate for Escherichia coli monitoring. Sci. Total Environ. 720:137303
    [Google Scholar]
  36. 36.
    Ryzinska-Paier G, Lendenfeld T, Correa K, Stadler P, Blaschke AP et al. 2014. A sensitive and robust method for automated on-line monitoring of enzymatic activities in water and water resources. Water Sci. Technol. 69:61349–58
    [Google Scholar]
  37. 37.
    Angelescu DE, Huynh V, Hausot A, Yalkin G, Plet V et al. 2019. Autonomous system for rapid field quantification of Escherichia coli in surface waters. J. Appl. Microbiol. 126:1332–43
    [Google Scholar]
  38. 38.
    Huynh V, Hausot A, Angelescu DE. 2016. An autonomous field sensor for Total Coliform and E. coli monitoring at remote sites Presented at the Oceans 2016 MTS/IEEE Monterey Monterey, CA:
    [Google Scholar]
  39. 39.
    Wang ZA, Moustahfid H, Mueller AV, Michel APM, Mowlem M et al. 2019. Advancing observation of ocean biogeochemistry, biology, and ecosystems with cost-effective in situ sensing technologies. Front. Mar. Sci. 6:519
    [Google Scholar]
  40. 40.
    Liu X, Wang ZA, Byrne RH, Kaltenbacher EA, Bernstein RE. 2006. Spectrophotometric measurements of pH in-situ: laboratory and field evaluations of instrumental performance. Environ. Sci. Technol. 40:165036–44
    [Google Scholar]
  41. 41.
    Cullison Gray SE, DeGrandpre MD, Moore TS, Martz TR, Friederich GE, Johnson KS 2011. Applications of in situ pH measurements for inorganic carbon calculations. Mar. Chem. 125:1–482–90
    [Google Scholar]
  42. 42.
    Tengberg A, Hovdenes J, Andersson HJ, Brocandel O, Diaz R et al. 2006. Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnol. Oceanogr. Methods 4:27–17
    [Google Scholar]
  43. 43.
    Seidel MP, DeGrandpre MD, Dickson AG. 2008. A sensor for in situ indicator-based measurements of seawater pH. Mar. Chem. 109:1–218–28
    [Google Scholar]
  44. 44.
    Nightingale AM, Hassan SU, Warren BM, Makris K, Evans GWH et al. 2019. A droplet microfluidic-based sensor for simultaneous in situ monitoring of nitrate and nitrite in natural waters. Environ. Sci. Technol. 53:169677–85
    [Google Scholar]
  45. 45.
    Bittig HC, Körtzinger A, Neill C, van Ooijen E, Plant JN et al. 2018. Oxygen optode sensors: principle, characterization, calibration, and application in the ocean. Front. Mar. Sci. 4:429
    [Google Scholar]
  46. 46.
    Fork DC. 1972. Oxygen electrode. Methods Enzymol. 24:113–22
    [Google Scholar]
  47. 47.
    Kautsky H. 1939. Quenching of luminescence by oxygen. Trans. Faraday Soc. 35:216–19
    [Google Scholar]
  48. 48.
    Riser SC, Freeland HJ, Roemmich D, Wijffels S, Troisi A et al. 2016. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Change 6:2145–53
    [Google Scholar]
  49. 49.
    Wei Y, Jiao Y, An D, Li D, Li W, Wei Q 2019. Review of dissolved oxygen detection technology: from laboratory analysis to online intelligent detection. Sensors 19:183995
    [Google Scholar]
  50. 50.
    Martz TR, Connery JG, Johnson KS. 2010. Testing the Honeywell Durafet® for seawater pH applications. Limnol. Oceanogr. Methods 8:172–84
    [Google Scholar]
  51. 51.
    Bresnahan PJ, Martz TR, Takeshita Y, Johnson KS, LaShomb M. 2014. Best practices for autonomous measurement of seawater pH with the Honeywell Durafet. Methods Oceanogr. 9:44–60
    [Google Scholar]
  52. 52.
    Takeshita Y, Martz TR, Johnson KS, Dickson AG. 2014. Characterization of an ion sensitive field effect transistor and chloride ion selective electrodes for pH measurements in seawater. Anal. Chem. 86:2211189–95
    [Google Scholar]
  53. 53.
    Miller CA, Pocock K, Evans W, Kelley AL. 2018. An evaluation of the performance of Sea-Bird Scientific's SeaFET™ autonomous pH sensor: considerations for the broader oceanographic community. Ocean Sci. 14:4751–68
    [Google Scholar]
  54. 54.
    Staudinger C, Strobl M, Fischer JP, Thar R, Mayr T et al. 2018. A versatile optode system for oxygen, carbon dioxide, and pH measurements in seawater with integrated battery and logger. Limnol. Oceanogr. Methods 16:7459–73
    [Google Scholar]
  55. 55.
    Atamanchuk D, Tengberg A, Thomas PJ, Hovdenes J, Apostolidis A et al. 2014. Performance of a lifetime-based optode for measuring partial pressure of carbon dioxide in natural waters. Limnol. Oceanogr. Methods 12:63–73
    [Google Scholar]
  56. 56.
    Clarke JS, Achterberg EP, Connelly DP, Schuster U, Mowlem M. 2017. Developments in marine pCO2 measurement technology; towards sustained in situ observations. Trends Anal. Chem. 88:53–61
    [Google Scholar]
  57. 57.
    Possenti L, Skjelvan I, Atamanchuk D, Tengberg A, Humphreys MP et al. 2021. Norwegian Sea net community production estimated from O2 and prototype CO2 optode measurements on a Seaglider. Ocean Sci. 17:2593–614
    [Google Scholar]
  58. 58.
    Chu SN, Sutton AJ, Alin SR, Lawrence-Slavas N, Atamanchuk D et al. 2020. Field evaluation of a low-powered, profiling pCO2 system in coastal Washington. Limnol. Oceanogr. Methods 18:6280–96
    [Google Scholar]
  59. 59.
    Kitchener BGB, Wainwright J, Parsons AJ. 2017. A review of the principles of turbidity measurement. Prog. Phys. Geogr. 41:5620–42
    [Google Scholar]
  60. 60.
    Bin Omar A, Bin MatJafri M. 2009. Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity. Sensors 9:108311–35
    [Google Scholar]
  61. 61.
    Lakowicz JR. 2006. Principles of Fluorescence Spectroscopy New York: Springer. , 3rd ed..
    [Google Scholar]
  62. 62.
    Cullen JJ. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci. 39:5791–803
    [Google Scholar]
  63. 63.
    Xing X, Claustre H, Boss E, Roesler C, Organelli E et al. 2017. Correction of profiles of in-situ chlorophyll fluorometry for the contribution of fluorescence originating from non-algal matter. Limnol. Oceanogr. Methods 15:180–93
    [Google Scholar]
  64. 64.
    Roesler C, Uitz J, Claustre H, Boss E, Xing X et al. 2017. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: a global analysis of WET Labs ECO sensors. Limnol. Oceanogr. Methods 15:6572–85
    [Google Scholar]
  65. 65.
    Coble PG. 2007. Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107:2402–18
    [Google Scholar]
  66. 66.
    Nelson NB, Gauglitz JM. 2016. Optical signatures of dissolved organic matter transformation in the global ocean. Front. Mar. Sci. 2:118
    [Google Scholar]
  67. 67.
    Carstea EM, Popa CL, Baker A, Bridgeman J. 2020. In situ fluorescence measurements of dissolved organic matter: a review. Sci. Total Environ. 699:134361
    [Google Scholar]
  68. 68.
    Conmy RN, Coble PG, Farr J, Wood AM, Lee K et al. 2014. Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring. Environ. Sci. Technol. 48:31803–10
    [Google Scholar]
  69. 69.
    Murphy KR, Butler KD, Spencer RGM, Stedmon CA, Boehme JR, Aiken GR. 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ. Sci. Technol. 44:249405–12
    [Google Scholar]
  70. 70.
    Jørgensen L, Stedmon CA, Kragh T, Markager S, Middelboe M, Søndergaard M. 2011. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar. Chem. 126:1–4139–48
    [Google Scholar]
  71. 71.
    Sorensen JPR, Lapworth DJ, Marchant BP, Nkhuwa DCW, Pedley S et al. 2015. In-situ tryptophan-like fluorescence: a real-time indicator of faecal contamination in drinking water supplies. Water Res. 81:38–46
    [Google Scholar]
  72. 72.
    Bleyen N, Albrecht A, De Cannière P, Wittebroodt C, Valcke E. 2019. Non-destructive on-line and long-term monitoring of in situ nitrate and nitrite reactivity in a clay environment at increasing turbidity. Appl. Geochem. 100:131–42
    [Google Scholar]
  73. 73.
    Int. Organ. Stand 2021. Marine environment sensor performance—specifications, testing and reporting—general requirements ISO Standard 22013:2021 ISO Geneva: https://www.iso.org/obp/ui/#iso:std:iso:22013:ed-1:v1:en
    [Google Scholar]
  74. 74.
    Int. Organ. Stand 2012. Corrosion of metals and alloyscorrosivity of atmospheresclassification, determination and estimation ISO Standard 9223:2012 ISO Geneva: https://www.iso.org/standard/53499.html#:∼:text=ISO%209223%3A2012%20specifies%20the,terms%20of%20time%20of%20wetness
    [Google Scholar]
  75. 75.
    Zhu J, Li D, Chang W, Wang Z, Hu L et al. 2020. In situ marine exposure study on corrosion behaviors of five alloys in coastal waters of western Pacific Ocean. J. Mater. Res. Technol. 9:48104–16
    [Google Scholar]
  76. 76.
    Songmene V, Zaghbani I, Kientzy G. 2018. Machining and machinability of tool steels: effects of lubrication and machining conditions on tool wear and tool life data. Proc. CIRP 77:505–8
    [Google Scholar]
  77. 77.
    Shalf J. 2020. The future of computing beyond Moore's Law. Philos. Trans. R. Soc. A 378:216620190061
    [Google Scholar]
  78. 78.
    Taki T, Strassburg M. 2020. Review—visible LEDs: more than efficient light. ECS J. Solid State Sci. Technol. 9:1015017
    [Google Scholar]
  79. 79.
    Shea-Rohwer LE, Martin JE, Cai X. 2010. LED light sources (light for the future). J. Phys. D. Appl. Phys. 43:35350301
    [Google Scholar]
  80. 80.
    Murphy K, Heery B, Sullivan T, Zhang D, Paludetti L et al. 2015. A low-cost autonomous optical sensor for water quality monitoring. Talanta 132:520–27
    [Google Scholar]
  81. 81.
    Yang Z, Albrow-Owen T, Cai W, Hasan T. 2021. Miniaturization of optical spectrometers. Science 371:6528eabe0722
    [Google Scholar]
  82. 82.
    Ryckeboer E, Vanslembrouck M, Baets R, Bockstaele R. 2014. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip. Biomed. Opt. Express 5:51636–48
    [Google Scholar]
  83. 83.
    Manley M. 2014. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chem. Soc. Rev. 43:248200–14
    [Google Scholar]
  84. 84.
    Characklis WG. 1981. Bioengineering report: fouling biofilm development: a process analysis. Biotechnol. Bioeng. 23:91923–60
    [Google Scholar]
  85. 85.
    Railkin AI. 2003. Marine Biofouling Boca Raton, FL: CRC Press
    [Google Scholar]
  86. 86.
    Manov DV, Chang GC, Dickey TD. 2004. Methods for reducing biofouling of moored optical sensors. J. Atmos. Ocean. Technol. 21:6958–68
    [Google Scholar]
  87. 87.
    Whelan A, Regan F. 2006. Antifouling strategies for marine and riverine sensors. J. Environ. Monit. 8:880–86
    [Google Scholar]
  88. 88.
    Delauney L, Compère C, Lehaitre M, Compare C, Lehaitre M et al. 2010. Biofouling protection for marine environmental sensors. Ocean Sci. 6:2503–11
    [Google Scholar]
  89. 89.
    Alliance for Coastal Technologies 2003. Biofouling prevention technologies for coastal sensors/sensor platforms UMCES Tech. Rep. Ser. TS-426-04-CBL, 04-016 Alliance for Coastal Technologies Solomons, MD:
    [Google Scholar]
  90. 90.
    Bringhurst BT, Christensen CB, Ewert DW, Thurston RJ, John P, Downing J. 2013. Sensor with antifouling control US Patent 8,429,952
    [Google Scholar]
  91. 91.
    Piola R, Salters B, Grandison C, Ciacic M, Hietbrink R. 2016. Assessing the use of low voltage UV-light emitting miniature LEDs for marine biofouling control Rep. Dep. Def., Aust. Gov. Canberra: https://apps.dtic.mil/sti/pdfs/AD1024190.pdf
    [Google Scholar]
  92. 92.
    Wilson E. 2018. Understanding the fundamental optical principles of UV-based antifouling Master's Thesis Lund Univ. Lund, Swed: https://lup.lub.lu.se/student-papers/search/publication/8953475
    [Google Scholar]
  93. 93.
    Grandison C, Piola R, Fletcher L. 2011. A review of Marine Growth Protection System (MGPS) options for the Royal Australian Navy Tech. Rep. DSTO-TR-2631 Dep. Def., Aust. Gov. Canberra:
    [Google Scholar]
  94. 94.
    Stauber JL, Florence TM. 1987. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 94:4511–19
    [Google Scholar]
  95. 95.
    Scardino AJ, de Nys R. 2011. Mini review: biomimetic models and bioinspired surfaces for fouling control. Biofouling 27:173–86
    [Google Scholar]
  96. 96.
    Bhushan B. 2009. Biomimetics: lessons from nature-an overview. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367:18931445–86
    [Google Scholar]
  97. 97.
    Lizotte M. 2015. Fighting fouling: extending sonde deployment times with EXO's Wiped (C/T) sensor Rep. YSI/Xylem Yellow Springs, OH:
    [Google Scholar]
  98. 98.
    Albaladejo C, Sánchez P, Iborra A, Soto F, López JA, Torres R. 2010. Wireless sensor networks for oceanographic monitoring: a systematic review. Sensors 10:76948–68
    [Google Scholar]
  99. 99.
    Chai F, Johnson KS, Claustre H, Xing X, Wang Y et al. 2020. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1:6315–26
    [Google Scholar]
  100. 100.
    Whitt C, Pearlman J, Polagye B, Caimi F, Muller-Karger F et al. 2020. Future vision for autonomous ocean observations. Front. Mar. Sci. 7:697
    [Google Scholar]
  101. 101.
    Beaton AD, Cardwell CL, Thomas RS, Sieben VJ, Legiret F-E et al. 2012. Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environ. Sci. Technol. 46:179548–56
    [Google Scholar]
  102. 102.
    Yücel M, Beaton AD, Dengler M, Mowlem MC, Sohl F, Sommer S. 2015. Nitrate and nitrite variability at the seafloor of an oxygen minimum zone revealed by a novel microfluidic in-situ chemical sensor. PLOS ONE 10:7e0132785
    [Google Scholar]
  103. 103.
    Beaton AD, Wadham JL, Hawkings J, Bagshaw EA, Lamarche-Gagnon G et al. 2017. High-resolution in situ measurement of nitrate in runoff from the Greenland ice sheet. Environ. Sci. Technol. 51:2112518–27
    [Google Scholar]
  104. 104.
    Scholin C, Birch J, Jensen S, Marin R 3rd, Massion E et al. 2017. The quest to develop ecogenomic sensors: a 25-year history of the Environmental Sample Processor (ESP) as a case study. Oceanography 30:4100–113
    [Google Scholar]
  105. 105.
    Petralia S, Conoci S. 2017. PCR technologies for point of care testing: progress and perspectives. ACS Sens. 2:7876–91
    [Google Scholar]
  106. 106.
    Williams M, O'Grady J, Ball B, Carlsson J, Eyto E et al. 2019. The application of CRISPR-Cas for single species identification from environmental DNA. Mol. Ecol. Resour. 19:51106–14
    [Google Scholar]
  107. 107.
    Zhang Z, Li J, Wang X, Shen D, Chen L. 2015. Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin. ACS Appl. Mater. Interfaces 7:179118–27
    [Google Scholar]
  108. 108.
    Li B, Zhang Z, Qi J, Zhou N, Qin S et al. 2017. Quantum dot-based molecularly imprinted polymers on three-dimensional origami paper microfluidic chip for fluorescence detection of phycocyanin. ACS Sens. 2:2243–50
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091922-085746
Loading
/content/journals/10.1146/annurev-anchem-091922-085746
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error