1932

Abstract

Cell functions rely on signal transduction—the cascades of molecular interactions and biochemical reactions that relay extracellular signals to the cell interior. Dissecting principles governing the signal transduction process is critical for the fundamental understanding of cell physiology and the development of biomedical interventions. The complexity of cell signaling is, however, beyond what is accessible by conventional biochemistry assays. Thanks to their unique physical and chemical properties, nanoparticles (NPs) have been increasingly used for the quantitative measurement and manipulation of cell signaling. Even though research in this area is still in its infancy, it has the potential to yield new, paradigm-shifting knowledge of cell biology and lead to biomedical innovations. To highlight this importance, we summarize in this review studies that pioneered the development and application of NPs for cell signaling, from quantitative measurements of signaling molecules to spatiotemporal manipulation of cell signal transduction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-092822-085852
2023-06-14
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-092822-085852.html?itemId=/content/journals/10.1146/annurev-anchem-092822-085852&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Krauss G. 2006. Biochemistry of Signal Transduction and Regulation Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  2. 2.
    Burack WR, Shaw AS. 2000. Signal transduction: hanging on a scaffold. Curr. Opin. Cell Biol. 12:211–16
    [Google Scholar]
  3. 3.
    Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B. 2003. The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84:783–94
    [Google Scholar]
  4. 4.
    Iqbal J, Sun L, Zaidi M. 2010. Complexity in signal transduction. Ann. N.Y. Acad. Sci. 1192:238–44
    [Google Scholar]
  5. 5.
    Lodish H, Berk A, Kaiser CA, Krieger M, Bretscher A et al. 2008. Molecular Cell Biology London: Macmillan
    [Google Scholar]
  6. 6.
    Pollard TD, Earnshaw WC, Lippincott-Schwartz J, Johnson G 2016. Cell Biology E-Book Amsterdam: Elsevier Health Sciences
    [Google Scholar]
  7. 7.
    Liu J, Wen J, Zhang ZR, Liu HJ, Sun Y. 2015. Voyage inside the cell: microsystems and nanoengineering for intracellular measurement and manipulation. Microsyst. Nanoeng. 1:15020
    [Google Scholar]
  8. 8.
    Mendes PM. 2013. Cellular nanotechnology: making biological interfaces smarter. Chem. Soc. Rev. 42:9207–18
    [Google Scholar]
  9. 9.
    Venugopalan PL, Esteban-Fernandez de Avila B, Pal M, Ghosh A, Wang J 2020. Fantastic voyage of nanomotors into the cell. ACS Nano 14:9423–39
    [Google Scholar]
  10. 10.
    Ferreira L, Karp JM, Nobre L, Langer R. 2008. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3:136–46
    [Google Scholar]
  11. 11.
    Salata OV. 2004. Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2:3
    [Google Scholar]
  12. 12.
    Sanvicens N, Marco MP. 2008. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol 26:425–33
    [Google Scholar]
  13. 13.
    Khan I, Saeed K, Khan I. 2019. Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12:908–31
    [Google Scholar]
  14. 14.
    Peng J, He X, Wang K, Tan W, Wang Y, Liu Y. 2007. Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal. Bioanal. Chem. 388:645–54
    [Google Scholar]
  15. 15.
    Zhang L, Li Y, Li DW, Jing C, Chen X et al. 2011. Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. Angew. Chem. Int. Ed. 50:6789–92
    [Google Scholar]
  16. 16.
    Kim G, Lee YE, Xu H, Philbert MA, Kopelman R 2010. Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells. Anal. Chem. 82:2165–69
    [Google Scholar]
  17. 17.
    Xie S, Du Y, Zhang Y, Wang Z, Zhang D et al. 2020. Aptamer-based optical manipulation of protein subcellular localization in cells. Nat. Commun. 11:1347
    [Google Scholar]
  18. 18.
    Etoc F, Lisse D, Bellaiche Y, Piehler J, Coppey M, Dahan M. 2013. Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells. Nat. Nanotechnol. 8:193–98
    [Google Scholar]
  19. 19.
    Liu Z, Liu Y, Chang Y, Seyf HR, Henry A et al. 2016. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat. Methods 13:143–46
    [Google Scholar]
  20. 20.
    Hughes S, McBain S, Dobson J, El Haj AJ 2008. Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface 5:855–63
    [Google Scholar]
  21. 21.
    Kauffman KJ, Webber MJ, Anderson DG. 2016. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release 240:227–34
    [Google Scholar]
  22. 22.
    Williford JM, Wu J, Ren Y, Archang MM, Leong KW, Mao HQ. 2014. Recent advances in nanoparticle-mediated siRNA delivery. Annu. Rev. Biomed. Eng. 16:347–70
    [Google Scholar]
  23. 23.
    Lai WF, Wong WT. 2018. Design of polymeric gene carriers for effective intracellular delivery. Trends Biotechnol 36:713–28
    [Google Scholar]
  24. 24.
    Mahnensmith RL, Aronson PS. 1985. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ. Res. 56:773–88
    [Google Scholar]
  25. 25.
    Casey JR, Grinstein S, Orlowski J. 2010. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11:50–61
    [Google Scholar]
  26. 26.
    Sanders D, Hansen UP, Slayman CL. 1981. Role of the plasma membrane proton pump in pH regulation in non-animal cells. PNAS 78:5903–7
    [Google Scholar]
  27. 27.
    Sanders D, Slayman CL. 1982. Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. J. Gen. Physiol. 80:377–402
    [Google Scholar]
  28. 28.
    Lagadic-Gossmann D, Huc L, Lecureur V. 2004. Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–61
    [Google Scholar]
  29. 29.
    Wu S, Li Z, Han J, Han S 2011. Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem. Commun. 47:11276–78
    [Google Scholar]
  30. 30.
    Benjaminsen RV, Sun H, Henriksen JR, Christensen NM, Almdal K, Andresen TL. 2011. Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano 5:5864–73
    [Google Scholar]
  31. 31.
    Zhou K, Liu H, Zhang S, Huang X, Wang Y et al. 2012. Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J. Am. Chem. Soc. 134:7803–11
    [Google Scholar]
  32. 32.
    Wang XD, Stolwijk JA, Lang T, Sperber M, Meier RJ et al. 2012. Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J. Am. Chem. Soc. 134:17011–14
    [Google Scholar]
  33. 33.
    Pan TT, Yang C, Shi JY, Hao CX, Qiao Y et al. 2019. Dual pH and oxygen luminescent nanoprobes based on graft polymers for extracellular metabolism monitoring and intracellular imaging. Sens. Actuators B Chem. 291:306–18
    [Google Scholar]
  34. 34.
    Lee S, Zhang Z, Yu Y. 2021. Real-time simultaneous imaging of acidification and proteolysis in single phagosomes using bifunctional Janus-particle probes. Angew. Chem. Int. Ed. 60:26734–39
    [Google Scholar]
  35. 35.
    Dennis AM, Rhee WJ, Sotto D, Dublin SN, Bao G 2012. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6:2917–24
    [Google Scholar]
  36. 36.
    Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB et al. 2010. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater. 9:676–84
    [Google Scholar]
  37. 37.
    Herrera-Ochoa D, Pacheco-Linan PJ, Bravo I, Garzon-Ruiz A. 2022. A novel quantum dot-based pH probe for long-term fluorescence lifetime imaging microscopy experiments in living cells. ACS Appl. Mater. Interfaces 14:2578–86
    [Google Scholar]
  38. 38.
    Tsai ES, Joud F, Wiesholler LM, Hirsch T, Hall EAH 2020. Upconversion nanoparticles as intracellular pH messengers. Anal. Bioanal. Chem. 412:6567–81
    [Google Scholar]
  39. 39.
    Liu C, Zhang F, Hu J, Gao W, Zhang M. 2020. A mini review on pH-sensitive photoluminescence in carbon nanodots. Front. Chem. 8:605028
    [Google Scholar]
  40. 40.
    Takahashi A, Camacho P, Lechleiter JD, Herman B. 1999. Measurement of intracellular calcium. Physiol. Rev. 79:1089–125
    [Google Scholar]
  41. 41.
    Faundez V, Hartzell HC. 2004. Intracellular chloride channels: determinants of function in the endosomal pathway. Sci. STKE 2004:re8
    [Google Scholar]
  42. 42.
    Feske S, Wulff H, Skolnik EY. 2015. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33:291–353
    [Google Scholar]
  43. 43.
    Scharff O, Foder B. 1993. Regulation of cytosolic calcium in blood cells. Physiol. Rev. 73:547–82
    [Google Scholar]
  44. 44.
    Romani A, Scarpa A. 1992. Regulation of cell magnesium. Arch. Biochem. Biophys. 298:1–12
    [Google Scholar]
  45. 45.
    Si D, Epstein T, Lee YE, Kopelman R. 2012. Nanoparticle PEBBLE sensors for quantitative nanomolar imaging of intracellular free calcium ions. Anal. Chem. 84:978–86
    [Google Scholar]
  46. 46.
    Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R 2003. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells. Anal. Chem. 75:3784–91
    [Google Scholar]
  47. 47.
    Lee YE, Smith R, Kopelman R. 2009. Nanoparticle PEBBLE sensors in live cells and in vivo. Annu. Rev. Anal. Chem. 2:57–76
    [Google Scholar]
  48. 48.
    Ding L, Lian Y, Lin Z, Zhang Z, Wang XD. 2020. Long-term quantitatively imaging intracellular chloride concentration using a core-/shell-structured nanosensor and time-domain dual-lifetime referencing method. ACS Sens 5:3971–78
    [Google Scholar]
  49. 49.
    Riedinger A, Zhang F, Dommershausen F, Rocker C, Brandholt S et al. 2010. Ratiometric optical sensing of chloride ions with organic fluorophore-gold nanoparticle hybrids: a systematic study of design parameters and surface charge effects. Small 6:2590–97
    [Google Scholar]
  50. 50.
    Zhu D, Zhao DX, Huang JX, Li J, Zuo XL et al. 2018. Protein-mimicking nanoparticle (Protmin)-based nanosensor for intracellular analysis of metal ions. Nucl. Sci. Tech. 29:5
    [Google Scholar]
  51. 51.
    Shu Y, Zheng N, Zheng AQ, Guo TT, Yu YL, Wang JH. 2019. Intracellular zinc quantification by fluorescence imaging with a FRET system. Anal. Chem. 91:4157–63
    [Google Scholar]
  52. 52.
    Peng J, Xu W, Teoh CL, Han S, Kim B et al. 2015. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J. Am. Chem. Soc. 137:2336–42
    [Google Scholar]
  53. 53.
    Potzkei J, Kunze M, Drepper T, Gensch T, Jaeger KE, Buchs J. 2012. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol 10:28
    [Google Scholar]
  54. 54.
    Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F et al. 2017. Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. 2017:8416763
    [Google Scholar]
  55. 55.
    McKeown SR. 2014. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol. 87:20130676
    [Google Scholar]
  56. 56.
    Lee SK, Okura I. 1997. Photostable optical oxygen sensing material: platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polystyrene. Anal. Commun. 34:185–88
    [Google Scholar]
  57. 57.
    Hara D, Komatsu H, Son A, Nishimoto S, Tanabe K. 2015. Water-soluble phosphorescent ruthenium complex with a fluorescent coumarin unit for ratiometric sensing of oxygen levels in living cells. Bioconjug. Chem. 26:645–49
    [Google Scholar]
  58. 58.
    Tobita S, Yoshihara T. 2016. Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes. Curr. Opin. Chem. Biol. 33:39–45
    [Google Scholar]
  59. 59.
    Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB. 2011. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5:5499–508
    [Google Scholar]
  60. 60.
    Coogan MP, Court JB, Gray VL, Hayes AJ, Lloyd SH et al. 2010. Probing intracellular oxygen by quenched phosphorescence lifetimes of nanoparticles containing polyacrylamide-embedded [Ru(dpp(SO3Na)2)3]Cl2. Photochem. Photobiol. Sci. 9:103–9
    [Google Scholar]
  61. 61.
    Lee YE, Ulbrich EE, Kim G, Hah H, Strollo C et al. 2010. Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity. Anal. Chem. 82:8446–55
    [Google Scholar]
  62. 62.
    Wang XH, Peng HS, Yang L, You FT, Teng F et al. 2014. Targetable phosphorescent oxygen nanosensors for the assessment of tumor mitochondrial dysfunction by monitoring the respiratory activity. Angew. Chem. Int. Ed. 53:12471–75
    [Google Scholar]
  63. 63.
    Inada N, Fukuda N, Hayashi T, Uchiyama S. 2019. Temperature imaging using a cationic linear fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Protoc. 14:1293–321
    [Google Scholar]
  64. 64.
    Wu Y, Liu J, Ma J, Liu Y, Wang Y, Wu D. 2016. Ratiometric nanothermometer based on rhodamine dye-incorporated F127-melamine-formaldehyde polymer nanoparticle: preparation, characterization, wide-range temperature sensing, and precise intracellular thermometry. ACS Appl. Mater. Interfaces 8:14396–405
    [Google Scholar]
  65. 65.
    Escudero A, Becerro AI, Carrillo-Carrion C, Nunez NO, Zyuzin MV et al. 2017. Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics 6:881–921
    [Google Scholar]
  66. 66.
    Wang C, Ling L, Yao YG, Song QJ. 2015. One-step synthesis of fluorescent smart thermo-responsive copper clusters: a potential nanothermometer in living cells. Nano Res 8:1975–86
    [Google Scholar]
  67. 67.
    Albers AE, Chan EM, McBride PM, Ajo-Franklin CM, Cohen BE, Helms BA. 2012. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J. Am. Chem. Soc. 134:9565–68
    [Google Scholar]
  68. 68.
    Kalytchuk S, Polakova K, Wang Y, Froning JP, Cepe K et al. 2017. Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing. ACS Nano 11:1432–42
    [Google Scholar]
  69. 69.
    Lee J, Govorov AO, Kotov NA. 2005. Nanoparticle assemblies with molecular springs: a nanoscale thermometer. Angew. Chem. Int. Ed. 44:7439–42
    [Google Scholar]
  70. 70.
    Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S. 2012. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 3:705
    [Google Scholar]
  71. 71.
    Marciniak L, Kniec K, Elżbieciak-Piecka K, Trejgis K, Stefanska J, Dramićanin M. 2022. Luminescence thermometry with transition metal ions. A review. Coord. Chem. Rev. 469:214671
    [Google Scholar]
  72. 72.
    Zhu X, Zhang J, Liu J, Zhang Y. 2019. Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications. Adv. Sci. 6:1901358
    [Google Scholar]
  73. 73.
    Pinol R, Zeler J, Brites CDS, Gu Y, Tellez P et al. 2020. Real-time intracellular temperature imaging using lanthanide-bearing polymeric micelles. Nano Lett 20:6466–72
    [Google Scholar]
  74. 74.
    Wang J, Jiang A, Wang J, Song B, He Y. 2020. Dual-emission fluorescent silicon nanoparticle-based nanothermometer for ratiometric detection of intracellular temperature in living cells. Faraday Discuss. 222:122–34
    [Google Scholar]
  75. 75.
    Shang L, Stockmar F, Azadfar N, Nienhaus GU. 2013. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem. Int. Ed. 52:11154–57
    [Google Scholar]
  76. 76.
    Di X, Wang D, Zhou J, Zhang L, Stenzel MH et al. 2021. Quantitatively monitoring in situ mitochondrial thermal dynamics by upconversion nanoparticles. Nano Lett 21:1651–58
    [Google Scholar]
  77. 77.
    Qiu X, Zhou Q, Zhu X, Wu Z, Feng W, Li F. 2020. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat. Commun. 11:4
    [Google Scholar]
  78. 78.
    Martinac B. 2004. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117:2449–60
    [Google Scholar]
  79. 79.
    Lee JU, Shin W, Lim Y, Kim J, Kim WR et al. 2021. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20:1029–36
    [Google Scholar]
  80. 80.
    Lee JH, Kim JW, Levy M, Kao A, Noh SH et al. 2014. Magnetic nanoparticles for ultrafast mechanical control of inner ear hair cells. ACS Nano 8:6590–98
    [Google Scholar]
  81. 81.
    Tay A, Kunze A, Murray C, Di Carlo D. 2016. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 10:2331–41
    [Google Scholar]
  82. 82.
    Tay A, Di Carlo D. 2017. Magnetic nanoparticle-based mechanical stimulation for restoration of mechano-sensitive ion channel equilibrium in neural networks. Nano Lett 17:886–92
    [Google Scholar]
  83. 83.
    Deatsch AE, Evans BA. 2014. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 354:163–72
    [Google Scholar]
  84. 84.
    Dennis CL, Ivkov R. 2013. Physics of heat generation using magnetic nanoparticles for hyperthermia. Int. J. Hyperth. 29:715–29
    [Google Scholar]
  85. 85.
    Huang H, Delikanli S, Zeng H, Ferkey DM, Pralle A. 2010. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 5:602–6
    [Google Scholar]
  86. 86.
    Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM. 2012. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–8
    [Google Scholar]
  87. 87.
    Stanley SA, Sauer J, Kane RS, Dordick JS, Friedman JM. 2015. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 21:92–98
    [Google Scholar]
  88. 88.
    Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. 2015. Wireless magnetothermal deep brain stimulation. Science 347:1477–80
    [Google Scholar]
  89. 89.
    Yu N, Huang L, Zhou Y, Xue T, Chen Z, Han G 2019. Near-infrared-light activatable nanoparticles for deep-tissue-penetrating wireless optogenetics. Adv. Healthc. Mater. 8:e1801132
    [Google Scholar]
  90. 90.
    Kim M, Lee JH, Nam JM. 2019. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci. 6:1900471
    [Google Scholar]
  91. 91.
    Nakatsuji H, Numata T, Morone N, Kaneko S, Mori Y et al. 2015. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles. Angew. Chem. Int. Ed. 54:11725–29
    [Google Scholar]
  92. 92.
    Carvalho-de-Souza JL, Treger JS, Dang B, Kent SB, Pepperberg DR, Bezanilla F. 2015. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86:207–17
    [Google Scholar]
  93. 93.
    Carvalho-de-Souza JL, Nag OK, Oh E, Huston AL, Vurgaftman I et al. 2019. Cholesterol functionalization of gold nanoparticles enhances photoactivation of neural activity. ACS Chem. Neurosci. 10:1478–87
    [Google Scholar]
  94. 94.
    Wu X, Jiang Y, Rommelfanger NJ, Yang F, Zhou Q et al. 2022. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window. Nat. Biomed. Eng. 6:754–70
    [Google Scholar]
  95. 95.
    Lyu Y, Xie C, Chechetka SA, Miyako E, Pu K. 2016. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 138:9049–52
    [Google Scholar]
  96. 96.
    Li BY, Wang YY, Gao D, Ren SX, Li L et al. 2021. Photothermal modulation of depression-related ion channel function through conjugated polymer nanoparticles. Adv. Funct. Mater. 31:2010757
    [Google Scholar]
  97. 97.
    Zhen X, Xie C, Jiang Y, Ai X, Xing B, Pu K 2018. Semiconducting photothermal nanoagonist for remote-controlled specific cancer therapy. Nano Lett 18:1498–505
    [Google Scholar]
  98. 98.
    Li W, Luo R, Lin X, Jadhav AD, Zhang Z et al. 2015. Remote modulation of neural activities via near-infrared triggered release of biomolecules. Biomaterials 65:76–85
    [Google Scholar]
  99. 99.
    Maya-Vetencourt JF, Manfredi G, Mete M, Colombo E, Bramini M et al. 2020. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol. 15:698–708
    [Google Scholar]
  100. 100.
    Chen S, Weitemier AZ, Zeng X, He L, Wang X et al. 2018. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359:679–84
    [Google Scholar]
  101. 101.
    Ma Y, Bao J, Zhang Y, Li Z, Zhou X et al. 2019. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 177:243–55.e15
    [Google Scholar]
  102. 102.
    Li M, Yu Y. 2021. Innate immune receptor clustering and its role in immune regulation. J. Cell Sci. 134:jcs249318
    [Google Scholar]
  103. 103.
    Goyette J, Nieves DJ, Ma Y, Gaus K. 2019. How does T cell receptor clustering impact on signal transduction?. J. Cell Sci. 132:jcs226423
    [Google Scholar]
  104. 104.
    Janes PW, Nievergall E, Lackmann M. 2012. Concepts and consequences of Eph receptor clustering. Semin. Cell Dev. Biol. 23:43–50
    [Google Scholar]
  105. 105.
    Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. 2014. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8:2252–60
    [Google Scholar]
  106. 106.
    Kosmides AK, Necochea K, Hickey JW, Schneck JP. 2018. Separating T cell targeting components onto magnetically clustered nanoparticles boosts activation. Nano Lett 18:1916–24
    [Google Scholar]
  107. 107.
    Bharde AA, Palankar R, Fritsch C, Klaver A, Kanger JS et al. 2013. Magnetic nanoparticles as mediators of ligand-free activation of EGFR signaling. PLOS ONE 8:e68879
    [Google Scholar]
  108. 108.
    Lee JH, Kim ES, Cho MH, Son M, Yeon SI et al. 2010. Artificial control of cell signaling and growth by magnetic nanoparticles. Angew. Chem. Int. Ed. 49:5698–702
    [Google Scholar]
  109. 109.
    Cho MH, Lee EJ, Son M, Lee JH, Yoo D et al. 2012. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11:1038–43
    [Google Scholar]
  110. 110.
    Mannix RJ, Kumar S, Cassiola F, Montoya-Zavala M, Feinstein E et al. 2008. Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol. 3:36–40
    [Google Scholar]
  111. 111.
    Liu Z, Liu Y, Chang Y, Seyf HR, Henry A et al. 2016. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat. Methods 13:143–46
    [Google Scholar]
  112. 112.
    Huang YF, Liu H, Xiong X, Chen Y, Tan W 2009. Nanoparticle-mediated IgE-receptor aggregation and signaling in RBL mast cells. J. Am. Chem. Soc. 131:17328–34
    [Google Scholar]
  113. 113.
    Hickey JW, Vicente FP, Howard GP, Mao HQ, Schneck JP. 2017. Biologically inspired design of nanoparticle artificial antigen-presenting cells for immunomodulation. Nano Lett 17:7045–54
    [Google Scholar]
  114. 114.
    Lee K, Yu Y. 2017. Janus nanoparticles for T cell activation: clustering ligands to enhance stimulation. J. Mater. Chem. B 5:4410–15
    [Google Scholar]
  115. 115.
    Gao Y, Yu Y. 2013. How half-coated Janus particles enter cells. J. Am. Chem. Soc. 135:19091–94
    [Google Scholar]
  116. 116.
    Gao Y, Yu Y. 2015. Macrophage uptake of Janus particles depends upon Janus balance. Langmuir 31:2833–38
    [Google Scholar]
  117. 117.
    Jiao M, Li W, Yu Y, Yu Y 2022. Anisotropic presentation of ligands on cargos modulates degradative function of phagosomes. Biophys. Rep. 2:100041
    [Google Scholar]
  118. 118.
    Gao J, Xu B. 2009. Applications of nanomaterials inside cells. Nano Today 4:37–51
    [Google Scholar]
  119. 119.
    Xie J, Lee S, Chen X 2010. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62:1064–79
    [Google Scholar]
  120. 120.
    Sultana S, Khan MR, Kumar M, Kumar S, Ali M 2013. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J. Drug Target 21:107–25
    [Google Scholar]
  121. 121.
    Hoffmann C, Mazari E, Lallet S, Le Borgne R, Marchi V et al. 2013. Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles. Nat. Nanotechnol. 8:199–205
    [Google Scholar]
  122. 122.
    Etoc F, Vicario C, Lisse D, Siaugue JM, Piehler J et al. 2015. Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett 15:3487–94
    [Google Scholar]
  123. 123.
    Steketee MB, Moysidis SN, Jin XL, Weinstein JE, Pita-Thomas W et al. 2011. Nanoparticle-mediated signaling endosome localization regulates growth cone motility and neurite growth. PNAS 108:19042–47
    [Google Scholar]
  124. 124.
    Yu Y, Zhang Z, Walpole GFW, Yu Y. 2022. Kinetics of phagosome maturation is coupled to their intracellular motility. Commun. Biol. 5:1014
    [Google Scholar]
  125. 125.
    Wilhelm C, Gazeau F, Bacri JC. 2003. Rotational magnetic endosome microrheology: viscoelastic architecture inside living cells. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 67:061908
    [Google Scholar]
  126. 126.
    Robert D, Nguyen TH, Gallet F, Wilhelm C. 2010. In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLOS ONE 5:e10046
    [Google Scholar]
  127. 127.
    Celedon A, Hale CM, Wirtz D. 2011. Magnetic manipulation of nanorods in the nucleus of living cells. Biophys. J. 101:1880–86
    [Google Scholar]
  128. 128.
    Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL et al. 2005. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett 5:1371–77
    [Google Scholar]
  129. 129.
    Han G, You CC, Kim BJ, Turingan RS, Forbes NS et al. 2006. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew. Chem. Int. Ed. 45:3165–69
    [Google Scholar]
  130. 130.
    Chen CC, Lin YP, Wang CW, Tzeng HC, Wu CH et al. 2006. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc. 128:3709–15
    [Google Scholar]
  131. 131.
    Lee SE, Liu GL, Kim F, Lee LP 2009. Remote optical switch for localized and selective control of gene interference. Nano Lett 9:562–70
    [Google Scholar]
  132. 132.
    Huschka R, Neumann O, Barhoumi A, Halas NJ. 2010. Visualizing light-triggered release of molecules inside living cells. Nano Lett 10:4117–22
    [Google Scholar]
  133. 133.
    Skirtach AG, Munoz Javier A, Kreft O, Kohler K, Piera Alberola A et al. 2006. Laser-induced release of encapsulated materials inside living cells. Angew. Chem. Int. Ed. 45:4612–17
    [Google Scholar]
  134. 134.
    Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA et al. 2009. Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano 3:2007–15
    [Google Scholar]
  135. 135.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B et al. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS 100:13549–54
    [Google Scholar]
  136. 136.
    Loo C, Lowery A, Halas N, West J, Drezek R. 2005. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–11
    [Google Scholar]
  137. 137.
    Marago OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC. 2013. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8:807–19
    [Google Scholar]
  138. 138.
    Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N et al. 2019. Plasmonic gold nanoparticles: optical manipulation, imaging, drug delivery and therapy. J. Control. Release 311–312:170–89
    [Google Scholar]
  139. 139.
    Norregaard K, Jauffred L, Berg-Sorensen K, Oddershede LB. 2014. Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16:12614–24
    [Google Scholar]
  140. 140.
    Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH et al. 2013. The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys. J. 105:1562–68
    [Google Scholar]
  141. 141.
    Soppina V, Rai AK, Ramaiya AJ, Barak P, Mallik R. 2009. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. PNAS 106:19381–86
    [Google Scholar]
  142. 142.
    Chowdary PD, Che DL, Kaplan L, Chen O, Pu K et al. 2015. Nanoparticle-assisted optical tethering of endosomes reveals the cooperative function of dyneins in retrograde axonal transport. Sci. Rep. 5:18059
    [Google Scholar]
  143. 143.
    Stevenson DJ, Gunn-Moore F, Dholakia K. 2010. Light forces the pace: optical manipulation for biophotonics. J. Biomed. Opt. 15:041503
    [Google Scholar]
  144. 144.
    Shan X, Wang F, Wang D, Wen S, Chen C et al. 2021. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nat. Nanotechnol. 16:531–37
    [Google Scholar]
  145. 145.
    Larsson D, Larsson B, Lundgren T, Sundell K. 1999. The effect of pH and temperature on the dissociation constant for fura-2 and their effects on [Ca2+]i in enterocytes from a poikilothermic animal, Atlantic cod (Gadus morhua). Anal. Biochem. 273:60–65
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-092822-085852
Loading
/content/journals/10.1146/annurev-anchem-092822-085852
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error