1932

Abstract

The goal of protecting the health of future generations is a blueprint for future biosensor design. Systems-level decision support requires that biosensors provide meaningful service to society. In this review, we summarize recent developments in cyber physical systems and biosensors connected with decision support. We identify key processes and practices that may guide the establishment of connections between user needs and biosensor engineering using an informatics approach. We call for data science and decision science to be formally connected with sensor science for understanding system complexity and realizing the ambition of biosensors-as-a-service. This review calls for a focus on quality of service early in the design process as a means to improve the meaningful value of a given biosensor. We close by noting that technology development, including biosensors and decision support systems, is a cautionary tale. The economics of scale govern the success, or failure, of any biosensor system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-100322-040914
2023-06-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-100322-040914.html?itemId=/content/journals/10.1146/annurev-anchem-100322-040914&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    United Nations 2015. Transforming our world: the 2030 agenda for Sustainable Development United Nations New York: https://sdgs.un.org/2030agenda
  2. 2.
    Am. Vet. Med. Assoc. (AVMA) 2008. One Health: a new professional imperative Final Rep. One Health Init. Task Force, Am. Vet. Med. Assoc. Schaumburg, IL: https://www.avma.org/resources-tools/reports/one-health-ohitf-final-report-2008
  3. 3.
    Charron DF. 2012. Ecohealth: origins and approach. Ecohealth Research in Practice: Innovative Applications of an Ecosystem Approach to Health DF Charron 1–30. New York: Springer
    [Google Scholar]
  4. 4.
    Horton R, Lo S. 2015. Planetary health: a new science for exceptional action. Lancet 386:10007192122
    [Google Scholar]
  5. 5.
    Lerner H, Berg C. 2017. A comparison of three holistic approaches to health: One Health, EcoHealth, and Planetary Health. Front. Vet. Sci. 4:163
    [Google Scholar]
  6. 6.
    Hill-Cawthorne GA. 2019. One Health/EcoHealth/Planetary Health and their evolution. One Planet, One Health M Walton 1–20. Sydney: Sydney Univ. Press
    [Google Scholar]
  7. 7.
    Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ. 2017. The circular economy—a new sustainability paradigm?. J. Clean. Prod. 143:757–68
    [Google Scholar]
  8. 8.
    Turner A. 2013. Biosensors: sense and sensibility. Chem. Soc. Rev. 42:83184–96
    [Google Scholar]
  9. 9.
    McLamore ES, Alocilja E, Gomes C, Gunasekaran S, Jenkins D et al. 2021. FEAST of biosensors: food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens. Bioelectron. 178:113011
    [Google Scholar]
  10. 10.
    Griesche C, Baeumner AJ. 2020. Biosensors to support sustainable agriculture and food safety. Trends Anal. Chem. 128:115906
    [Google Scholar]
  11. 11.
    Taguchi M, Ptitsyn A, McLamore ES, Claussen JC. 2014. Nanomaterial-mediated biosensors for monitoring glucose. J. Diabetes Sci. Technol. 8:2403–11
    [Google Scholar]
  12. 12.
    Vanegas DC, Gomes CL, Cavallaro ND, Giraldo-Escobar D, McLamore ES. 2017. Emerging biorecognition and transduction schemes for rapid detection of pathogenic bacteria in food. Compr. Rev. Food Sci. Food Saf. 16:61188–205
    [Google Scholar]
  13. 13.
    Wang T, Zhou Y, Pu H. 2017. Magnetic impedance biosensor: a review. Biosens. Bioelectron. 90:41835
    [Google Scholar]
  14. 14.
    Tang Y, Gao L, Feng W, Guo C, Yang Q et al. 2021. The CRISPR-Cas toolbox for analytical and diagnostic assay development. Chem. Soc. Rev. 50:2111844–69
    [Google Scholar]
  15. 15.
    Wan L, Ma J, Yi J, Dong Y, Niu R et al. 2022. CRISPR-empowered hybridization chain reaction amplification for an attomolar electrochemical sensor. Chem. Commun. 58:638826–29
    [Google Scholar]
  16. 16.
    Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:4968505–10Reports on the discovery of SELEX.
    [Google Scholar]
  17. 17.
    Ellington AD, Szostak JW. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:6287818–22
    [Google Scholar]
  18. 18.
    Zichi D, Wilcox SK, Bock C, Schneider DJ, Eaton B et al. 2011. Method for generating aptamers with improved off-rates US Patent 7,947,447 B2
  19. 19.
    Sojka B, Piunno PAE, Wust CC, Krull UJ. 2000. A novel phosphoramidite method for automated synthesis of oligonucleotides on glass supports for biosensor development. Appl. Biochem. Biotechnol. 89:185–104
    [Google Scholar]
  20. 20.
    Biondi E, Benner S. 2018. Artificially expanded genetic information systems for new aptamer technologies. Biomedicines 6:253
    [Google Scholar]
  21. 21.
    McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. 2021. Recent progress in non-native nucleic acid modifications. Chem. Soc. Rev. 50:85126–64
    [Google Scholar]
  22. 22.
    Beltrán J, Steiner PJ, Bedewitz M, Wei S, Peterson FC et al. 2022. Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds. Nat. Biotechnol. 40:1855–61
    [Google Scholar]
  23. 23.
    Herud-Sikimić O, Stiel AC, Kolb M, Shanmugaratnam S, Berendzen KW et al. 2021. A biosensor for the direct visualization of auxin. Nature 592:7856768–72
    [Google Scholar]
  24. 24.
    Shampo MA, Kyle RA, Steensma DP. 2012. Sidney Altman—Nobel laureate for work with RNA. Mayo Clin. Proc. 87:10e73
    [Google Scholar]
  25. 25.
    McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y. 2021. Biosensing with DNAzymes. Chem. Soc. Rev. 50:168954–94
    [Google Scholar]
  26. 26.
    Wang AH-J, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH et al. 1979. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:5740680–86Refers to the discovery of Z-DNA.
    [Google Scholar]
  27. 27.
    Rich A, Zhang S. 2003. Z-DNA: the long road to biological function. Nat. Rev. Genet. 4:7566–72
    [Google Scholar]
  28. 28.
    Kresge N, Simoni RD, Hill RL. 2009. The discovery of Z-DNA: the work of Alexander Rich. J. Biol. Chem. 284:51e23–25
    [Google Scholar]
  29. 29.
    Refaat D, Aggour MG, Farghali AA, Mahajan R, Wiklander JG et al. 2019. Strategies for molecular imprinting and the evolution of MIP nanoparticles as plastic antibodies—synthesis and applications. Int. J. Mol. Sci. 20:246304
    [Google Scholar]
  30. 30.
    Poma A, Guerreiro A, Whitcombe MJ, Piletska EV, Turner APF, Piletsky SA. 2013. Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template–“plastic antibodies. .” Adv. Funct. Mater. 23:222821–27
    [Google Scholar]
  31. 31.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. 2008. Biosensing with plasmonic nanosensors. Nat. Mater. 7:6442–53
    [Google Scholar]
  32. 32.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM. 2012. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112:52739–79
    [Google Scholar]
  33. 33.
    Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi SA. 2021. Functionalized terahertz plasmonic metasensors: femtomolar-level detection of SARS-CoV-2 spike proteins. Biosens. Bioelectron. 177:112971
    [Google Scholar]
  34. 34.
    Brolo AG. 2012. Plasmonics for future biosensors. Nat. Photonics 6:709–13
    [Google Scholar]
  35. 35.
    Katz E, Willner I. 2003. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:11913–47
    [Google Scholar]
  36. 36.
    Wang J. 2001. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13:12983–88
    [Google Scholar]
  37. 37.
    Wu D, Voldman J. 2022. Microfluidic electrochemical analyte detectors WO Patent 2022/020202A1
  38. 38.
    Davis JJ, Bueno PR. 2021. Analyte detection with redox active polymer-coated electrode WO Patent 2021/152320A1
  39. 39.
    Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M et al. 2021. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 184:113252
    [Google Scholar]
  40. 40.
    Li X, Liu S, Tan J, Wu C. 2022. Light-addressable potentiometric sensors in microfluidics. Front. Bioeng. Biotechnol. 10:833481
    [Google Scholar]
  41. 41.
    Rico-Yuste A, Abouhany R, Urraca JL, Descalzo AB, Orellana G, Moreno-Bondi MC. 2021. Eu(III)-templated molecularly imprinted polymer used as a luminescent sensor for the determination of tenuazonic acid mycotoxin in food samples. Sens. Actuators B Chem. 329:129256
    [Google Scholar]
  42. 42.
    de Cássia Mendonça J, da Rocha LR, Capelari TB, Prete MC, Angelis PN et al. 2020. Design and performance of novel molecularly imprinted biomimetic adsorbent for preconcentration of prostate cancer biomarker coupled to electrochemical determination by using multi-walled carbon nanotubes/Nafion®/Ni(OH)2-modified screen-printed electrode. J. Electroanal. Chem. 878:114582
    [Google Scholar]
  43. 43.
    Damala P, Zdrachek E, Forrest T, Bakker E. 2022. Unconditioned symmetric solid-contact electrodes for potentiometric sensing. Anal. Chem. 94:3311549–56
    [Google Scholar]
  44. 44.
    McLamore ES, Porterfield DM. 2011. Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chem. Soc. Rev. 40:405308–20
    [Google Scholar]
  45. 45.
    Kraikaew P, Sailapu SK, Bakker E. 2021. Electronic control of constant potential capacitive readout of ion-selective electrodes for high precision sensing. Sens. Actuators B Chem. 344:130282
    [Google Scholar]
  46. 46.
    Sailapu SK, Sabaté N, Bakker E. 2021. Self-powered potentiometric sensors with memory. ACS Sens. 6:103650–56
    [Google Scholar]
  47. 47.
    Lin S, Zhu J, Yu W, Wang B, Sabet KA et al. 2022. A touch-based multimodal and cryptographic bio-human-machine interface. PNAS 119:15e2201937119
    [Google Scholar]
  48. 48.
    Tang W, Yin L, Sempionatto JR, Moon J, Teymourian H, Wang J. 2021. Touch-based stressless cortisol sensing. Adv. Mater. 33:182008465
    [Google Scholar]
  49. 49.
    Yin L, Teymourian H, Wang J, Sempionatto-Moreto JR, Moon J-M. 2022. One-touch fingertip sweat sensor and personalized data processing for reliable prediction of blood biomarker concentrations WO Patent 2022/170361A1
  50. 50.
    Morais CLM, Lima KMG, Singh M, Martin FL. 2020. Tutorial: multivariate classification for vibrational spectroscopy in biological samples. Nat. Protoc. 15:72143–62
    [Google Scholar]
  51. 51.
    Tuan VN, Dinh TD, Khattak AM, Zheng L, Chu X et al. 2020. Multivariate standard addition cobalt electrochemistry data fusion for determining phosphate concentration in hydroponic solution. IEEE Access 8:28289–300
    [Google Scholar]
  52. 52.
    Tuan VN, Dinh TD, Zhang W, Khattak AM, Le AT et al. 2021. A smart diagnostic tool based on deep kernel learning for on-site determination of phosphate, calcium, and magnesium concentration in a hydroponic system. RSC Adv. 11:1911177–91
    [Google Scholar]
  53. 53.
    Wu J, Cheng H, Liu Y, Liu B, Huang D. 2019. Modeling of adaptive multi-output soft-sensors with applications in wastewater treatments. IEEE Access 7:161887–98
    [Google Scholar]
  54. 54.
    Datta SPA. 2017. Emergence of digital twins—Is this the march of reason?. J. Innov. Manag. 5:314–33
    [Google Scholar]
  55. 55.
    Lopez PC, Udugama IA, Thomsen ST, Roslander C, Junicke H et al. 2020. Towards a digital twin: a hybrid data-driven and mechanistic digital shadow to forecast the evolution of lignocellulosic fermentation. Biofuels Bioprod. Biorefin. 14:51046–60
    [Google Scholar]
  56. 56.
    Ghandar A, Ahmed A, Zulfiqar S, Hua Z, Hanai M, Theodoropoulos G. 2021. A decision support system for urban agriculture using digital twin: a case study with aquaponics. IEEE Access 9:35691–708
    [Google Scholar]
  57. 57.
    McLamore ES, Huffaker R, Shupler M, Ward K, Datta SPA et al. 2020. Digital Proxy of a Bio-Reactor (DIYBOT) combines sensor data and data analytics to improve greywater treatment and wastewater management systems. Sci. Rep. 10:8015
    [Google Scholar]
  58. 58.
    Huffaker R, McLamore E. 2020. A protocol for reconstructing the dynamics of real-world systems from observational data: application for establishing a digital proxy of a bioreactor (DIYBOT) Work. Pap. Univ. FL.: https://doi.org/10.21203/rs.3.pex-1052/v1
  59. 59.
    An J, Chua CK, Mironov V. 2021. Application of machine learning in 3D bioprinting: focus on development of big data and digital twin. Int. J. Bioprint. 7:1342
    [Google Scholar]
  60. 60.
    Park S-Y, Park C-H, Choi D-H, Hong JK, Lee D-Y. 2021. Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing. Curr. Opin. Chem. Eng. 33:100702
    [Google Scholar]
  61. 61.
    Abhishek K, Haloi M, Channappayya SS, Vanjari SRK, Dendukuri D et al. 2014. An enhanced algorithm for the quantification of human chorionic gonadotropin (hCG) level in commercially available home pregnancy test kits. Twentieth National Conference on Communications New York: IEEE
    [Google Scholar]
  62. 62.
    Jijesh JJ, Shivashankar, Keshavamurthy 2021. A supervised learning based decision support system for multi-sensor healthcare data from wireless body sensor networks. Wirel. Pers. Commun. 116:31795–813
    [Google Scholar]
  63. 63.
    Habib C, Makhoul A, Darazi R, Couturier R. 2016. Multisensor data fusion and decision support in wireless body sensor networks. IEEE/IFIP Network Operations and Management Symposium708–12. New York: IEEE
    [Google Scholar]
  64. 64.
    Gray AJG, Sadler J, Kit O, Kyzirakos K, Karpathiotakis M et al. 2011. A semantic sensor web for environmental decision support applications. Sensors 11:98855–87
    [Google Scholar]
  65. 65.
    Samaras NS. 2018. An integrated decision support system based on wireless sensor networks applied in precision agriculture. Advances in Wireless and Optical Communications240–45. New York: IEEE
    [Google Scholar]
  66. 66.
    Rong Y, Padron AV, Hagerty KJ, Nelson N, Chi S et al. 2018. Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions. Analyst 143:2066–75
    [Google Scholar]
  67. 67.
    Hertweck P, Moßgraber J, Hellmund T, Karakostas A, Vrochidis S, Blume J-W. 2018. The backbone of decision support systems: the sensor to decision chain. Int. J. Inf. Syst. Cris. Response Manag. 10:65–87
    [Google Scholar]
  68. 68.
    McLamore ES, Datta SPA, Morgan V, Cavallaro N, Kiker G et al. 2019. SNAPS: sensor analytics point solutions for detection and decision support systems. Sensors 19:4935
    [Google Scholar]
  69. 69.
    Morgan V, Casso-Hartmann L, Bahamon-Pinzon D, McCourt K, Hjort RG et al. 2020. Sensor-as-a-service: convergence of sensor analytic point solutions (SNAPS) and pay-a-penny-per-use (PAPPU) paradigm as a catalyst for democratization of healthcare in underserved communities. Diagnostics 10:22
    [Google Scholar]
  70. 70.
    Mayer M, Baeumner AJ. 2019. A megatrend challenging analytical chemistry: biosensor and chemosensor concepts ready for the internet of things. Chem. Rev. 119:137996–8027
    [Google Scholar]
  71. 71.
    Shoumen Palit Austin D, Broo DG, Kapitza T, Sylvan E. 2022. Digital twins: digital twin meets digital cousin Res. Pap. MIT Forum Supply Chain Innov. Cambridge, MA:
  72. 72.
    Allen P, Boulton J 2011. Complexity and limits to knowledge: the importance of uncertainty. The SAGE Handbook of Complexity and Management P Allen, S Maguire, B McKelvey 164–81. Los Angeles: SAGE
    [Google Scholar]
  73. 73.
    Singh M, Hetlevik S. 2017. Data-information-knowledge hierarchy based decision support system for risk based inspection analysis. Int. J. Syst. Assur. Eng. Manag. 8:S21588–95
    [Google Scholar]
  74. 74.
    Datta SPA, Saleem TJ, Barati M, López MVL, Furgala M-L et al. 2021. Data, analytics and interoperability between systems (IoT) is incongruous with the economics of technology. Big Data Analytics for Internet of Things TJ Saleem, MA Chishti 7–88. Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  75. 75.
    Blumenthal D, Tavenner M. 2010. The “meaningful use” regulation for electronic health records. N. Engl. J. Med. 363:501–4
    [Google Scholar]
  76. 76.
    Thurston J. 2014. Meaningful use of electronic health records. J. Nurse Pract. 10:7510–13
    [Google Scholar]
  77. 77.
    Chakravarthy S, Jiang Q. 2009. Stream Data Processing: A Quality of Service Perspective, Vol. 36 Boston, MA: Springer
  78. 78.
    Bhuyan B, Sarma HKD, Sarma N, Kar A, Mall R. 2010. Quality of service (QoS) provisions in wireless sensor networks and related challenges. Wirel. Sens. Netw. 2:11861–68
    [Google Scholar]
  79. 79.
    Stantchev V, Barnawi A, Ghulam S, Schubert J, Tamm G. 2015. Smart items, fog and cloud computing as enablers of servitization in healthcare. Sens. Transducers 185:2121–28
    [Google Scholar]
  80. 80.
    Dorneanu B, Heshmat M, Mohamed A, Arellano-Garcia H. 2022. Monitoring of smart chemical processes: a sixth sense approach. Comp. Aided Chem. Eng. 49:1357–62
    [Google Scholar]
  81. 81.
    Raiffa H 2022. The total value of information of a test. Medical Decision Making: A Health Economic Primer S Felder, T Mayrhofer 193–208. Heidelberg, Ger: Springer
    [Google Scholar]
  82. 82.
    Liu X, Zhang C, Liu K, Wang H, Lu C et al. 2018. Multiple SNPs detection based on lateral flow assay for phenylketonuria diagnostic. Anal. Chem. 90:53430–36
    [Google Scholar]
  83. 83.
    Yousef A, Jonzzon S, Suleiman L, Arjona J, Graves JS. 2017. Biosensing in multiple sclerosis. Expert Rev. Med. Devices 14:11901–12
    [Google Scholar]
  84. 84.
    Liu Y, Niu C, Wang Z, Gan Y, Zhu Y et al. 2020. Machine learning in materials genome initiative: a review. J. Mater. Sci. Technol. 57:113–22
    [Google Scholar]
  85. 85.
    McLamore ES. 2019. SENSEE: open source portfolio tool for sensor comparative studies and technology transfer Presented at the ACS National Meeting on Chemistry and Water Aug. 25–29 San Diego, CA:
  86. 86.
    Peterson G, Griffin J, LaFrance J, Li J 2017. Smartphone participation in web surveys. Total Survey Error in Practice P Biemer, E de Leeuw, S Eckman, B Edwards, F Kreuter et al. pp. 203–33 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  87. 87.
    Chen X, Jia S, Xiang Y. 2020. A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. 141:112948
    [Google Scholar]
  88. 88.
    Ji S, Pan S, Cambria E, Marttinen P, Yu PS. 2021. A survey on knowledge graphs: representation, acquisition and applications. IEEE Trans. Neural Netw. Learn. Syst. 33:2494–514
    [Google Scholar]
  89. 89.
    Tshitoyan V, Dagdelen J, Weston L, Dunn A, Rong Z et al. 2019. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571:776395–98
    [Google Scholar]
  90. 90.
    Datta SPA. 2017. Connecting atoms to bits Work. Pap. MIT Cambridge, MA:
  91. 91.
    Liu C, Sun J. 2021. AI in measurement science. Annu. Rev. Anal. Chem. 14:1–19
    [Google Scholar]
  92. 92.
    Conroy B, Silva I, Mehraei G, Damiano R, Gross B et al. 2022. Real-time infection prediction with wearable physiological monitoring and AI to aid military workforce readiness during COVID-19. Sci. Rep. 12:3797
    [Google Scholar]
  93. 93.
    Sheth A, Padhee S, Gyrard A. 2020. Knowledge graphs and knowledge networks: the story in brief. IEEE Internet Comput. 23:467–75
    [Google Scholar]
  94. 94.
    Datta SAP, McLamore ES 2020. PEAS—making meaningful sense of sensor data and information. Digital Transformation—IoT is a Metaphor SAP Datta Cambridge, MA: MIT Forum Supply Chain Innov.
    [Google Scholar]
  95. 95.
    Sidhu RK, Cavallaro ND, Pola CC, Danyluk MD, McLamore ES, Gomes CL. 2020. Planar interdigitated aptasensor for flow-through detection of Listeria spp. in hydroponic lettuce growth media. Sensors 20:205773
    [Google Scholar]
  96. 96.
    Giacobassi CA, Oliveira DA, Pola CC, Xiang D, Tang Y et al. 2020. Sense-Analyze-Respond-Actuate (SARA) paradigm: proof of concept system spanning nanoscale and macroscale actuation for detection of Escherichia coli in aqueous media. Actuators 10:12
    [Google Scholar]
  97. 97.
    Chung Y, Servan-Schreiber S, Zgraggen E, Kraska T 2018. Towards quantifying uncertainty in data analysis & exploration. IEEE Data Eng. Bull. 41:15–27
    [Google Scholar]
  98. 98.
    Mobarak AM, Saldanha NA. 2022. Remove barriers to technology adoption for people in poverty. Nat. Hum. Behav. 6:4480–82
    [Google Scholar]
  99. 99.
    Guiteras R, Levinsohn J, Mobarak AM. 2015. Encouraging sanitation investment in the developing world: a cluster-randomized trial. Science 348:6237903–6
    [Google Scholar]
  100. 100.
    Babic B, Gerke S, Evgeniou T, Cohen IG. 2021. Beware explanations from AI in health care. Science 373:6552284–86
    [Google Scholar]
  101. 101.
    Rudin C. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1:5206–15
    [Google Scholar]
  102. 102.
    Hills KD, Oliveira DA, Cavallaro ND, Gomes CL, McLamore ES. 2018. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst 143:71650–61
    [Google Scholar]
  103. 103.
    Oliveira DA, Althawab S, McLamore ES, Gomes CL. 2021. One-step fabrication of stimuli-responsive chitosan-platinum brushes for Listeria monocytogenes detection. Biosensors 11:12511
    [Google Scholar]
  104. 104.
    Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA et al. 2021. De novo design of modular and tunable protein biosensors. Nature 591:7850482–87
    [Google Scholar]
  105. 105.
    Felder S, Mayrhofer T. 2017. Medical Decision Making Berlin/Heidelberg: Springer
  106. 106.
    Kim J, Campbell AS, de Ávila BEF, Wang J 2019. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37:4389–406
    [Google Scholar]
  107. 107.
    Lei Y, Zhao W, Zhang Y, Jiang Q, He J et al. 2019. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small 15:191901190
    [Google Scholar]
  108. 108.
    Du K, Lin R, Yin L, Ho JS, Wang J, Lim CT. 2022. Electronic textiles for energy, sensing, and communication. iScience 25:5104174
    [Google Scholar]
  109. 109.
    Lin S, Yu W, Wang B, Zhao Y, En K et al. 2020. Noninvasive wearable electroactive pharmaceutical monitoring for personalized therapeutics. PNAS 117:3219017–25
    [Google Scholar]
  110. 110.
    Singh S, Wang J, Cinti S. 2022. Review—an overview on recent progress in screen-printed electroanalytical (bio)sensors. ECS Sens. Plus 1:2023401
    [Google Scholar]
  111. 111.
    Li J-R, Kuppler RJ, Zhou H-C. 2009. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38:51477
    [Google Scholar]
  112. 112.
    Chen B, Eddaoudi M, Hyde ST, O'Keeffe M, Yaghi OM 2001. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science 291:55061021–23
    [Google Scholar]
  113. 113.
    Liang K, Ricco R, Doherty CM, Styles MJ, Bell S et al. 2015. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6:17240
    [Google Scholar]
  114. 114.
    Hofmann C, Duerkop A, Baeumner AJ. 2019. Nanocontainers for analytical applications. Angew. Chem. Int. Ed. 58:3712840–60
    [Google Scholar]
  115. 115.
    Moreira G, Casso-Hartmann L, Datta SPA, Dean D, McLamore E, Vanegas D. 2022. Development of a biosensor based on angiotensin-converting enzyme II for severe acute respiratory syndrome coronavirus 2 detection in human saliva. Front. Sens. 3:917380
    [Google Scholar]
  116. 116.
    Ye R, James DK, Tour JM. 2019. Laser-induced graphene: from discovery to translation. Adv. Mater. 31:11803621
    [Google Scholar]
  117. 117.
    Behrent A, Griesche C, Sippel P, Baeumner AJ. 2021. Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Microchim. Acta 188:159
    [Google Scholar]
  118. 118.
    Nayak P, Kurra N, Xia C, Alshareef HN. 2016. Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv. Electron. Mater. 2:101600185
    [Google Scholar]
  119. 119.
    Vanegas D, Patiño L, Mendez C, Oliveira D, Torres A et al. 2018. Laser scribed graphene biosensor for detection of biogenic amines in food samples using locally sourced materials. Biosensors 8:242
    [Google Scholar]
  120. 120.
    Chen B, Johnson ZT, Sanborn D, Hjort RG, Garland NT et al. 2022. Tuning the structure, conductivity, and wettability of laser-induced graphene for multiplexed open microfluidic environmental biosensing and energy storage devices. ACS Nano 16:115–28
    [Google Scholar]
  121. 121.
    Griesche C, Hoecherl K, Baeumner AJ. 2021. Substrate-independent laser-induced graphene electrodes for microfluidic electroanalytical systems. ACS Appl. Nano Mater. 4:33114–21
    [Google Scholar]
  122. 122.
    Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ. 2017. Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens. 2:5616–20
    [Google Scholar]
  123. 123.
    Yagati AK, Behrent A, Beck S, Rink S, Goepferich AM et al. 2020. Laser-induced graphene interdigitated electrodes for label-free or nanolabel-enhanced highly sensitive capacitive aptamer-based biosensors. Biosens. Bioelectron. 164:112272
    [Google Scholar]
  124. 124.
    Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL et al. 2020. Laser-induced graphene electrochemical immunosensors for rapid and label-free monitoring of Salmonella enterica in chicken broth. ACS Sens. 5:71900–11
    [Google Scholar]
  125. 125.
    Puetz P, Behrent A, Baeumner AJ, Wegener J. 2020. Laser-scribed graphene (LSG) as new electrode material for impedance-based cellular assays. Sens. Actuators B Chem. 321:128443
    [Google Scholar]
  126. 126.
    Johnson ZT, Jared N, Peterson JK, Li J, Smith EA et al. 2022. Enzymatic laser-induced graphene biosensor for electrochemical sensing of the herbicide glyphosate. Glob. Challenges 6:92200057
    [Google Scholar]
  127. 127.
    Bauer M, Wunderlich L, Weinzierl F, Lei Y, Duerkop A et al. 2021. Electrochemical multi-analyte point-of-care perspiration sensors using on-chip three-dimensional graphene electrodes. Anal. Bioanal. Chem. 413:3763–77
    [Google Scholar]
  128. 128.
    McLamore ES, Vanegas DC, Pinzon DB, McCourt K, Tang Y. 2020. Protocol L2.3 (LIG fabrication) V.1 protocols.io Berkeley, CA: https://www.protocols.io/view/protocol-l2-3-lig-fabrication-byc4psyw
  129. 129.
    Shahen ME, Kotani K, Saijo T. 2021. Intergenerational sustainability is enhanced by taking the perspective of future generations. Sci. Rep. 11:12437
    [Google Scholar]
  130. 130.
    Kirchherr J. 2022. Bullshit in the sustainability and transitions literature: a provocation. Circ. Econ. Sustain. 3:167–72
    [Google Scholar]
  131. 131.
    Ponnamma D, Parangusan H, Deshmukh K, Kar P, Muzaffar A et al. 2020. Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. Polym.-Plast. Technol. Mater. 59:11–62
    [Google Scholar]
  132. 132.
    Kalambate PK, Rao Z, Dhanjai, Wu J, Shen Y et al. 2020. Electrochemical (bio) sensors go green. Biosens. Bioelectron. 163:112270
    [Google Scholar]
  133. 133.
    Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. 2017. Machine learning in materials informatics: recent applications and prospects. NPJ Comput. Mater. 3:154
    [Google Scholar]
  134. 134.
    Jensen CD, Lewinski NA. 2018. Nanoparticle synthesis to green informatics frameworks. Curr. Opin. Green Sustain. Chem. 12:117–26
    [Google Scholar]
  135. 135.
    International Union of Pure and Applied Chemistry 2019. Compendium of Chemical Terminology Research Triangle Park, NC: IUPAC. , 2nd ed..
  136. 136.
    Sachdeva S, Davis RW, Saha AK. 2021. Microfluidic point-of-care testing: commercial landscape and future directions. Front. Bioeng. Biotechnol. 8:602659
    [Google Scholar]
  137. 137.
    Cotillard A, Cartier-Meheust A, Litwin NS, Chaumont S, Saccareau M et al. 2022. A posteriori dietary patterns better explain variations of the gut microbiome than individual markers in the American Gut Project. Am. J. Clin. Nutr. 115:2432–43
    [Google Scholar]
  138. 138.
    Haklay M, Weber P. 2008. OpenStreetMap: user-generated street maps. IEEE Pervasive Comput. 7:412–18
    [Google Scholar]
  139. 139.
    Sarnelle O, Morrison J, Kaul R, Horst G, Wandell H, Bednarz R. 2010. Citizen monitoring: testing hypotheses about the interactive influences of eutrophication and mussel invasion on a cyanobacterial toxin in lakes. Water Res. 44:1141–50
    [Google Scholar]
  140. 140.
    Beza E, Steinke J, Van Etten J, Reidsma P, Fadda C et al. 2017. What are the prospects for citizen science in agriculture? Evidence from three continents on motivation and mobile telephone use of resource-poor farmers. PLOS ONE 12:5e0175700
    [Google Scholar]
  141. 141.
    Conrad CC, Hilchey KG. 2011. A review of citizen science and community-based environmental monitoring: issues and opportunities. Environ. Monit. Assess. 176:1273–91
    [Google Scholar]
  142. 142.
    Lévesque D, Cattaneo A, Deschamps G, Hudon C. 2017. In the eye of the beholder: assessing the water quality of shoreline parks around the Island of Montreal through citizen science. Sci. Total Environ. 579:978–88
    [Google Scholar]
  143. 143.
    Vélez-Torres I, Vanegas DC, McLamore ES, Hurtado D. 2018. Mercury pollution and artisanal gold mining in Alto Cauca, Colombia: woman's perception of health and environmental impacts. J. Environ. Dev. 27:4415–44
    [Google Scholar]
  144. 144.
    Tedersoo L, Küngas R, Oras E., Köster K, Eenmaa H et al. 2021. Data sharing practices and data availability upon request differ across scientific disciplines. Sci. Data 8:192
    [Google Scholar]
  145. 145.
    Coulson S, Woods M. 2021. Citizen sensing: an action-orientated framework for citizen science. Front. Commun. 6:629700
    [Google Scholar]
  146. 146.
    Errington TM, Denis A, Perfito N, Iorns E, Nosek BA. 2021. Challenges for assessing replicability in preclinical cancer biology. eLife 10:e67995
    [Google Scholar]
  147. 147.
    Nosek BA, Hardwicke TE, Moshontz H, Allard A, Corker KS et al. 2022. Replicability, robustness, and reproducibility in psychological science. Annu. Rev. Psychol. 73:719–48Summarizes new developments from the Nosek lab on the replicability of open science.
    [Google Scholar]
  148. 148.
    Ebersole CR, Mathur MB, Baranski E, Bart-Plange D-J, Buttrick NR et al. 2020. Many Labs 5: testing pre-data-collection peer review as an intervention to increase replicability. Adv. Methods Pract. Psychol. Sci. 3:3309–31
    [Google Scholar]
  149. 149.
    Schindelin J, Arganda-Carreras I, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:7676–82
    [Google Scholar]
  150. 150.
    Schmidt M, Baldridge K, Montgomery J. 1993. General atomic and molecular electronic-structure system. J. Comput. Chem. 14:111347–63
    [Google Scholar]
  151. 151.
    David PA. 1969. A Contribution to the Theory of Diffusion Stanford, CA: Res. Cent. Econ. GrowthA seminal paper on the economies of scale.
  152. 152.
    David PA. 1990. The dynamo and the computer: an historical perspective on the modern productivity paradox. Am. Econ. Rev. 80:2355–61
    [Google Scholar]
  153. 153.
    David PA. 1994. Why are institutions the “carriers of history”? Path dependence and the evolution of conventions, organizations and institutions. Struct. Change Econ. Dyn. 5:2205–20
    [Google Scholar]
  154. 154.
    Farzandipour M, Meidani Z, Gilasi H, Dehghan R. 2017. Evaluation of key capabilities for hospital information system: A milestone for meaningful use of information technology. Ann. Trop. Med. Public Health 10:61579
    [Google Scholar]
  155. 155.
    Wongkaew N, Simsek M, Griesche C, Baeumner AJ. 2019. Functional nanomaterials and nanostructures enhancing electrochemical biosensors and lab-on-a-chip performances: recent progress, applications, and future perspective. Chem. Rev. 119:1120–94
    [Google Scholar]
  156. 156.
    Lucivero F. 2020. Big data, big waste? A reflection on the environmental sustainability of big data initiatives. Sci. Eng. Ethics 26:21009–30
    [Google Scholar]
  157. 157.
    Datta SPA, Saleem TJ, Barati M, López MVL, Furgala M-L et al. 2021. Data, analytics and interoperability between systems (IoT) is incongruous with the economics of technology: evolution of porous Pareto partition (P3). Big Data Analytics for Internet of Things TJ Saleem, MA Chishti 7–88. Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-100322-040914
Loading
/content/journals/10.1146/annurev-anchem-100322-040914
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error