1932

Abstract

Although microbiome science is relatively young, our knowledge of human-microbiome interactions is growing rapidly and has already begun to transform our understanding of human ecology and evolution. Here we summarize our current understanding of three-way interactions between the gut microbiota, human ecology, and human evolution. We review the factors driving microbiome variation within and between individuals and populations, as well as comparative data from nonhuman primates that allow a more direct examination of microbial relationships with host ecology and evolution. Collectively, these data sets can help illuminate generalizable principles governing host-microbiome-environment interactions, the processes contributing to bidirectional influences between the human gut microbiota and the human ecological niche, and past changes in the human microbiome that may have harbored consequences for human adaptation. Developing richer insight into host-microbiome-environment interactions will ultimately broaden our view of human biology and its response to changing environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-052721-085122
2023-10-23
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/anthro/52/1/annurev-anthro-052721-085122.html?itemId=/content/journals/10.1146/annurev-anthro-052721-085122&mimeType=html&fmt=ahah

Literature Cited

  1. Aiello LC, Wells JCK. 2002. Energetics and the evolution of the genus Homo. Annu. Rev. Anthropol. 31:323–38
    [Google Scholar]
  2. Al Nabhani Z, Eberl G. 2020. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13:2183–89
    [Google Scholar]
  3. Allen-Blevins CR, Sela DA, Hinde K. 2015. Milk bioactives may manipulate microbes to mediate parent-offspring conflict. Evol. Med. Public Health 2015:1106–21
    [Google Scholar]
  4. Amato KR, Jeyakumar T, Poinar H, Gros P. 2019a. Shifting climates, foods, and diseases: the human microbiome through evolution. Bioessays 41:101900034
    [Google Scholar]
  5. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ et al. 2014. The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (Alouatta pigra). Am. J. Phys. Anthropol. 155:4652–64
    [Google Scholar]
  6. Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ et al. 2015. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69:2434–43
    [Google Scholar]
  7. Amato KR, Mallott EK, D'Almeida Maia P, Savo Sardaro ML. 2021. Predigestion as an evolutionary impetus for human use of fermented food. Curr. Anthropol. 62:S24S207–19
    [Google Scholar]
  8. Amato KR, Mallott EK, McDonald D, Dominy NJ, Goldberg T et al. 2019b. Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biol. 20:1201
    [Google Scholar]
  9. Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL et al. 2019c. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13:3576–87
    [Google Scholar]
  10. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F et al. 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7:71344–53
    [Google Scholar]
  11. Azcarate-Peril MA, Ritter AJ, Savaiano D, Monteagudo-Mera A, Anderson C et al. 2017. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. PNAS 114:3E367–75
    [Google Scholar]
  12. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H et al. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:5690–703
    [Google Scholar]
  13. Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A et al. 2021. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9:126
    [Google Scholar]
  14. Blaser MJ. 2016. Antibiotic use and its consequences for the normal microbiome. Science 352:6285544–45
    [Google Scholar]
  15. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R et al. 2015. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16:1191
    [Google Scholar]
  16. Blekhman R, Perry GH, Shahbaz S, Fiehn O, Clark AG, Gilad Y. 2014. Comparative metabolomics in primates reveals the effects of diet and gene regulatory variation on metabolic divergence. Sci. Rep. 4:15809
    [Google Scholar]
  17. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F et al. 2016. The effect of host genetics on the gut microbiome. Nat. Genet. 48:111407–12
    [Google Scholar]
  18. Boudry G, Charton E, Le Huerou-Luron I, Ferret-Bernard S, Le Gall S et al. 2021. The relationship between breast milk components and the infant gut microbiota. Front Nutr. 8:629740
    [Google Scholar]
  19. Cai G, Cole SA, Tejero ME, Proffitt JM, Freeland-Graves JH et al. 2004. Pleiotropic effects of genes for insulin resistance on adiposity in baboons. Obes. Res. 12:111766–72
    [Google Scholar]
  20. Carmody RN, Bisanz JE. 2023. Roles of the gut microbiome in weight management. Nat. Rev. Microbiol. 21:535–50
    [Google Scholar]
  21. Carmody RN, Bisanz JE, Bowen BP, Maurice CF, Lyalina S et al. 2019. Cooking shapes the structure and function of the gut microbiome. Nat. Microbiol. 4:122052–63
    [Google Scholar]
  22. Carmody RN, Sarkar A, Reese AT. 2021. Gut microbiota through an evolutionary lens. Science 372:6541462–63
    [Google Scholar]
  23. Carmody RN, Wrangham RW. 2009. The energetic significance of cooking. J. Hum. Evol. 57:4379–91
    [Google Scholar]
  24. Chadaideh KS, Carmody RN. 2021. Host-microbial interactions in the metabolism of different dietary fats. Cell Metab. 33:5857–72
    [Google Scholar]
  25. Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V et al. 2015. Gut microbiota orchestrates energy homeostasis during cold. Cell 163:61360–74
    [Google Scholar]
  26. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. 2017. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23:3314–26
    [Google Scholar]
  27. Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM et al. 2016. Captivity humanizes the primate microbiome. PNAS 113:3710376–81
    [Google Scholar]
  28. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM et al. 2014. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:4705–21
    [Google Scholar]
  29. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS et al. 2019. The microbiota-gut-brain axis. Physiol. Rev. 99:41877–2013
    [Google Scholar]
  30. Cui Z, Holmes AJ, Zhang W, Hu D, Shao Q et al. 2022. Seasonal diet and microbiome shifts in wild rhesus macaques are better correlated at the level of nutrient components than food items. Integr. Zool. 17:61147–61
    [Google Scholar]
  31. Cummings JH, Macfarlane GT. 1997. Role of intestinal bacteria in nutrient metabolism. Clin. Nutr. 16:13–11
    [Google Scholar]
  32. Davenport ER, Cusanovich DA, Michelini K, Barreiro LB, Ober C, Gilad Y. 2015. Genome-wide association studies of the human gut microbiota. PLOS ONE 10:11e0140301
    [Google Scholar]
  33. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484559–63
    [Google Scholar]
  34. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107:3314691–96
    [Google Scholar]
  35. de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E et al. 2019. Human placenta has no microbiome but can contain potential pathogens. Nature 572:7769329–34
    [Google Scholar]
  36. Dominguez Bello MG, Knight R, Gilbert JA, Blaser MJ. 2018. Preserving microbial diversity. Science 362:641033–34
    [Google Scholar]
  37. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G et al. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS 107:2611971–75
    [Google Scholar]
  38. Duchêne S, Holt KE, Weill F-X, Le Hello S, Hawkey J et al. 2016. Genome-scale rates of evolutionary change in bacteria. Microb. Genom. 2:11e000094
    [Google Scholar]
  39. Fehr K, Moossavi S, Sbihi H, Boutin RCT, Bode L et al. 2020. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the CHILD Cohort Study. Cell Host Microbe 28:2285–97.e4
    [Google Scholar]
  40. Forsgård RA. 2019. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. Am. J. Clin. Nutr. 110:2273–79
    [Google Scholar]
  41. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. 2017. The evolution of the host microbiome as an ecosystem on a leash. Nature 548:766543–51
    [Google Scholar]
  42. Frankel JS, Mallott EK, Hopper LM, Ross SR, Amato KR. 2019. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 81:12e23061
    [Google Scholar]
  43. Garud NR, Good BH, Hallatschek O, Pollard KS. 2019. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLOS Biol. 17:1e3000102
    [Google Scholar]
  44. Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrázek J et al. 2015. Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla) reflect host ecology. Mol. Ecol. 24:102551–65
    [Google Scholar]
  45. Gomez A, Rothman JM, Petrzelkova K, Yeoman CJ, Vlckova K et al. 2016. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 10:2514–26
    [Google Scholar]
  46. Gomez A, Sharma AK, Mallott EK, Petrzelkova KJ, Jost Robinson CA et al. 2019. Plasticity in the human gut microbiome defies evolutionary constraints. mSphere 4:4e00271-19
    [Google Scholar]
  47. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R et al. 2016. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:5731–43
    [Google Scholar]
  48. Goodrich JK, Davenport ER, Clark AG, Ley RE. 2017. The relationship between the human genome and microbiome comes into view. Annu. Rev. Genet. 51:413–33
    [Google Scholar]
  49. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O et al. 2014. Human genetics shape the gut microbiome. Cell 159:4789–99
    [Google Scholar]
  50. Grieneisen L, Dasari M, Gould TJ, Björk JR, Grenier J-C et al. 2021. Gut microbiome heritability is nearly universal but environmentally contingent. Science 373:6551181–86
    [Google Scholar]
  51. Grieneisen LE, Charpentier MJE, Alberts SC, Blekhman R, Bradburd G et al. 2019. Genes, geology and germs: Gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc. R Soc. B 286:190120190431
    [Google Scholar]
  52. Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K et al. 2021. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184:82053–67.e18
    [Google Scholar]
  53. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. 2010. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:7290908–12
    [Google Scholar]
  54. Heldstab SA, van Schaik CP, Isler K. 2016. Being fat and smart: a comparative analysis of the fat-brain trade-off in mammals. J. Hum. Evol. 100:25–34
    [Google Scholar]
  55. Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R et al. 2018. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9:11786
    [Google Scholar]
  56. Hinde K, German JB. 2012. Food in an evolutionary context: insights from mother's milk. J. Sci. Food Agric. 92:112219–23
    [Google Scholar]
  57. Hsiao A, Ahmed AMS, Subramanian S, Griffin NW, Drewry LL et al. 2014. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515:7527423–26
    [Google Scholar]
  58. Jha AR, Davenport ER, Gautam Y, Bhandari D, Tandukar S et al. 2018. Gut microbiome transition across a lifestyle gradient in Himalaya. PLOS Biol. 16:11e2005396
    [Google Scholar]
  59. Kaplan H, Hill K, Lancaster J, Hurtado AM. 2000. A theory of human life history evolution: diet, intelligence, and longevity. Evol. Anthropol. 9:4156–85
    [Google Scholar]
  60. Karl JP, Hatch AM, Arcidiacono SM, Pearce SC, Pantoja-Feliciano IG et al. 2018. Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol. 9:2013
    [Google Scholar]
  61. Kato K, Ishida S, Tanaka M, Mitsuyama E, Xiao J-Z, Odamaki T. 2018. Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLOS ONE 13:10e0206189
    [Google Scholar]
  62. Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. 2003. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52:71779–85
    [Google Scholar]
  63. Kimura I, Miyamoto J, Ohue-Kitano R, Watanabe K, Yamada T et al. 2020. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 367:6481eaaw8429
    [Google Scholar]
  64. Kolodny O, Schulenburg H. 2020. Microbiome-mediated plasticity directs host evolution along several distinct time scales. Phil. Trans. R. Soc. B 375:180820190589
    [Google Scholar]
  65. Koppel N, Maini Rekdal V, Balskus EP 2017. Chemical transformation of xenobiotics by the human gut microbiota. Science 356:6344eaag2770
    [Google Scholar]
  66. Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G et al. 2018. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28:4561–68
    [Google Scholar]
  67. Kramer KL. 2010. Cooperative breeding and its significance to the demographic success of humans. Annu. Rev. Anthropol. 39:417–36
    [Google Scholar]
  68. Leonard WR, Robertson ML. 1992. Nutritional requirements and human evolution: a bioenergetics model. Am. J. Hum. Biol. 4:2179–95
    [Google Scholar]
  69. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489:7415220–30
    [Google Scholar]
  70. Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375:242369–79
    [Google Scholar]
  71. Mallott EK, Amato KR. 2021. Host specificity of the gut microbiome. Nat. Rev. Microbiol. 19:10639–53
    [Google Scholar]
  72. McManus N, Holmes SM, Louis EE, Johnson SE, Baden AL, Amato KR. 2021. The gut microbiome as an indicator of habitat disturbance in a Critically Endangered lemur. BMC Ecol Evol. 21:222
    [Google Scholar]
  73. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV et al. 2016. Cospeciation of gut microbiota with hominids. Science 353:6297380–82
    [Google Scholar]
  74. Moeller AH, Li Y, Mpoudi Ngole E, Ahuka-Mundeke S, Lonsdorf EV et al. 2014. Rapid changes in the gut microbiome during human evolution. PNAS 111:4616431–35
    [Google Scholar]
  75. Moeller AH, Peeters M, Ndjango J-B, Li Y, Hahn BH, Ochman H. 2013. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res. 23:101715–20
    [Google Scholar]
  76. Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. 2019. New insights from uncultivated genomes of the global human gut microbiome. Nature 568:7753505–10
    [Google Scholar]
  77. Orkin JD, Campos FA, Myers MS, Cheves Hernandez SE, Guadamuz A, Melin AD 2019. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13:1183–96
    [Google Scholar]
  78. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N et al. 2019. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176:3649–62.e20
    [Google Scholar]
  79. Perofsky AC, Lewis RJ, Abondano LA, Di Fiore A, Meyers LA. 2017. Hierarchical social networks shape gut microbial composition in wild Verreaux's sifaka. Proc. R Soc. B 284:186820172274
    [Google Scholar]
  80. Poole AC, Goodrich JK, Youngblut ND, Luque GG, Ruaud A et al. 2019. Human salivary amylase gene copy number impacts oral and gut microbiomes. Cell Host Microbe 25:4553–64.e7
    [Google Scholar]
  81. Pronovost GN, Hsiao EY. 2019. Perinatal interactions between the microbiome, immunity, and neurodevelopment. Immunity 50:118–36
    [Google Scholar]
  82. Pudlo NA, Pereira GV, Parnami J, Cid M, Markert S et al. 2022. Diverse events have transferred genes for edible seaweed digestion from marine to human gut bacteria. Cell Host Microbe 30:3314–28.e11
    [Google Scholar]
  83. Rampelli S, Turroni S, Mallol C, Hernandez C, Galván B et al. 2021. Components of a Neanderthal gut microbiome recovered from fecal sediments from El Salt. Commun. Biol. 4:1169
    [Google Scholar]
  84. Reese AT, Chadaideh KS, Diggins CE, Schell LD, Beckel M et al. 2021a. Effects of domestication on the gut microbiota parallel those of human industrialization. eLife 10:e60197
    [Google Scholar]
  85. Reese AT, Phillips SR, Owens LA, Venable EM, Langergraber KE et al. 2021b. Age patterning in wild chimpanzee gut microbiota diversity reveals differences from humans in early life. Curr. Biol. 31:3613–20.e3
    [Google Scholar]
  86. Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V et al. 2021. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe 29:5765–76.e3
    [Google Scholar]
  87. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555:7695210–15
    [Google Scholar]
  88. Sanders JG, Sprockett DD, Li Y, Mjungu D, Lonsdorf EV et al. 2023. Widespread extinctions of co-diversified primate gut bacterial symbionts from humans. Nat. Microbiol. 8:1039–50
    [Google Scholar]
  89. Sarkar A, Harty S, Johnson KV-A, Moeller AH, Archie EA et al. 2020. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4:81020–35
    [Google Scholar]
  90. Schmidt V, Enav H, Spector TD, Youngblut ND, Ley RE. 2020. Strain-level analysis of Bifidobacterium spp. from gut microbiomes of adults with differing lactase persistence genotypes. mSystems 5:5e00911-20
    [Google Scholar]
  91. Ségurel L, Bon C. 2017. On the evolution of lactase persistence in humans. Annu. Rev. Genom. Hum. Genet. 18:297–319
    [Google Scholar]
  92. Ségurel L, Guarino-Vignon P, Marchi N, Lafosse S, Laurent R et al. 2020. Why and when was lactase persistence selected for? Insights from Central Asian herders and ancient DNA. PLOS Biol. 18:6e3000742
    [Google Scholar]
  93. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. 2014. Breast milk oligosaccharides: structure-function relationships in the neonate. Annu. Rev. Nutr. 34:143–69
    [Google Scholar]
  94. Smith AR, Carmody RN, Dutton RJ, Wrangham RW. 2015. The significance of cooking for early hominin scavenging. J. Hum. Evol. 84:62–70
    [Google Scholar]
  95. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS et al. 2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357:6353802–6
    [Google Scholar]
  96. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. 2016. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529:7585212–15
    [Google Scholar]
  97. Sonnenburg ED, Sonnenburg JL. 2019a. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17:6383–90
    [Google Scholar]
  98. Sonnenburg JL, Sonnenburg ED. 2019b. Vulnerability of the industrialized microbiota. Science 366:6464eaaw9255
    [Google Scholar]
  99. Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR et al. 2017. Patterns of seasonality and group membership characterize the gut microbiota in a longitudinal study of wild Verreaux's sifakas (Propithecus verreauxi). Ecol. Evol. 7:155732–45
    [Google Scholar]
  100. Suzuki TA, Ley RE. 2020. The role of the microbiota in human genetic adaptation. Science 370:6521eaaz6827
    [Google Scholar]
  101. Tigno XT, Gerzanich G, Hansen BC. 2004. Age-related changes in metabolic parameters of nonhuman primates. J. Gerontol. A Biol. Sci. Med. Sci. 59:111081–88
    [Google Scholar]
  102. Tirosh A, Shai I, Tekes-Manova D, Israeli E, Pereg D et al. 2005. Normal fasting plasma glucose levels and type 2 diabetes in young men. N. Engl. J. Med. 353:141454–62
    [Google Scholar]
  103. Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L et al. 2012. Insights from characterizing extinct human gut microbiomes. PLOS ONE 7:12e51146
    [Google Scholar]
  104. Tung J, Barreiro LB, Burns MB, Grenier J-C, Lynch J et al. 2015. Social networks predict gut microbiome composition in wild baboons. eLife 4:e05224
    [Google Scholar]
  105. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:7228480–84
    [Google Scholar]
  106. Uebanso T, Shimohata T, Mawatari K, Takahashi A. 2020. Functional roles of B-vitamins in the gut and gut microbiome. Mol. Nutr. Food Res. 64:182000426
    [Google Scholar]
  107. Utzschneider KM, Kratz M, Damman CJ, Hullarg M. 2016. Mechanisms linking the gut microbiome and glucose metabolism. J. Clin. Endocrinol. Metab. 101:41445–54
    [Google Scholar]
  108. Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR et al. 2018. US immigration westernizes the human gut microbiome. Cell 175:4962–72.e10
    [Google Scholar]
  109. Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F et al. 2020. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11:1362
    [Google Scholar]
  110. Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC et al. 2019. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10:14505
    [Google Scholar]
  111. Wagner JD, Kavanagh K, Ward GM, Auerbach BJ, Harwood HJ Jr., Kaplan JR. 2006. Old World nonhuman primate models of type 2 diabetes mellitus. ILAR J. 47:3259–71
    [Google Scholar]
  112. Walter J, Ley R. 2011. The human gut microbiome: ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65:411–29
    [Google Scholar]
  113. Warinner C, Speller C, Collins MJ, Lewis CM Jr. 2015. Ancient human microbiomes. J. Hum. Evol. 79:125–36
    [Google Scholar]
  114. Wibowo MC, Yang Z, Borry M, Hübner A, Huang KD et al. 2021. Reconstruction of ancient microbial genomes from the human gut. Nature 594:7862234–39
    [Google Scholar]
  115. Worthmann A, John C, Rühlemann MC, Baguhl M, Heinsen F-A et al. 2017. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat. Med. 23:7839–49
    [Google Scholar]
  116. Wrangham R, Carmody R. 2010. Human adaptation to the control of fire. Evol. Anthropol. 19:5187–99
    [Google Scholar]
  117. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:7402222–27
    [Google Scholar]
  118. Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30:6492–506
    [Google Scholar]
/content/journals/10.1146/annurev-anthro-052721-085122
Loading
/content/journals/10.1146/annurev-anthro-052721-085122
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error