1932

Abstract

Modern humans differ from wild great apes in gestation length, weaning age, interbirth interval, sexual maturity, and longevity, but evolutionary anthropologists do not know when these distinctive life-history conditions evolved. Dental tissues contain faithful records of birth and incremental growth, and scholars suggest that molar eruption age, tooth wear, growth disturbances, tooth chemistry, and/or tooth calcification may provide insight into the evolution of human life history. However, recent comparative approaches and empirical evidence demonstrate that caution is warranted when inferring hominin weaning ages or interbirth intervals from first molar eruption, tooth wear, or growth disturbances. Fine-scaled studies of tooth chemistry provide direct evidence of weaning. Early hominin tooth calcification is more ape-like than human-like, and fully modern patterns appear only after Neanderthals and diverged, concurrent with changes in cranial and postcranial development. Additional studies are needed to relate these novel calcification patterns to specific changes in life-history variables.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anthro-092412-155550
2013-10-21
2025-01-26
Loading full text...

Full text loading...

/deliver/fulltext/anthro/42/1/annurev-anthro-092412-155550.html?itemId=/content/journals/10.1146/annurev-anthro-092412-155550&mimeType=html&fmt=ahah

Literature Cited

  1. Aiello LC, Montgomery C, Dean C. 1991. The natural history of deciduous tooth attrition in hominoids. J. Hum. Evol. 21:397–412 [Google Scholar]
  2. Anderson DL, Thompson GW, Popovich F. 1975. Interrelationships of dental maturity, skeletal maturity, height and weight from age 4 to 14 years. Growth 39:453–62 [Google Scholar]
  3. Anderson DL, Thompson GW, Popovich F. 1976. Age of attainment of mineralization stages of the permanent dentition. J. Forensic Sci. 21:191–200 [Google Scholar]
  4. Arora M, Hare D, Austin C, Smith DR, Doble P. 2011. Spatial distribution of manganese in enamel and coronal dentine of human primary teeth. Sci. Total Environ. 409:1315–19 [Google Scholar]
  5. Austin C, Smith TM, Bradman A, Hinde K, Joannes-Boyau R. et al. 2013. Barium distributions in teeth reveal early-life dietary transitions in primates. Nature 498:216–19 [Google Scholar]
  6. Bayle P, Macchiarelli R, Trinkaus E, Duarte C, Mazurier A, Zilhão J. 2010. Dental maturational sequence and dental tissue proportions in the early Upper Paleolithic child from Abrigo do Lagar Velho, Portugal. Proc. Natl. Acad. Sci. USA 107:1338–42 [Google Scholar]
  7. Beaumont J, Gledhill A, Lee-Thorp J, Montgomery J. 2013. Childhood diet: a closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine. Archaeometry 55:277–95 [Google Scholar]
  8. Benazzi S, Douka K, Fornai C, Bauer CC, Kullmer O. et al. 2011. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479:525–28 [Google Scholar]
  9. Blakey ML, Leslie TE, Reidy JP. 1994. Frequency and chronological distribution of dental enamel hypoplasia in enslaved African Americans: a test of the weaning hypothesis. Am. J. Phys. Anthropol. 95:371–83 [Google Scholar]
  10. Bock J, Sellen DW. 2002. Childhood and the evolution of the human life course: an introduction. Hum. Nat. 13:153–59 [Google Scholar]
  11. Boesch C, Boesch-Achermann H. 2000. The Chimpanzees of the Taï Forest Oxford: Oxford Univ. Press [Google Scholar]
  12. Bogin B. 1990. The evolution of human childhood. Bioscience 40:1–25 [Google Scholar]
  13. Bogin B. 2010. Evolution of human growth. Human Evolutionary Biology MP Muehlenbein 379–95 New York: Cambridge Univ. Press [Google Scholar]
  14. Bowman JE. 1991. Life history, growth and dental development in young primates: a study using captive rhesus macaques PhD thesis. Cambridge Univ 228 [Google Scholar]
  15. Breuer T, Hockemba MBN, Olejniczak C, Parnell RJ, Stokes EJ. 2009. Physical maturation, life-history classes and age estimates of free-ranging western gorillas—insights from Mbeli Bai, Republic of Congo. Am. J. Primatol. 71:106–19 [Google Scholar]
  16. Bromage TG. 1991. Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labeling study of dental hard tissues. Am. J. Phys. Anthropol. 86:205–14 [Google Scholar]
  17. Bromage TG, Dean MC. 1985. Re-evaluation of the age at death of immature fossil hominids. Nature 317:525–27 [Google Scholar]
  18. Caspari R, Lee SH. 2004. Older age becomes common late in human evolution. Proc. Natl. Acad. Sci. USA 101:10895–900 [Google Scholar]
  19. Caspari R, Lee SH. 2006. Is human longevity a consequence of cultural change or modern biology?. Am. J. Phys. Anthropol. 129:512–17 [Google Scholar]
  20. Charnov EL. 1991. Evolution of life history variation among female mammals. Proc. Natl. Acad. Sci. USA 88:1134–37 [Google Scholar]
  21. Conroy GC, Vannier MW. 1991. Dental development in South African australopithecines. Part II: dental stage assessment. Am. J. Phys. Anthropol. 86:137–56 [Google Scholar]
  22. Constantino PJ, Lucas PW, Lee JJW, Lawn BR. 2009. The influence of fallback foods on great ape tooth enamel. Am. J. Phys. Anthropol. 140:653–60 [Google Scholar]
  23. Cunha E, Rozzi FR, Bermúdez de Castro JM, Martinón-Torres M, Wasterlain SN, Sarmiento S. 2004. Enamel hypoplasias and physiological stress in the Sima de los Huesos Middle Pleistocene hominins. Am. J. Phys. Anthropol. 125:220–31 [Google Scholar]
  24. Dart RA. 1925. Australopithecus africanus: the man-ape of South Africa. Nature 115:195–99 [Google Scholar]
  25. Dean MC. 1987. Growth layers and incremental markings in hard tissues; a review of the literature and some preliminary observations about enamel structure in Paranthropus boisei. J. Hum. Evol. 16:157–72 [Google Scholar]
  26. Dean MC. 2010. Retrieving chronological age from dental remains of early fossil hominins to reconstruct human growth in the past. Philos. Trans. R. Soc. B 365:3397–410 [Google Scholar]
  27. Dean MC, Leakey MG, Reid DJ, Schrenk F, Schwartz GT. et al. 2001. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414:628–31 [Google Scholar]
  28. Dean MC, Smith BH. 2009. Growth and development of the Nariokotome Youth, KNM-WT 15000. The First Humans: Origin and Early Evolution of the Genus Homo F Grine, JG Fleagle, RE Leakey 101–20 New York: Springer [Google Scholar]
  29. Dean MC, Wood BA. 1981. Developing pongid dentition and its use for ageing individual crania in comparative cross-sectional growth studies. Folia Primatol. 36:111–27 [Google Scholar]
  30. Demirjian A, Buschang PH, Tanguay R, Patterson DK. 1985. Interrelationships among measures of somatic, skeletal, dental and sexual maturity. Am. J. Orthod. 88:433–38 [Google Scholar]
  31. DeSilva JM, Lesnik JL. 2008. Brain size at birth throughout human evolution: a new method for estimating neonatal brain size in hominins. J. Hum. Evol. 55:1064–74 [Google Scholar]
  32. Dirks W. 1998. Histological reconstruction of dental development and age of death in a juvenile gibbon (Hylobates lar). J. Hum. Evol. 35:411–25 [Google Scholar]
  33. Dirks W, Bowman JE. 2007. Life history theory and dental development in four species of catarrhine primates. J. Hum. Evol. 53:309–20 [Google Scholar]
  34. Dirks W, Humphrey LT, Dean MC, Jeffries TE. 2010. The relationship of accentuated lines in enamel to weaning stress in juvenile baboons (Papio hamadryas anubis). Folia Primatol. 81:207–23 [Google Scholar]
  35. Dirks W, Reid DJ, Jolly CJ, Phillips-Conroy JE, Brett FL. 2002. Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park hybrid zone, Ethiopia. Am. J. Phys. Anthropol. 111:239–52 [Google Scholar]
  36. Dolphin AE, Goodman AH, Amarasiriwardena DD. 2005. Variation in elemental intensities among teeth and between pre-and postnatal regions of enamel. Am. J. Phys. Anthropol. 128:878–88 [Google Scholar]
  37. Eerkens JW, Berget AG, Bartelink EJ. 2011. Estimating weaning and early childhood diet from serial micro-samples of dentin collagen. J. Archaeol. Sci. 38:3101–11 [Google Scholar]
  38. Emery Thompson M. 2013. Reproductive ecology of female chimpanzees. Am. J. Primatol. 75:222–37 [Google Scholar]
  39. Emery Thompson M, Muller M, Wrangham R. 2012. The energetics of lactation and the return to fecundity in wild chimpanzees. Behav. Ecol. 23:1234–41 [Google Scholar]
  40. Fiorenza L, Benazzi S, Tausch J, Kullmer O, Bromage TG, Schrenk F. 2011. Molar macrowear reveals Neanderthal eco-geographic dietary variation. PLoS One 6:e14769 [Google Scholar]
  41. Fuller BT, Richards MP, Mays SA. 2003. Stable carbon and nitrogen isotope variations in tooth dentine serial sections from Wharram Percy. J. Archaeol. Sci. 30:1673–84 [Google Scholar]
  42. Gagneux P, Boesch C, Woodruff DS. 1999. Female reproductive strategies, paternity and community structure in wild West African chimpanzees. Anim. Behav. 57:19–32 [Google Scholar]
  43. Garn SM, Lewis AB, Kerewsky RS. 1965. Genetic, nutritional, and maturational correlates of dental development. J. Dent. Res. 44:Suppl.228–42 [Google Scholar]
  44. Godfrey LR, Samonds KE, Jungers WL, Sutherland MR. 2001. Teeth, brains, and primate life histories. Am. J. Phys. Anthropol. 114:192–214 [Google Scholar]
  45. Goodman AH, Allen LH, Hernandez GP, Amador A, Arriola LV. et al. 1987. Prevalence and age at development of enamel hypoplasias in Mexican children. Am. J. Phys. Anthropol. 72:7–19 [Google Scholar]
  46. Goodman AH, Rose JC. 1990. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yearb. Phys. Anthropol. 33:59–110 [Google Scholar]
  47. Guatelli-Steinberg D. 2001. What can developmental defects of enamel reveal about physiological stress in nonhuman primates?. Evol. Anthropol. 10:138–51 [Google Scholar]
  48. Guatelli-Steinberg D. 2009. Recent studies of dental development in Neandertals: implications for Neandertal life histories. Evol. Anthropol. 18:9–20 [Google Scholar]
  49. Guatelli-Steinberg D, Benderlioglu Z. 2006. Brief communication: linear enamel hypoplasia and the shift from irregular to regular provisioning in Cayo Santiago rhesus monkeys (Macaca mulatta). Am. J. Phys. Anthropol. 131:416–19 [Google Scholar]
  50. Guatelli-Steinberg D, Reid DJ. 2010. Brief communication: the distribution of perikymata on Qafzeh anterior teeth. Am. J. Phys. Anthropol. 141:152–57 [Google Scholar]
  51. Gunz P, Neubauer S, Golovanova L, Doronichev V, Maureille B, Hublin JJ. 2012. A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. J. Hum. Evol. 62:300–13 [Google Scholar]
  52. Hare D, Austin C, Doble P, Arora M. 2011. Elemental bio-imaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. J. Dent. 39:397–403 [Google Scholar]
  53. Harrison ME, Marshall AJ. 2011. Strategies for the use of fallback foods in apes. Int. J. Primatol. 32:531–65 [Google Scholar]
  54. Harvey PH, Clutton-Brock TH. 1985. Life history variation in primates. Evolution 39:559–81 [Google Scholar]
  55. Hawkes K, O'Connell JF. 2005. How old is human longevity?. J. Hum. Evol. 49:650–53 [Google Scholar]
  56. Hawkes K, O'Connell JF, Blurton Jones NG, Alvarez H, Charnov EL. 1998. Grandmothering, menopause, and the evolution of human life histories. Proc. Natl. Acad. Sci. USA 95:1336–39 [Google Scholar]
  57. Hawkes KF, Paine RR. 2006. The Evolution of Human Life History Santa Fe, NM: Sch. Am. Res. Press505 [Google Scholar]
  58. Hillson S. 1996. Dental Anthropology Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  59. Hillson S, Bond S. 1997. Relationship of enamel hypoplasia to the pattern of tooth crown growth: a discussion. Am. J. Phys. Anthropol. 104:89–103 [Google Scholar]
  60. Hinz EA, Kohn MJ. 2010. The effect of tissue structure and soil chemistry on trace element uptake in fossils. Geochim. Cosmochim. Acta 74:3213–31 [Google Scholar]
  61. Humphrey LT. 2008. Enamel traces of early lifetime events. Between Biology and Culture H Schutkowski 186–206 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  62. Humphrey LT. 2010. Weaning behaviour in human evolution. Semin. Cell Dev. Biol. 21:453–61 [Google Scholar]
  63. Humphrey LT, Dean MC, Jeffries TE. 2007. An evaluation of changes in strontium/calcium ratios across the neonatal line in human deciduous teeth. Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology SE Bailey, JJ Hublin 303–19 Dordrecht: Springer [Google Scholar]
  64. Humphrey LT, Dean MC, Jeffries TE, Penn M. 2008a. Unlocking evidence of early diet from tooth enamel. Proc. Natl. Acad. Sci. USA 105:6834–39 [Google Scholar]
  65. Humphrey LT, Dirks W, Dean MC, Jeffries TE. 2008b. Tracking dietary transitions in weanling baboons (Papio hamadryas anubis) using strontium/calcium ratios in enamel. Folia Primatol. 79:197–212 [Google Scholar]
  66. Jay M. 2009. Breastfeeding and weaning behaviour in archaeological populations: evidence from the isotopic analysis of skeletal materials. Child. Past 2:163–78 [Google Scholar]
  67. Kaplan H, Hill K, Lancaster J, Hurtado AM. 2000. A theory of human life history evolution: diet, intelligence, and longevity. Evol. Anthropol. 9:156–85 [Google Scholar]
  68. Katzenberg M, Herring DA, Saunders SR. 1996. Weaning and infant mortality: evaluating the skeletal evidence. Yearb. Phys. Anthropol. 39:177–99 [Google Scholar]
  69. Keith A. 1925. The Taungs skull. Nature 116:462–63 [Google Scholar]
  70. Kelley J, Schwartz GT. 2010. Dental development and life history in living African and Asian apes. Proc. Natl. Acad. Sci. USA 107:1035–40 [Google Scholar]
  71. Kelley J, Schwartz GT. 2012. Life-history inference in the early hominins Australopithecus and Paranthropus. Int. J. Primatol. 33:1332–63 [Google Scholar]
  72. Kelley J, Smith TM. 2003. Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea. J. Hum. Evol. 44:307–29 [Google Scholar]
  73. Knott C. 2001. Female reproductive ecology of the apes. Reproductive Ecology and Human Evolution PT Ellison 429–63 Hawthorne: Aldine de Gruyter478 [Google Scholar]
  74. Kohn MJ, Moses RJ. 2013. Trace element diffusivities in bone rule out simple diffusive uptake during fossilization but explain in vivo uptake and release. Proc. Natl. Acad. Sci. USA 110:419–24 [Google Scholar]
  75. Konner M. 2010. The Evolution of Childhood: Relationships, Emotions, Mind Cambridge, MA: Belknap Press943 [Google Scholar]
  76. Kramer KL, Greaves RD, Ellison PT. 2009. Early reproductive maturity among Pume foragers: implications of a pooled energy model to fast life histories. Am. J. Hum. Biol. 21:430–37 [Google Scholar]
  77. Lacruz RS, Ramirez Rozzi FV. 2010. Molar crown development in Australopithecus afarensis. J. Hum. Evol. 58:201–6 [Google Scholar]
  78. Lacruz RS, Ramirez Rozzi F, Bromage TG. 2005. Dental enamel hypoplasia, age at death, and weaning in the Taung child. S. Afr. J. Sci. 101:567–69 [Google Scholar]
  79. Lancaster JB, Kaplan HS. 2009. The endocrinology of the human adaptive complex. Endocrinology of Social Relationships PT Ellison, PG Gray 95–119 Cambridge, MA: Harvard Univ. Press512 [Google Scholar]
  80. Lee PC. 1996. The meanings of weaning: growth, lactation, and life history. Evol. Anthropol. 5:87–98 [Google Scholar]
  81. Lee PC. 2012. Growth and investment in hominin life history evolution: patterns, processes, and outcomes. Int. J. Primatol. 33:1309–31 [Google Scholar]
  82. Leigh SR, Blomquist GE. 2007. Life history. Primates in Perspective CJ Campbell, A Fuentes, KC MacKinnon, M Panger, SK Bearder 396–407 Oxford, UK: Oxford Univ. Press736 [Google Scholar]
  83. Lewis AB. 1991. Comparisons between dental and skeletal ages. Angle Orthod. 61:87–92 [Google Scholar]
  84. Lewis AB, Garn SM. 1960. The relationship between tooth formation and other maturational factors. Angle Orthod. 30:70–77 [Google Scholar]
  85. Macchiarelli R, Bondioli L, Debénath A, Mazurier A, Tournepiche JF. et al. 2012. How Neanderthal molar teeth grew. Nature 444:748–51 [Google Scholar]
  86. Martin LB. 1985. Significance of enamel thickness in hominoid evolution. Nature 314:260–63 [Google Scholar]
  87. Martín-Gonzáles JA, Mateos A, Goikoetxea I, Leonard WR, Rodríguez J. 2012. Differences between Neandertal and modern human infant and child growth models. J. Hum. Evol. 63:140–49 [Google Scholar]
  88. McDade TW. 2003. Life history theory and the immune system: steps toward a human ecological immunology. Yearb. Phys. Anthropol. 46:100–25 [Google Scholar]
  89. Moggi - Cecchi J, Pacciani E, Pinto - Cisternas J. 1994. Enamel hypoplasia and age at weaning in 19th-century Florence, Italy. Am. J. Phys. Anthropol. 93:299–306 [Google Scholar]
  90. Moorrees CF, Fanning EA, Hunt EE. 1963. Age variation of formation stages for ten permanent teeth. J. Dent. Res. 42:1490–502 [Google Scholar]
  91. Neubauer S, Hublin JJ. 2012. The evolution of human brain development. Evol. Biol. 39:568–86 [Google Scholar]
  92. Nowell AA, Fletcher AW. 2007. Development of independence from the mother in Gorilla gorilla gorilla. Int. J. Primatol. 28:441–55 [Google Scholar]
  93. Nunn CL. 2011. The Comparative Method in Evolutionary Anthropology and Biology Chicago: Univ. Chicago Press392 [Google Scholar]
  94. Ogilvie MD, Curran BK, Trinkaus E. 1989. Incidence and patterning of dental enamel hypoplasia among the Neandertals. Am. J. Phys. Anthropol. 79:25–41 [Google Scholar]
  95. Olejniczak AJ, Smith TM, Feeney RNM, Macchiarelli R, Mazurier A. et al. 2008. Dental tissue proportions and enamel thickness in Neandertal and modern human molars. J. Hum. Evol. 55:12–23 [Google Scholar]
  96. Pusey AE. 1983. Mother-offspring relationships in chimpanzees after weaning. Anim. Behav. 31:363–77 [Google Scholar]
  97. Ramirez Rozzi FV, Bermudez de Castro JM. 2004. Surprisingly rapid growth in Neanderthals. Nature 428:936–39 [Google Scholar]
  98. Richards MP, Trinkaus E. 2009. Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl. Acad. Sci. USA 106:16034–39 [Google Scholar]
  99. Robbins MM, Bermejo M, Cipolletta C, Magliocca F, Parnell RJ, Stokes E. 2004. Social structure and life-history patterns in western gorillas (Gorilla gorilla gorilla). Am. J. Primatol. 64:145–59 [Google Scholar]
  100. Robson SL, Wood B. 2008. Hominin life history: reconstruction and evolution. J. Anat. 212:394–425 [Google Scholar]
  101. Rushton MA. 1933. On the fine contour lines of the enamel of milk teeth. Dent. Rec. 53:170–71 [Google Scholar]
  102. Sasaki C, Suzuki K, Mishima H, Kozawa Y. 2003. Age determination of the Dederiyeh 1 Neanderthal child using enamel cross-striations. Neanderthal Burials: Excavations of the Dederiyeh Cave, Afrin, Syria T Akazawa, S Muhesen 263–67 Kyoto: Int. Res. Cent. Jpn. Stud. [Google Scholar]
  103. Schour I. 1936. The neonatal line in the enamel and dentin of human deciduous teeth and first permanent molar. J. Am. Dent. Assoc. 23:1946–55 [Google Scholar]
  104. Schultz AH. 1935. Eruption and decay of the permanent teeth in primates. Am. J. Phys. Anthropol. 19:489–581 [Google Scholar]
  105. Schultz AH. 1960. Age changes in primates and their modification in man. Human Growth JM Tanner 1–20 Oxford: Pergamon120 [Google Scholar]
  106. Schwartz GT. 2012. Growth, development, and life history throughout the evolution of Homo. Curr. Anthropol. 53:S395–408 [Google Scholar]
  107. Schwartz GT, Reid DJ, Dean MC, Zihlman AL. 2006. A faithful record of stressful life events preserved in the dental developmental record of a juvenile gorilla. Int. J. Primatol. 22:837–60 [Google Scholar]
  108. Šešelj M. 2013. Relationship between dental development and skeletal growth in modern humans and its implications for interpreting ontogeny in fossil hominins. Am. J. Phys. Anthropol. 150:38–47 [Google Scholar]
  109. Shackelford LL, Stinespring Harris AE, Konigsberg LW. 2012. Estimating the distribution of probable age-at-death from dental remains of immature human fossils. Am. J. Phys. Anthropol. 147:227–53 [Google Scholar]
  110. Shepherd TJ, Dirks W, Manmee C, Hodgson S, Banks DA. et al. 2012. Reconstructing the life-time lead exposure in children using dentine in deciduous teeth. Sci. Total Environ. 425:214–22 [Google Scholar]
  111. Simpson SW. 1999. Reconstructing patterns of growth disruption from enamel microstructure. Human Growth in the Past RD Hoppa, C Fitzgerald 241–63 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  112. Skinner M. 1996. Developmental stress in immature hominines from Late Pleistocene Eurasia: evidence from enamel hypoplasias. J. Archaeol. Sci. 23:833–52 [Google Scholar]
  113. Skinner M. 1997. Dental wear in immature Late Pleistocene European hominines. J. Archaeol. Sci. 24:677–700 [Google Scholar]
  114. Skinner MF, Skinner MM, Boesch C. 2012. Developmental defects of the dental crown in chimpanzees from the Taï National Park, Côte D'Ivoire: coronal waisting. Am. J. Phys. Anthropol. 149:272–82 [Google Scholar]
  115. Skinner MF, Sperber GH. 1982. Atlas of Radiographs of Early Man New York: Liss [Google Scholar]
  116. Smith BH. 1986. Dental development in Australopithecus and early Homo. Nature 232:327–30 [Google Scholar]
  117. Smith BH. 1989. Dental development as a measure of life history variation in primates. Evolution 43:683–88 [Google Scholar]
  118. Smith BH. 1991a. Dental development and the evolution of life history in Hominidae. J. Hum. Evol. 86:157–74 [Google Scholar]
  119. Smith BH. 1991b. Standards of human tooth formation and dental age assessment. Advances in Dental Anthropology MA Kelley, CS Larsen 143–68 New York: Wiley-Liss [Google Scholar]
  120. Smith BH. 1992. Life history and the evolution of human maturation. Evol. Anthropol. 1:134–42 [Google Scholar]
  121. Smith BH, Crummett TL, Brandt KL. 1994. Ages of eruption of primate teeth: a compendium for aging individuals or comparing life histories. Yearb. Phys. Anthropol. 37:177–231 [Google Scholar]
  122. Smith BH, Tompkins RL. 1995. Toward a life history of the Hominidae. Annu. Rev. Anthropol. 24:257–79 [Google Scholar]
  123. Smith RJ, Gannon PJ, Smith BH. 1995. Ontogeny of australopithecines and early Homo: evidence from cranial capacity and dental eruption. J. Hum. Evol. 29:155–68 [Google Scholar]
  124. Smith TM. 2006. Experimental determination of the periodicity of incremental features in enamel. J. Anat. 208:99–114 [Google Scholar]
  125. Smith TM. 2008. Incremental dental development: methods and applications in hominoid evolutionary studies. J. Hum. Evol. 54:205–24 [Google Scholar]
  126. Smith TM, Machanda Z, Bernard AB, Donovan RM, Papakyrikos AM. et al. 2013. First molar eruption, weaning, and life history in living wild chimpanzees. Proc. Natl. Acad. Sci. USA 110:2787–91 [Google Scholar]
  127. Smith TM, Olejniczak AJ, Martin LB, Reid DJ. 2005. Variation in hominoid molar enamel thickness. J. Hum. Evol. 48:575–92 [Google Scholar]
  128. Smith TM, Olejniczak AJ, Zermeno JP, Tafforeau P, Skinner MM. et al. 2012. Variation in enamel thickness within the genus Homo. J. Hum. Evol. 62:395–411 [Google Scholar]
  129. Smith TM, Smith BH, Reid DJ, Siedel H, Vigilant L. et al. 2010a. Dental development of the Taï Forest chimpanzees revisited. J. Hum. Evol. 58:363–73 [Google Scholar]
  130. Smith TM, Tafforeau P. 2008. New visions of dental tissue research: tooth development, chemistry, and structure. Evol. Anthropol. 17:213–26 [Google Scholar]
  131. Smith TM, Tafforeau P, Reid DJ, Grün R, Eggins S. et al. 2007a. Earliest evidence of modern human life history in North African early Homo sapiens. Proc. Natl. Acad. Sci. USA 104:6128–33 [Google Scholar]
  132. Smith TM, Tafforeau P, Reid DJ, Pouech J, Lazzari V. et al. 2010b. Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proc. Natl. Acad. Sci. USA 107:20923–28 [Google Scholar]
  133. Smith TM, Toussaint M, Reid DJ, Olejniczak AJ, Hublin JJ. 2007b. Rapid dental development in a middle Paleolithic Belgian Neanderthal. Proc. Natl. Acad. Sci. USA 104:20220–25 [Google Scholar]
  134. Sponheimer M, Passey BH, de Ruiter DJ, Guatelli-Steinberg D, Cerling TE, Lee-Thorp JA. 2006. Isotopic evidence for dietary variability in the early hominin Paranthropus robustus. Science 314:980–82 [Google Scholar]
  135. Sterns S. 1992. The Evolution of Life Histories Oxford, UK: Oxford Univ. Press [Google Scholar]
  136. Strait SG. 1997. Tooth use and the physical properties of food. Evol. Anthropol. 5:199–211 [Google Scholar]
  137. Thompson JL, Nelson AJ. 2011. Middle childhood and modern human origins. Hum. Nat. 22:249–80 [Google Scholar]
  138. Trinkaus E. 2011. Late Pleistocene adult mortality patterns and modern human establishment. Proc. Natl. Acad. Sci. USA 108:1267–71 [Google Scholar]
  139. Ungar PS, Sponheimer M. 2011. The diets of early hominins. Science 334:190–93 [Google Scholar]
  140. Valeggia C, Ellison PT. 2009. Interactions between metabolic and reproductive functions in the resumption of postpartum fecundity. Am. J. Hum. Biol. 21:559–66 [Google Scholar]
  141. Vallois HV. 1937. La durée de la vie chez l'homme fossile. Anthropologie 47:499–532 [Google Scholar]
  142. Watts DP. 1991. Mountain gorilla reproduction and sexual behavior. Am. J. Primatol. 24:211–25 [Google Scholar]
  143. Wolpoff MH, Caspari R. 2006. Does Krapina reflect early Neandertal paleodemography?. Period. Biol. 108:425–32 [Google Scholar]
  144. Wood L. 1996. Frequency and chronological distribution of linear enamel hypoplasia in a North American colonial skeletal sample. Am. J. Phys. Anthropol. 100:247–59 [Google Scholar]
  145. Wright LE, Schwarcz HP. 1998. Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. Am. J. Phys. Anthropol. 106:1–18 [Google Scholar]
/content/journals/10.1146/annurev-anthro-092412-155550
Loading
/content/journals/10.1146/annurev-anthro-092412-155550
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error